Full Orientability of the Square of a Cycle

Fengwei Xu, Weifan Wang *
Department of Mathematics
Zhejiang Normal University, Jinhua 321004, China

Ko-Wei Lih Institute of Mathematics Academia Sinica, Nankang, Taipei 11529, Taiwan

Abstract

Let D be an acyclic orientation of a simple graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let d(D) denote the number of dependent arcs in D. Define $d_{\min}(G)$ ($d_{\max}(G)$) to be the minimum (maximum) number of d(D) over all acyclic orientations D of G. We call G fully orientable if G has an acyclic orientation with exactly k dependent arcs for every k satisfying $d_{\min}(G) \leq k \leq d_{\max}(G)$. In this paper, we prove that the square of a cycle C_n is fully orientable except n=6.

Key words: Cycle; Square; Digraph; Acyclic orientation; Full orientability

1 Introduction

Only simple graphs are considered in this paper unless otherwise stated. For a graph G, we denote its vertex set and edge set by V(G) and E(G), respectively. An *orientation* D of G assigns a direction to each edge of G. D is called *acyclic* if there does not exist any directed cycle. Suppose that D

^{*}Corresponding author. Email: wwf@zjnu.cn; Research supported partially by NSFC (No. 10771197) and ZJNSF (No. Z6090150)

is an acyclic orientation of G. An arc of D is called dependent if its reversal creates a directed cycle. Let d(D) denote the number of dependent arcs of D. We use $d_{\min}(G)$ and $d_{\max}(G)$ to denote the minimum and maximum number of d(D) over all acyclic orientations D of G, respectively. It is known [2] that $d_{\max}(G) = |E(G)| - |V(G)| + c$ for a graph G having c components.

An interpolation question asks whether G has an acyclic orientation with exactly k dependent arcs for each k satisfying $d_{\min}(G) \leq k \leq d_{\max}(G)$. The graph G is called *fully orientable* if its interpolation question has an affirmative answer. West [7] showed that complete bipartite graphs are fully orientable.

A k-coloring of a graph G is a mapping f from V(G) to the set $\{1, 2, ..., k\}$ such that $f(x) \neq f(y)$ for each edge $xy \in E(G)$. The chromatic number $\chi(G)$ is the smallest integer k such that G has a k-coloring. The girth g(G) is the minimum length of a cycle in a graph G if there is any, and ∞ if G possesses no cycles.

Fisher et al. [2] showed that G is fully orientable if $\chi(G) < g(G)$, and $d_{\min}(G) = 0$ in this case. Since it is well-known [3] that every planar graph G with $g(G) \ge 4$ is 3-colorable, planar graphs of girth at least 4 are fully orientable.

The full orientability for several graph classes has been investigated recently. Lih, Lin, and Tong [6] showed that outerplanar graphs are fully orientable. To generalize this result, Lai, Chang, and Lih [4] proved that 2-degenerate graphs are fully orientable. Here a graph G is called 2-degenerate if every subgraph H of G contains a vertex of degree at most 2 in H. Lai and Lih [5] gave further examples of fully orientable graphs, such as subdivisions of Halin graphs and graphs of maximum degree at most three. Let $K_{r(n)}$ denote the complete r-partite graph each of whose partite sets has n vertices. Chang, Lin, and Tong [1] proved that $K_{r(n)}$ is not fully orientable if $r \geq 3$ and $n \geq 2$. These are the only known graphs that are not fully orientable.

Suppose that G is a connected graph. For $m \ge 2$, the mth power of G, denoted G^m , is the graph defined by $V(G^m) = V(G)$ and two distinct vertices u and v are adjacent in G^m if and only if their distance in G is at most m. In particular, G^2 is called the square of G.

It is well-known that a directed Hamiltonian path exists for any acyclic orientation of the complete graph K_n on n vertices. This implies that

 $d_{\min}(K_n) = d_{\max}(K_n) = \frac{1}{2}(n-1)(n-2)$, hence K_n is fully orientable ([7]). Throughout this paper, we use $C_n = v_0v_1 \cdots v_{n-1}v_0$ to represent a cycle of length $n \geq 3$. It is easy to see that $C_n^2 \cong K_n$ if $3 \leq n \leq 5$, and hence is fully orientable. If n = 6, then $C_n^2 \cong K_{3(2)}$. By the result of [1], C_6^2 is not fully orientable and $d(D) \in \{4,6,7\}$ for any orientation D of C_6^2 . In this paper, we shall prove that C_n^2 is fully orientable except n = 6.

2 Results

For a given graph G, let $\pi_T(G)$ be the minimum number of edges that can be deleted from G so that the new graph is triangle-free, i.e., having no K_3 as a subgraph. The following lemma appeared in [4].

Lemma 1 For any graph G, $d_{\min}(G) \geqslant \pi_T(G)$.

Lemma 2 For $n \ge 7$, $\pi_{\tau}(C_n^2) = \lceil \frac{n}{2} \rceil$.

Proof. When $n \ge 7$, C_n^2 contains exactly n distinct triangles. Since every edge of C_n^2 lies in at most two triangles, we have $\pi_T(C_n^2) \ge \lceil \frac{n}{2} \rceil$.

On the other hand, let $S=\{v_1v_2,v_3v_4,\ldots,v_{n-1}v_0\}$ if n is even, and $S=\{v_0v_1,v_1v_2,v_3v_4,\ldots,v_{n-2}v_{n-1}\}$ if n is odd. Obviously, $|S|=\lceil\frac{n}{2}\rceil$ and G-S is triangle-free. Thus, $\pi_T(C_n^2)\leqslant |S|=\lceil\frac{n}{2}\rceil$.

In a digraph D with vertex set V(D) and arc set E(D), we use $u \to v$ to denote the arc with tail u and head v. The indegree $d_D^-(v)$ of a vertex v in D is the number of arcs with head v; the outdegree $d_D^+(v)$ of v in D is the number of arcs with tail v. Let R(D) denote the set of dependent arcs in D.

Theorem 3 If $n \ge 7$, then $d_{\min}(C_n^2) = \pi_T(C_n^2) + 1$.

Proof. In the first part, we are going to prove that $d_{\min}(C_n^2) \geq \pi_T(C_n^2) + 1$. Assume to the contrary that $d_{\min}(C_n^2) < \pi_T(C_n^2) + 1$. It follows from Lemmas 1 and 2 that $d_{\min}(C_n^2) = \pi_T(C_n^2) = \lceil \frac{n}{2} \rceil$. Let D be an acyclic orientation of C_n^2 with $d(D) = d_{\min}(C_n^2)$. Let F be the set of all underlying edges of the arcs in R(D). Thus, $|F| = \pi_T(C_n^2) = \lceil \frac{n}{2} \rceil$ and $C_n^2 - F$ is triangle-free. We use C to denote the closed walk $v_0, v_1, \ldots, v_{n-1}, v_0$ in D.

The proof is divided into two cases, depending on the parity of n.

Case 1. Assume n = 2k for some $k \geqslant 4$.

Since $C_n^2 - F$ is triangle-free and |F| = k, it is easy to see from the construction of C_n^2 that $F = \{v_1v_2, v_3v_4, \ldots, v_{n-1}v_0\}$ or $F = \{v_0v_1, v_2v_3, \ldots, v_{n-2}v_{n-1}\}$. Without loss of generality, we may assume the former.

Claim. No $v \in V(D)$ satisfies $d_C^+(v) = d_C^-(v) = 1$.

Assume to the contrary that we had $v_{i-1} \to v_i \to v_{i+1}$ (indices modulo n) for some i in D. Then we would have $v_{i-1} \to v_{i+1}$ in D since D is acyclic, and hence $v_{i-1} \to v_{i+1}$ is dependent, contradicting the assumption that $v_{i-1}v_{i+1} \notin F$.

It follows from the Claim that every vertex $v \in V(D)$ satisfies $d_C^+(v) = 0$ and $d_C^-(v) = 2$ or $d_C^+(v) = 2$ and $d_C^-(v) = 0$. Without loss of generality, we may suppose that $d_C^+(v_i) = 2$ and $d_C^-(v_i) = 0$ for each odd i, and $d_C^+(v_i) = 0$ and $d_C^-(v_i) = 2$ for each even i, i.e., C is oriented as $v_1 \to v_2 \leftarrow v_3 \to v_4 \leftarrow \cdots \to v_{n-2} \leftarrow v_{n-1} \to v_0 \leftarrow v_1$. Therefore, $R(D) = \{v_1 \to v_2, v_3 \to v_4, \ldots, v_{n-1} \to v_0\}$. Since $v_i \leftarrow v_{i+1}$ is not dependent for each even i, the edge $v_{i-1}v_{i+1}$ must be directed as $v_{i-1} \to v_{i+1}$. Consequently, a directed cycle $v_1 \to v_3 \to \cdots \to v_{n-1} \to v_1$ is constructed, contradicting the acyclicity of D.

Case 2. Assume n = 2k + 1 for some $k \ge 3$.

In this case, |R(D)| = |F| = k + 1. Note that $C_n^2 - F$ is triangle-free. Hence, C_n^2 has exactly 2k+1 distinct triangles, and every edge v_iv_j belongs to exactly one triangle (or two triangles) depending on the distance between v_i and v_j is 2 (or 1) in C, then F contains at least k edges in C and hence at most one edge outside C. Since n is odd, there must exist some i such that $v_{i-1} \to v_i \to v_{i+1}$. So, $v_{i-1} \to v_{i+1}$ is a dependent arc. Hence, F contains exactly one edge outside C. We may assume that $F = \{v_1v_2, v_3v_4, \ldots, v_{n-2}v_{n-1}, v_{n-1}v_1\}$. We may also assume that $v_{n-1} \to v_1$. (The case for $v_1 \to v_{n-1}$ can be handled in a similar way.)

We examine the direction of v_1v_2 . First assume that $v_1 \to v_2$. Since $v_1 \to v_2$ is the only arc of F in the triangle $v_1v_2v_3v_1$, we have $v_1 \to v_3 \to v_2$. Similarly, in the triangle $v_2v_3v_4v_2$, we have $v_2 \to v_4$ and $v_3 \to v_4$. In this way, it leads to $v_4 \leftarrow v_5 \to v_6 \leftarrow \cdots \leftarrow v_{n-2} \to v_{n-1} \leftarrow v_0$. If $v_1 \to v_0$, then a directed 3-cycle $v_1 \to v_0 \to v_{n-1} \to v_1$ is produced. If $v_0 \to v_1$, then $v_0 \to v_1$ would be a dependent arc of D. Contradictions are obtained in both cases.

Next, assume that $v_2 ouv_1$. Since $v_2 ouv_1$ is the only arc of F in the triangle $v_1v_2v_3v_1$, we have $v_2 ouv_3 ouv_1$. Similarly, in the triangle $v_2v_3v_4v_2$, we have $v_4 ouv_2$ and $v_4 ouv_3$. In this way, it leads to $v_3 ouv_4 ouv_5 ouv_6 ouv_6 ouv_{n-1} ouv_0$. Since $v_{n-1} ouv_0$ is not dependent, we have $v_0 ouv_1$. Since $v_2 ouv_3$ is not dependent, we have $v_3 ouv_1$. Similarly, we have $v_5 ouv_3$; $v_7 ouv_5$; \dots ; $v_0 ouv_{n-2}$; $v_2 ouv_0$; $v_4 ouv_2$; $v_6 ouv_4$; \dots ; $v_{n-1} ouv_{n-3}$. However, the existence of the directed path $v_0 ouv_{n-2} ouv_{n-4} ouv_3 ouv_5 ouv_3 ouv_1$ makes $v_0 ouv_1$ a dependent arc, contrary to our assumption.

In the second part, we are going to prove that $d_{\min}(C_n^2) \leq \pi_T(C_n^2) + 1$. In fact, an acyclic orientation D_0 of G will be constructed so that $d(D_0) = \pi_T(C_n^2) + 1$. The construction is divided into two cases, depending on the parity of n.

Case 1. Assume n = 2k for some $k \ge 4$.

Let D_0 be defined as follows.

$$\begin{split} v_1 &\to v_{n-1}; \ v_1 \to v_0; \ v_2 \to v_0 \to v_{n-1}; \ v_{n-2} \to v_0; \\ v_{2i-1} &\to v_{2i+1} \text{ for each } i=1,2,\ldots,k-1; \\ v_{2i} &\to v_{2i+2} \text{ for each } i=1,2,\ldots,k-2; \\ v_{2i-1} &\leftarrow v_{2i} \to v_{2i+1} \text{ for each } i=1,2,\ldots,k-1. \end{split}$$

By a close examination, we can see that D_0 is an acyclic orientation of C_n^2 such that $R(D_0)=\{v_1\to v_{n-1},v_2\to v_0,v_2\to v_3,v_4\to v_5,\ldots,v_{n-2}\to v_{n-1}\}$. Therefore, $d(D_0)=|R(D_0)|=k+1=\pi_T(C_n^2)+1$.

Case 2. Assume n = 2k + 1 for some $k \ge 3$.

Let D_0 be defined as follows.

$$v_2 \to v_1 \to v_{n-1}; \ v_3 \to v_1 \to v_0; \ v_2 \to v_0 \to v_{n-1}; \ v_{n-2} \to v_{n-1}; \ v_{n-2} \to v_{n-1};$$

$$v_{2i+1} \to v_{2i} \to v_{2i+2}$$
 for each $i = 1, 2, ..., k-1$; $v_{2i} \leftarrow v_{2i-1} \to v_{2i+1}$ for each $i = 2, ..., k-1$.

By a close examination, we can see that D_0 is an acyclic orientation of C_n^2 such that $R(D_0) = \{v_3 \to v_1, v_1 \to v_{n-1}, v_2 \to v_0, v_3 \to v_4, v_5 \to v_6, v_7 \to v_8, \dots, v_{n-2} \to v_{n-1}\}$. Therefore, $d(D_0) = |R(D_0)| = k+2 = \pi_T(C_n^2) + 1$. This completes our proof.

Theorem 4 For $n \ge 7$, C_n^2 is fully orientable.

Proof. For every graph G, there exists an acyclic orientation D so that $d(D) = d_{\max}(G)$ in [2]. So the present theorem is established if, for each integer s, $\pi_T(C_n^2) + 1 = m < s \le n$, an acyclic orientation D_{s-m} of C_n^2 is constructed to satisfy $d(D_{s-m}) = s$. In fact, such a sequence of acyclic orientations D_{s-m} can be recursively constructed from the D_0 defined in the proof of Theorem 3. We divide our construction into two cases, depending on the parity of n.

Case 1. Assume n = 2k for some $k \ge 4$.

By Lemma 2, $\pi_T(C_n^2) = k$. First consider the range $k + 2 \le s \le 2k - 2$. Assume that D_{s-k-2} has already been constructed.

Let D_{s-k-1} be the acyclic orientation of C_n^2 obtained from D_{s-k-2} by reversing the arc $v_{2(s-k-1)-1} \to v_{2(s-k-1)+1}$. It is easy to check that $R(D_{s-k-1}) = R(D_{s-k-2}) \cup \{v_{2(s-k-1)} \to v_{2(s-k-1)-1}\}$. Hence $d(D_{s-k-1}) = d(D_{s-k-2}) + 1 = s$.

If s=2k-1, let D_{k-2} be the acyclic orientation of C_n^2 obtained from D_{k-3} by reversing the arcs $v_1 \to v_{2k-1}, v_1 \to v_0, v_{2k-3} \to v_{2k-1}$. It is easy to check that $R(D_{k-2}) = R(D_{k-3}) \setminus \{v_1 \to v_{2k-1}\} \cup \{v_0 \to v_1, v_{2k-2} \to v_{2k-3}\}$ and $d(D_{k-2}) = d(D_{k-3}) + 2 - 1 = 2k - 1$.

If s=2k, let D_{k-1} be the acyclic orientation of C_n^2 obtained from D_{k-2} by reversing the arc $v_{2k-1} \to v_1$. It is easy to check that $R(D_{k-1}) = R(D_{k-2}) \setminus \{v_0 \to v_1\} \cup \{v_0 \to v_{2k-1}, v_{2k-5} \to v_{2k-3}\}$ and $d(D_{k-1}) = d(D_{k-2}) + 2 - 1 = 2k$.

Case 2. Assume n = 2k + 1 for some $k \ge 3$.

By Lemma 2, $\pi_T(C_n^2) = k+1$. First consider the range $k+2 \le s \le 2k-2$. Assume that D_{s-k-3} has already been constructed.

Let D_{s-k-2} be the acyclic orientation of C_n^2 obtained from D_{s-k-3} by reversing the arc $v_{2(s-k-2)} \to v_{2(s-k-2)+2}$. It is easy to check that $R(D_{s-k-2}) = R(D_{s-k-3}) \cup \{v_{2(s-k-2)+1} \to v_{2(s-k-2)}\}$. Hence $d(D_{s-k-2}) = d(D_{s-k-3}) + 1 = s$.

If s=2k, let D_{k-2} be the acyclic orientation of C_n^2 obtained from D_{k-3} by reversing the arcs $v_0 \to v_{2k}$. It is easy to check that $R(D_{k-2}) = R(D_{k-3}) \setminus \{v_1 \to v_{2k}\} \cup \{v_{2k-1} \to v_0, v_1 \to v_0\}$ and $d(D_{k-2}) = d(D_{k-3}) - 1 + 2 = 2k$.

If s = 2k + 1, let D_{k-1} be the acyclic orientation of C_n^2 obtained from D_{k-3} by reversing the arc $v_{2k-2} \to v_{2k}$. It is easy to check that $R(D_{k-1}) =$

$$R(D_{k-3}) \cup \{v_{2k-1} \to v_{2k-2}, v_{2k-4} \to v_{2k-2}\}$$
 and $d(D_{k-1}) = d(D_{k-3}) + 2 = 2k + 1$.

To conclude this paper, we would like to pose the following problem.

Problem. For any given integer $k \ge 2$, does there exist a smallest constant $\alpha(k)$ such that C_n^k is fully orientable whenever $n \ge \alpha(k)$?

Since $C_{2k+2}^k \cong K_{(k+1)(2)}$ and $K_{(k+1)(2)}$ is not fully orientable when $k \geq 2$ by the result of [1], we have $\alpha(k) \geq 2k+3$. The only solved case of this problem is $\alpha(2) = 7$ by Theorem 4.

References

- G. J. Chang, C.-Y. Lin, and L.-D. Tong, Independent arcs of acyclic orientations of complete r-partite graphs, *Discrete Math.* 309 (2009) 4280-4286.
- [2] D. C. Fisher, K. Fraughnaugh, L. Langley, and D. B. West, The number of dependent arcs in an acyclic orientation, J. Combin. Theory Ser. B 71 (1997) 73-78.
- [3] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther Univ. Halle-Wittenberg, Math.-Nat. Reihe 8 (1959) 109-120.
- [4] H.-H. Lai, G. J. Chang, and K.-W. Lih, On fully orientability of 2degenerate graphs, *Inform. Process. Lett.* 105 (2008) 177-181.
- [5] H.-H. Lai and K.-W. Lih, On preserving full orientability of graphs, European J. Combin. 31 (2010) 598-607.
- [6] K.-W. Lih, C.-Y. Lin, and L.-D. Tong, On an interpolation property of outerplanar graphs, *Discrete Appl. Math.* **154** (2006) 166-172.
- [7] D. B. West, Acyclic orientations of complete bipartite graphs, *Discrete Math.* 138 (1995) 393-396.