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Abstract

It is known that determining the Lagrangian of a general r-
uniform hypergraph is useful in practice and is non-trivial when
r > 3. In this paper, we explore the Lagrangians of 3-uniform
hypergraphs with edge sets having restricted structures. In par-
ticular, we establish a number of optimization problems for finding
the largest Lagrangian of 3-uniform hypergraphs with the number of
edges m = (¥) —a where a=3 or 4. We also verify that the largest La-
grangian has the colex ordering structure for 3-uniform hypergraphs
when the number of edges is small.

Key Words: Cliques, Colex ordering, Left-compressing, Lagrangians of
r-uniform Hypergraphs.

1 Introduction

For a set V and a positive integer r we denote by V(") the family of all
r-subsets of V. An r-uniform graph or r-graph G consists of a set V(G) of
vertices and a set E(G) C V(G)") of edges. An edge e = {ai1,a2,...,a,}
will be simply denoted by ajas...a,. An r-uniform graph H is a subgraph

“Email: ghe@eoir.com

tEmail: yuejian.peng@indstate.edu

Corresponding Author Email: cheng.zhao@indstate.edu. Also, School of Mathemat-
ics, Jilin University, Changchun 130022, P.R. China

ARS COMBINATORIA 122(2015), pp. 235-256



of an 7-uniform graph G, denoted by H C G if V(H) C V(G) and E(H) C
E(G). Let K" denote the complete r-graph on t vertices, that is the
r-graph on t vertices containing all possible edges. A complete r-graph
on t vertices is also called a clique with order ¢. Let [n](") represent the
complete r-uniform graph on the vertex set {1,2,3,...,n}. When 7 = 2,
an r-uniform graph is a simple graph. When r > 3, an r-graph is often
called a hypergraph. Let N be the set of all positive integers.

We now give the definition of the Lagrangian of an r-uniform graph

below. More studies of Lagrangians can be found in [4], {5], (7], [10}, and
[16].

Definition 1.1 For an r-uniform graph G with vertez set {1,2,...,n},
edge set E(G) and a vector £ = (z1,...,Z,) € R™, define
MG, %) = Z Zi\Tig - - - T, ..

{i1+..ir}€E(G)
The value z; is called the weight of the vertex 7.

Definition 1.2 Let S = {Z = (z1,%2,...,%n) : D i Ti = 1,2; 2 0 for i =
1,2,...,n}. The Lagrangian of G, denote by M(G), is defined as

A(G) = max{\(G,%) : ¥ € S}.

We call £ = (z1,23,...,Zn) € R™ a legal weighting for G if )., z; =
l,z; 20 fori =1,2,...,n. A vector § € S is called an optimal vector for
G if M(G,9) = XG).

The following fact is easily implied by the definition of the Lagrangian.

Fact 1.1 Let Gy, G3 be r-uniform graphs and G| C G3. Then
A(G1) £ XG2).

In 1941, Turén [17] provided an answer to the following question: What
is the maximum number of edges in a graph with n vertices not containing a
complete subgraph of order k, for a given k? This is the well-known Turdn
theorem. Later, in another classical paper, T. S. Motzkin and E. G. Straus
[7] provided a novel proof of Turan’s theorem using a continuous character-
ization of the clique number of a graph in terms of Lagrangians of a graph.
They determined the following simple expression for the Lagrangians of a
2-graph.
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Theorem 1.2 (Motzkin and Straus [7]) If G is a 2-graph in which a largest
clique has order t then A\(G) = ,\(Kt(z)) = %(1 - %)

The Motzkin-Straus result and its extension were successfully employed
in optimization to provide heuristics for the maximum clique problem (see
(11,(2], [3], [6],[9], [13]). Furthermore, the Motzkin-Straus theorem has been
generalized to vertex-weighted graphs [see [6]] and edge-weighted graphs
(8-

An attempt to generalize the Motzkin-Straus theorem to hypergraphs
is due to Sés and Straus [15). Recently, in [12] Rota Bulé and Pelillo
generalized the Motzkin and Straus’ result to r-graphs in some way using
a continuous characterization of maximal cliques. Due to the difficulty of
Turdn’s problem {17} for r > 3, determining the Lagrangian of a general r-
graph is non-trivial when » > 3 (see [16]). Indeed the obvious generalization
of Motzkin and Straus’ result is false because there are many examples of 7-
graphs that do not achieve their Lagrangian on any proper subhypergraph.
Frank] and Fiiredi {4] asked the following question. Given r > 3 and m €
N how large can the Lagrangians of an r-graph with m edges be? In
order to state their conjecture on this problem we require the following
definition. For distinct A, B € N{") we say that A is less than B in the
colex ordering if maz(AAB) € B. For example we have 246 < 156 in
N®) since maz({2,4,6}A{1,5,6}) € {1,5,6}. The following conjecture of
Frankl and Fiiredi (if it is true) proposes a solution to the above question.

Conjecture 1.3 (Frankl and Firedi [4]) The r-graph with m edges formed
by taking the first m sets in the colex ordering of N) has the largest La-
grangian of all r-graphs with m edges. In particular, the r-graph with ('r‘)
edges and the largest Lagrangian is [k]™.

This conjecture is true when r = 2 by Theorem 1.2. For the case r = 3,
Talbot in [16] proved the following.

Theorem 1.4 (Talbot) Let m and k be integers satisfying

(57)sms () (37 e

Then Conjecture 1.8 is true for r = 3 and this value of m. Conjecture 1.3
is also true forr =3 andm = (§) =1 orm = (¥) - 2.

The truth of Frankl and Fiiredi’s conjecture is not known in general for
r > 4. Even in the case r = 3, Theorem 1.4 does not cover the case when
(kgl) + (k;2) —(k-2)<m< (’;) — 3 in this conjecture.

237



This paper is organized as follows. We first summarize some useful
results in the next section. Then we establish a number of optimization
problems for finding the largest Lagrangian of 3-graphs when the number
of edges m = (£) — a where a=3 or 4. The solutions of these optimization
problems are tested when m = (§) — 3 for k = 6,---,100 and m = HEX
fork=17,..-,50. Also, we find the Lagrangians of 3-graphs with near colex
ordering structures, and using them we verify Conjecture 1.3 for 3-graphs
when the number of edges m < 50.

2 Useful Results

For an r-graph G = (V, E) we denote the (r — 1)-neighborhood of a vertex
i€VbyE ={Ae V1. Au{i} € E}. Similarly, we will denote
the (r — 2)-neighborhood of a pair of vertices i,j € V by E;; = {B €
V(r=2) . BU {4, j} € E}. We denote the complement of E; by Ef = {A €
V- Au{d ) € VI\E}. Also, we will denote the complement of E;; by
EG={BeV"2:Bu{ij}e V(')\E} Denote

Ei\j = (Ei N E;) \ {jk,k € Eij}.

We will impose one additional condition on any optimal weighting £ =
(z1,22,...,z,) for an r-graph G:

|{7 : ; > 0}| is minimal, i.e. if 7 is a legal weighting for G satisfying
[{z: 4 > 0} < |{z: z; > 0}|, then A(G,7) < MG). (1)

When the theory of Lagrange multipliers is applied to find the optimum
of MG, Z), subject to Y ._; z; = 1, notice that A(E;, %) corresponds to
the partial derivative of A(G, Z) with respect to z;. The following Lemma
gives some necessary condition of an optimal vector of A(G) by applying
the theory of Lagrange multipliers [14].

Lemma 2.1 (Frankl and Rédl [5]) Let G = (V,E) be an r-graph and
T = (z1,22,...,Zn) be an optimal legal weighting for G with k < n non-
zero weights satisfying condition (1). Then for every {i,j} € [k]®, (a)
ME;, Z) = MEj,Z) = rX(G), (b) there is an edge in E containing both i
and j.

We say that an r-graph G = (V| E) is left compressed if (i,,...,i,) € E
implies (j1,...,Jr) € E provided j, < i, for every p,1 < p < r. For exam-
ple, the following 3-graph G is left compressed: the vertex set is {1,2,3,4,5}
and the edge set consists of 7 edges {123, 124,134, 234,125,135, 145}.
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Remark 2.2 (a) In Lemma 2.1, part(a) implies that
z;A(Eij, ) + MEnj) ) = T:M(Eij, ) + MEj\i, T)-
In particular, if G is left compressed, then
(i — 25)M(Eij, Z) = M Eq;, ) )

Jor any i,j satisfying 1 <i < j < k since Ej\; = 0.

(b)If G is left-compressed, then an optimal legal weighting for G & =
(z1,22,-..,Zn) must satisfy

T12222...2%, 20 3)

by (2).

Denote

A = max{A(G) : G is an r — graph with m edges}.

We denote the r-graph with m edges formed by taking the first m ele-
ments in the colex ordering of N by C;.,. The next three lemmas are
proved by Talbot in [16].

Lemma 2.3 (Talbot [16]) There exists a left compressed r-graph G with m
edges such that A(G) = A7,.

Lemma 2.4 (Talbot [16]) For any integers m, k, and r satisfying (*7!) <
m< (*71) + (’::f), we have A(Cr.m) = A([k - 1])).

Lemma 2.5 (Talbot [16]) Let G be a 3-graph with m edges satisfying \(G) =
3., Suppose that T = (z1,Z2,...,Ts) is an optimal legal weighting for G
satisfying 1 2 T2 >+ 2 Tk > Tg1 = *** = T, = 0. Then the number of
edges in G satisfies

|| 2 (k;1)+(k;2>—(k—2).

Theorem 1.4 is implied by Lemmas 2.4 and 2.5.
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3 Special Cases

In this section, we formulate several optimization problems in two or four
independent variables. These problems completelz characterize the La-
grangian of 3-graphs with m = (§) — 3 and m = (§) — 4 edges. Also, so-
lutions of these problems can be used to verify Conjecture 1.3 for 3-graphs
with m = (¥) =3 and m = (%) — 4 edges. Note that [k]® = [k - 1]® U
{kij, where ij € [k — 2)D}uU {1(k — 1)k, 2(k — 1)k, ..., (k — 2)(k — 1)k}.
We ﬁzit gave two computational optimization problems for the case when
m= 3) -3.

Lemma 3.1 Let G be a 3-graph with vertez set {1,2,...,k} and edge set

EG) = [k- 1](3) U {kij, where ij € [k — 2](2)}
U{L(k — 1)k, 2(k = 1)k, ..., (k = 5)(k — 1)k}

Then A(G) = Z(A) > [k — 1)®) where Z(A) is given by solving the

mazimum value in Problem A.
Problem A. Let k > 6. Find the mazimum value Z(A) of f(a,b,c) where

fla,b,c) = (k ; 5)0,3 +3(k ; 5)a2b+ 2(" ; 5)a2c+6(k — 5)abe

+3(k — 5)ab? + 6b%c + b® + (k — 5)ac?
under the constraint

a>b>c>0, (k-5)a+3b+2c=1. (4)

Proof. Observe that G is left-compressed. Let £ = (z1, 2, 3, Z4, ---, Tk)
be an optimal legal weighting for G satisfying conditions (1) on Page 4
and (3) on Page 5. We first notice that =, > 0 since, if zx = 0, then

MG, E) = M[k — 1)®)) = &SI 156 the subgraph of G with edge set
(k-1

k—1)®U{kij, where ij € [k—2)@}u{1(k—1)k)} has the Lagrangian bigger
[ Y J grang

than A([k—1)®) by takingz; = - -- = zx_2 = gy and 24—, = 4 = 5{,:_—15
(On this case, AG,) = (5 (e + (5 ko) + il =
Ak - 1)) + I(:%?sg). Now we may assume each z; > O for 1 < i < k.
Observe that Ej\j =0 for 1 <i<j<k-5,k-4<i<j<k-2 and
k—1<i<j<k By (2),

def def qif
T = - =ZTk5=0Q, Th-4=Tk-3=Tk-2=0, Tp—1 ==k =cC.
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Note that (k — 5)a + 3b+ 2¢ = 1. In viewing of the edge set E(G), AM(G) is
the maximum value of

fla,bye) = (" N 5)a3 + 3(’“; 5)a2b 4 2("5 5)a2c+6(k — 5)abe
+3(k — 5)ab? + 6b%c + b3 + (k — 5)ac?

under the constraint (4). This completes the proof. o

Lemma 3.2 Let G be a 3-graph with vertez set {1,2,...,k} and edge set

E(G) = [k-1® U {kij, where ij € [k—2]@\ {(k - 3)(k —2)}}
U{1(k — 1)k, 2(k — 1)k, ..., (k — 4)(k — 1)k}.

Then A(G) = max{52C=3), Z(B)} where Z(B) is given by solving the
mazimum value in Problem B.

Problem B. Let k > 6. Find the mazimum value Z &B) of g(a, b, ¢) where
g(a,b,¢) = (*3%)a® +3(*;%a%b + 3(k — 4)ab® + b* + (*;*)a%c + 3(k — 4)abe
under the constraint

a>b>c20, (k—4)a+3b+c=1. (5)

Proof. Observe that G is left-compressed. Let T = (21, Z2, Z3, T4, -+, Tk)
be an optimal legal weighting for G satisfying conditions (1) on Page 4 and
(3) on Page 5. If zx = 0, then MG, Z) = A([k — 1]®)) = EAE)  1f
zx > 0, then each z; > 0. Observe that Ey; =0for1 <i<j< k-4, and
k-3<i<j<k-1 By|(2),

_ _ def —- def
L) = =Tkog = Q Tk-3=Tk—9 =Tp_] = b.

Let z; & c. Note that (k — 4)a + 3b+ ¢ = 1. In viewing of the edge set E,
A(G) is the maximum value of

g(a,bc) = (’“ N 4) a®+ 3(’“ ) 4)0.26 +3(k — 4)ab? + b°

+c] (k N 4) a? + 2(k — 4)ab] + (k — 4)abe

2
= (’“ ; 4)a3 + 3('“ ; 4)a2b+ 3(k — 4)ab® + b + (k ;4)a2c
+3(k — 4)abe
under the constraint (5). This completes the proof. |
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Remark 3.3 Notice that in Problems A and B, when k = 6, we set these

terms (*3%), (¥3°), and (%3°) value 0. Also, when k =7, we set this term

(k_s) va,?ue 0. ?
3 ,

Now we state several more similar computational lemmas regarding the
case m = (§) — 4.

Lemma 3.4 Let G be a 3-graph with vertez set {1,2,...,k} and edge set
E(G) = [k-1]® U {kij, where ij € [k —2)®}
U{1(k - 1)k,2(k—1)k,...,(k—6)(k - 1)k}

Then MG) = Z(C) > M[k — 1)®) where Z(C) is given by solving the
mazimum value in Problem C.

Problem C. Let k > 7. Find the mazimum value Z(C) of h(a,b, c) where

h(a,bc) = (’“ N 6) N 4(’“ ; 6)a2b+ 2('“ ; 6)a2c+ 8(k — 6)abe
+6(k — 6)ab® + 12b%c + 4b° + (k — 6)ac?

under the constraint

a>b>2c>20, (k—6)a+4b+2c=1. (6)

Proof. Observe that G is left-compressed. Let £ = (z,1, z2, Z3, T4, ..., Tk)
be an optimal legal weighting for G satisfying conditions (1) on Page 4
and (3) on Page 5. We first notice that x5 > 0 since, if zx = 0, then
MG, E) = Mk -1®)) = 5%%)-(%,9, also the subgraph of G with edge
set [k — 1)® U {kij, where ij € [k —2]P}u {1 — 1)k} has the La-
grangian bigger tha.n M[k - 1]®) by taking 1 = -+ = 242 = gLy and
Tho] = Tg = m. So we may assume that each z; > 0. Observe that
Ei\,«=@for15i<j$k—6,k—5$i<j5k—-2,andk—15i<j5k.
By (2),

_ _ def dof
1= =Zkp =@ Tg-5=Tk—g =Tk-3=ZTk—2=20, Th_] =T =C.

Note that (k — 6)a + 4b+ 2c = 1. In viewing of the edge set E, A\(G) is the
maximum value of

h(a,b,c) = (" ; 6)0,3 +4(’c ; 6)a2b+2('° ; 6)a2c+ 8(k — 6)abc

+6(k — 6)ab® + 12b%¢ + 4b% + (k — 6)ac?

under the constraint (6). This completes the proof. |
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Lemma 3.5 Let G be a 3-graph with vertez set {1,2,...,k} and edge set

EG) = (k—1®\{(k-3)k-2)(k-1)}U{kij, ije[k—2®
\{(k = 3)(k — 2)}} U {1(k = 1)k, 2(k — 1)k, ..., (k — 4)(k — 1)k}

Then A(G) < max{%ﬂ, Z(D)}, where Z(D) is given by the mazi-
mum value in Problem D.

Problem D Solve for the mazimum value Z(D) of u(a,b) where
u(a,b) = (k ; 4) a®+ 4(k ; 4) a2b + 6(k — 4)ab?

under the constraint

a>2b>0,(k—4)a+4b=1. (7)

Proof. Observe that G is left-compressed. Let Z = (z1, 2, Z3, Za, ..., Tk)

be an optimal legal weighting for G satisfying conditions (1) on Page 4 and
(3) on Page 5. If zi = 0, then A(G,Z) < A(lk — 1J®) = &0 1t
zx > 0, then each z; > 0. Observe that Ej\; =@ for1 <i<j<k-4,and

k—3<i<j<k. By (2),
def def
Ty =+ =Tk 4 =0a, Tk-3=Tk-2==Tk_]=2Tk = b.

Note that (k — 4)a + 4b = 1. In viewing of the edge set E(G), A(G) is the
maximum value of

u(a,b) = (k ; 4) a® + 4(’“ ;4) ab + 6(k — 4)ab®

under the constraint (7). This completes the proof. a

Remark 3.6 (Computation Result for Problem D). Let k > 7. The maz-
imum value ZgD) in Problem D can be solved in terms of k: Let A(k) =
3(*3%) = 3(* 3" (k — 4) + 3(k — 4), B(k) = 2(*;*%) - 3(k—9)%, C(k) =
3(k —4). Then Z(D) = u(a,b) where a = X (k) = -B“‘)-\/B;gfg)-“(kw‘(k)

and b = 1=dle

Lemma 8.7 Let G be a 3-graph with vertez set {1,2,...,k} and edge set

E(G) = [k=1)®uU{kij, where ij € [k— 2]\ {(k - 2)(k - 3)}}
U{1(k — 1)k, 2(k — 1)k, ..., (k = 5)(k — 1)k}
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Then A(G) = max{‘%'i%);(ll‘?—é), Z(E)}, where Z(E) is given by the mazimum
value in Problem E.

Problem E. Let k > 7. Find the mazimum value Z(E) of v(a,b,c,d,¢€)
where

o(a,b,c,d,e) = (’“ ; 5)a3 + (k ) 5>a2(b +2+d)
+(k — 5)a(c?® + 2bc + 2cd + bd) + 2bed + bc? + c*d

+e[(k -2— 5) a® + (k — 5)a(b+ 2¢ + d) + 2bc]

under the constraint

a2b>c>d>e>0,(k-58a+b+2c+d+e=1, (8)

Proof. Observe that G is left-compressed. Let £ = (z1, z2, T3, Z4, ..., Tk)
be an optimal legal weighting for G satisfying conditions (1) on Page 4 and

(3) on Page 5. If 2 = 0, then A(G,%) = A([k — 1]®) = &R 1
zi > 0, then each z; > 0. Observe that E;\;j =0 for1 <i<j <k-5,and
k-3<i<j<k-2. By(2),

def def
Ty = =Tp_s = G, Tp_3=Tk_2 = C.

Let zx_g &b, 24— = d, and 2 = e. Note that (k—-5)a+b+2c+d+e=1.
In viewing of the edge set E, A(G) is the maximum value of

v(a,b,c,d,e) = (k ; 5)a3 + (k ; 5)a,z(b +2c+d)
+(k — 5)a(c? + 2bc + 2¢d + bd) + 2bcd + be? + c*d

+e[(k ; 5) a? + (k — 5)a(b + 2¢ + d) + 2bc]
under the constraint (8). This completes the proof. |

Remark 3.8 Note that in Problem D, when k < 6, we set ("'3'4) value 0.
In Problems C and E, when k =7, we set these terms (kgs), (";6) (kgs),

and (kgs) value 0. Also, when k = 8, we set this term (*3°) value 0.

Theorem 3.9 (1) Let k > 6. If the mazimum value Z(A) > Z(B), then
Conjecture 1.8 is true for 3-graphs with m = (';) — 3 edges.

(2) Let k > 7. If the mazimum values Z(C) 2 max{Z(D),Z(E)}, then
Conjecture 1.8 is true for 3-graphs with m = (¥) — 4 edges.
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(k-2)(k-1)k
i
(k-3)(k-1)k

(k4)(k-1)k (k-3)(k-2)k

(k-E)k-T)k  (k-d)k-2)k  (k-3)(k-2)(k-1)
(k-8)(k-1)k  (k-B)(k-2)k  (k-4)(k-3)k  (k-8)(k-2)(k-1)

(k-THk-1)k  (k-6)(k-2)k  (k-S)(k-3)k  (k-5)(k-2)(k-1)  (k-4)(k-3)(k-1)
Figure 1:

Proof. Let m = (£) — a where a = 3 or 4, and G = (V,E) be a 3-
graph satisfying A(G) = A3,. By Lemma 2.3, we may assume that G is left
compressed. Let £ = (z,, z9, £3, Z4,...) be an optimal legal weighting for
G satisfying conditions (1) on Page 4 and (3) on Page 5. By Lemma 2.5,
z; =0 for i > k+ 1 since otherwise, |E| > ('5) + (kgl) —(k—1) > m. So we
may assume that V(G) = {1,2,...,k}. By Lemmas 3.1 and 3.4, we may
assume that zx > 0 and this graph G withm = (‘;) —a edges can be formed
from [k]¢®) by removing a edges appropriately. By left compressing partial
order property, if an edge in Figure 1 is not in E, then all its predecessors
can not be in E either. Therefore those a edges that will be removed from
(k] must include the edges (k — 2)(k — 1)k and (k — 3)(k — 1)k which are
the predecessors of a — 2 edges in the Hasse graph of the left compressing
partial order (see Figure 1).

To prove Theorem 3.9(1), the edge set E has only two possible cases, i.e.,
either removing the edge set {(k—2)(k—1)k, (k—3)(k—1)k, (k—4)(k—1)k}
or removing the edge set {(k — 2)(k — 1)k, (k — 3)(k — 1)k, (k — 3)(k — 2)k}
from [k}(®) (see Figure 1). We discuss each case below.

Case (1a). Remove {(k — 2)(k — 1)k, (k — 3)(k — 1)k, (k — 4)(k — 1)k}
from (k]3. In this case, E = E(C3m) = [k — 1|® U {kij, where ij €
[(k=2)Yu{1(k—-1)k..., (k—5)(k—1)k}. Using Lemma 3.1, X(G) = Z(A).

Case (1b). Remove {(k — 2)(k — 1)k, (k - 3)(k — 1)k, (k — 3)(k - 2)k}
from [k]*. In this case, E = [k — 1]®® U {kij, where ij € [k — 2]®\
{(k = 3)k —2)}}u {1(k - 1)k...,(k — 4)(k — 1)k}. Using Lemma 3.2,

AMG) = ma.x{g%%g%ﬁg, Z(B)}.
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K value for Z(A) and Z(8)
-] 40 ] 00

Figure 2:

It is clear that if Z(A) > Z(B), then A(G) = ACs,m) and Conjecture
1.3 will be true for 3-graphs with m = (§) — 3 edges. This completes the
proof of Theorem 3.9(1).

To prove Theorem 3.9(2), the edge set E has only three possible cases,
i.e., either removing {(k — 2)(k — 1)k, (k — 3)(k — 1)k, (k — 4)(k — 1)k, (k —
5)(k—1)k} or removing {(k—2)(k— 1)k, (k—3)(k— 1)k, (k—3)(k —2)k, (k—
3)(k—2)(k — 1)} or removing {(k — 2)(k — 1)k, (k — 3)(k — 1)k, (k- 4)(k —
1)k, (k — 3)(k — 2)k} from [k]® (see Figure 1). We discuss each case below.

Case (2a). Remove {(k—2)(k— 1)k, (k—3)(k — 1)k, (k —4)(k — 1)k, (k—
5)(k—1)k} from [k]3. In this case, E = E(C3 m) = [k—1]®U{kij, where ij €
(k—2)@}u{1(k—1)k..., (k—6)(k—1)k}. Using Lemma 3.4, A\(G) = Z(C).

Case (2b). Remove {(k —2)(k — 1)k, (k = 3)(k — 1)k, (k —3)(k—2)k, (k—
3)(k—2)(k—1)} from [k(]a. In this case, E = [k—1)®N\{(k-3)(k-2)(k—1)}u
{kij, whereij € [k—2]P\{(k—3)(k—2)}}U{1(k—1)k,..., (k—4)(k—1)k}.
Using Lemma 3.5, \(G) < max{%ﬁ, Z(D)}.

Case (2c). Remove {(k —2)(k - 1)k, (k—3)(k—1)k, (k—4)(k-1)k, (k-
3)(k — 2)k} from [k]3. In this case, E = [k — 1]®® U {kij, where ij €
(k= 2]\ {(k—2)(k - 3)}} U{1(k—1)k. .., (k—5)(k — 1)k}. Using Lemma
3.7, N(G) = max{ {2453, 7(E)}.

It is clear that if Z(C) > maz{Z(D), Z(E)}, then A(G) = A(C3,,,) and
Conjecture 1.3 will be true for 3-graphs with m = (§) — 4 edges. This
completes the proof of Theorem 3.9(2). |

Remark 3.10 Using the software MatLab, we test the truth of the condi-
tion that Z(A) > Z(B) in Theorem 3.9 for k from 6 to 100 and the truth
of the condition that Z(C) > max{Z(D), Z(E)} in Theorem 3.9 for k from
7 to 50. We plot our findings as two figures (Figure 2 and Figure 3) as
follows.

In Figure 3, we let Max(H), Maz(U), and Maz(V) represent Z(C),
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Z(D), and Z(E), respectively. From Figure 2, we see that Z(A) > Z(B).
From Figure 3, we can also see that Z(C) > Z(D) > Z(FE). Using the
same software, we can also verify that A(G) = Z(A), M(G) = Z(B), XG) =
Z(C), M(G) = Z(D), A(G) = Z(E) for k 2 7 in Lemmas 3.1, 3.2, 8.4, 3.5,
and 3.7 respectively.

4 Verify Conjecture 1.3 When r = 3 and m <
50

In this section, we first state two results which estimate the Lagrangian of

some 3-graphs G with m = (£) + (*;') edges and its edges differ the first

m edges in the colex ordering only by a few edges. These two results will

be used in the verification of Proposition 4.3. Note that the first m edges
(in 3-graphs) in the colex ordering is

[K]® U {(k + 1)ij, where ij € [k — 1)@} = C3,m,

and in this case, A(C3 m) = A([k]®]) by Lemma 2.4.

Lemma 4.1 Let G be a 3-graph with verter set {1,2,...,k+ 1} and edge
set

E(G) = [K® U {(k+ 1)ij, where ij € [k — 1]®
\{(k - 2)(k=1),...,(k=b-1)(k—1)}}
U{1k(k +1),...,bk(k +1)},

where b < | £| — 1. Then A(G) = A([k]®) = gk;%gc;z).

Proof. Observe that G is left-compressed. Let T = (z1, T2, Z3, T4, ...s Th41)
be an optimal legal weighting for G satisfying conditions (1) on Page 4 and
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(3) on Page 5. If 2441 = 0, then A(G) = A([k]®) = E=D=2) by direct
calculation and we are done. So we can assume that zpy; > 0. Observe
that Ej\j =0for1<i<j<bandk-b-1<i<j<k-2 By(2),

Ty == Tp 9)

Tp—2=Tk-3=""*= Tk—b-1. (10)

Taking i = k and j = k + 1 in (2), we have
Ti—1(Th—2+ Th—3 + - + Tp—p—1) = (Tk — Te41) (21 + - - + Tp).

Applying Equations (9) and (10) to the above equation, we get

Tk-1Zk-2 = Z1(Tk — Th41)- (11)
Taking i = 1 and j = k in (2), we have
(1 — zK)(T2 + T3+ -+ + Th—1 + Tiop1) = Te41 (Toa1 + Tog2 + - -+ + Te—1)-
Notice that

T2+ x3+ -+ Tg—1 + Th+1 2 Tot1 + Tor2 + o+ Th—1-
So, z1 — zk < T4, 1. €.,
Ty < Tk + Tht1. (12)
Combining equations (11) and (12), we get
Th_2Tk—1 < (Tk + Th41)(Tk — Tha1) = T} — Thyy.
On the other hand, zx_2zk—1 > z2 since zx—2 > Tx—1 > zi. Therefore,
Tk1 = 0.

This completes the proof. |

The proof of the following lemma is very similar to the proof of the
above lemma. We use {k — 1,k — 2,...,k — [}{?) to represent all possible
pairs from vertex set {k—1,k—2,...,k—1}.

Lemma 4.2 Let G be a 3-graph with vertez set {1,2,...,k+ 1} and edge
set
EG) = W®
U{(k + 1)ij,where ij € [k — 1]\ {k-1,k-2,...,k = 1}?}
U{1k(k + 1),..., bk(k + 1)},

where b= (1) < k — 1. Then \(G) = A([k}®) = E=Y{=2),
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Proof. Observe that G is left-compressed. Let £ = (1, %2, 3, 4,y ..., Tk+1)
be an optimal legal weighting for G satisfying conditions (1) on Page 4 and

(3) on Page 5. If zx41 = 0, then A(G) = A([k]®¥) = k—l)%k——zl by direct
calculation and we are done. So assume that z4.; > 0, then each z; > 0.
Observe that Ej\j =0 for1 <i<j<bandk-1<i<j<k-1 By(2),

Iy == ITp; (13)

g1 =Th_2 =" = Tk (14)

Taking ¢ = k and j = k+ 1 in (2), and combining (14), we have

l
(zk ~ Tep1 (@1 + -+ Tp) = (2)33%-1 = bz} _.

Applying Equation (13) to the above equation, we get

21(zk — Tht1) = Th_y. (15)
Taking ¢ = 1 and j = k in (2), we get
(z1 — zk)(Z2 + T3 + - + Tho1 + Tiet1) = Tra1 (Tog1 + Tot2 + -+ + Tk1).

Notice that z2 + z3+ -+ + Tp—1 + Tht1 = Tp41 + Tog2 + -+ + Tk-1- So,
T -z < Th+1, i. €.,

zy < Tk + Tha1. (16)
Combining equations (15) and (16), we get
zh_1 < (Tk + Thp1)(Tk — Thpr) = Th — Thyr
On the other hand, z2_, > z2 since Tx—; > zk. Therefore,

Tr+1 = 0.

This completes the proof. a
Proposition 4.3 Conjecture 1.8 is true for 3-graphs with m < 50 edges.

Before our verification, we would like to point out that in the proof
of Proposition 4.3, some verification (Cases 1, 2, 4.1, 4.2, 7.1, 7.2, and
7.4 below depend on mathematical arguments since in those cases some
3-graphs whose edge set is not the set of the first m edges in colex ordering
also achieve the maximum value A(Cs,). Note that we can use computer
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software to test cases 3, 4.3, 5, 6, 7.3, and 7.5 below, since, in these cases,
those maximum values are strictly less than the corresponding maximum
values A(Cs,m), therefore, the accuracy can be guaranteed.

Proof. Verification goes by case analysis. First we point out, Theorem 1.4
cover the following cases: 1. when the number of edges m =1,2,3,4: 1 =
(3),2=(5)-2,3=(§) —1,and 4 = (3); 2. when the number of edges m =
8,9,10,11: 8 = (3)—2,9 = (§)-1,10 = (3), and 11 = (°5)+(°3%) - (6-1);
3. when the number of edges m = 18,19, 20,21,22,23,24: 18 = (§) - 2,
19=(5)-1,20=("3') £m=20,21,22,23,24 < ("3") + ("33 - (7 - 1);
4. when the number of edges is in the range of 33 < m < 43: 33 = (;) -2,
34=()-1,3=05)<m<43=_)+(%%-(8-1). Wenow
discuss the rest of m not covered by Theorem 1.4 in several cases.

Case 1. m = 5,6, 7. The proof in this case goes as follows. Note that (g) <
m=5,6,7< (5) + (). By Lemma 2.4, A(C3,m) = A([4]®) = (§)/4®* = &
for m = 5,6,7. Since A3, increases as m increases, it is sufficient to show
the case for m = 7.

Let G = (V,E) be a 3-graph satisfying A(G) = A2 for |E| = 7. By
Lemma 2.3, we may assume that G is left compressed. Let & = (2, z2, z3, 24,
...) be an optimal legal weighting for G satisfying conditions (1) on Page
4 and (3) on Page 5. By Lemma 2.5, z; = 0 for ¢ > 6 since otherwise,
|E] > (3) + (3) —4 > 7. So we may assume that V(G) = {1,2,3,4,5}.
If 25 = 0, then A(G) < M[4]®) = & and we are done. So assume that
z5 # 0. By Lemma 2.1, the edge 145 € E. Since G is left compressed, all
triples containing 1 (there are 6 of them) are in £ and another edge is 234.
So E = {123,124, 134,135,125, 145, 234}.

Observe that E;\; =@ for2<i<j <4 By(2),z2 =23 =124 g,

Let z5 < b. Notice that M E1, T) = MEs, T) implies that 3a? + 3ab = 3az;,
s0 71 = a+ b. Therefore, a + b + 3a + b = 1 implies that b = 1522,

Then by Lemma 2.1,
AG) = %A(El,z) = +ab=—a’+ 5 =~(a- %)2 +2 <

This completes the proof of this case.

Case 2. m = 12,13,14,15,16. The proof in this case goes as follows.

Note that (°3!) < m = 12,13,14,15,16 < (%3') + (°;%). By Lemma

2.4, M(Ca,m) = M([5]¥) = (3)/5° = & for m = 12,13,14,15,16. Since A3,

increases as m increases, it is sufficient to show that A3, = 2/25 for m = 16.
Let G = (V, E) be a 3-graph satisfying A(G) = A for |E| = 16. By

Lemma 2.3, we can assume that G is left compressed. Let ¥ = (z,, 72, 23, 24,
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...) be an optimal legal weighting for G satisfying conditions (1) on Page
4 and (3) on Page 5. By Lemma 2.5, 2; = 0 for ¢ > 7 since otherwise
IE| > () + () —5 > 16. If z6 = 0, then A(G) < A([5]®) = £ and
we are done. So assume that z¢ > 0. By Lemma 2.1, the edge 156 € E.
Note that E is formed by removing 4 edges from [6](®). Since G is left
compressed and 156 € E, then either the set {456,356, 346,345} or the set
{456, 356, 256, 346} is removed from [6]® in viewing of Figure 1 (take k = 6
there).

Subcase 2.1: The set {456, 356, 346, 345} is removed from [6](®). In this
case,

E(G) = [5]® \ {345} U {64, where ij € [4]'®\ {34}} U {156, 256}

Applying Lemma 3.5 by taking & = 6, it is enough to show that
Z(D) = max{4a®b + 12ab?},

under the constraint 2a+4b=1witha>b>0is < -2-23 Using Remark 3.6
by taking k = 6, we have Z(D) = u(a, b) where a = 4”6‘/7_ and b= 211"7‘/2
By a direct calculation, u(a,bd) < 523 This completes the proof of this
subcase.

Subcase 2.2: The set {456,356, 256, 346} is removed from [6](®). In this

case,

E = [5]® U {6i3, where ij € [4]® \ {34}} U {156}.
Applying Lemma 4.1 by taking b = 1 and k = 5, then we get MG) = 22—5
This completes the proof of this subcase.

Case 3. m = 17. Taking k = 6 in Theorem 3.9(1) and using Figure 2, we
are done.

Case 4. m = 25,26, 27, 28,29,30. The proof in this case goes as follows.
Note that (";') < m = 25,26,27,28,29,30 < ("3') + ('3%). By Lemma
2.4, MCs,m) = A([6]®) = (§)/6° = & for m = 25,26, 27, 28, 29, 30. Since
A3 increases as m increases, it is sufficient to show that A3, = 5/54 for
m = 30.

Let G = (V, E) be a 3-graph satisfying \(G) = A}, for |E| = 30. By
Lemma 2.3, we can assume that G is left compressed. Let Z = (z,, 2, z3, Z4,
...) be an optimal legal weighting for G satisfying conditions (1) on Page
4 and (3) on Page 5. By Lemma 2.5, z; = 0 for ¢ > 8 since otherwise
IEl > (3) + () —6 > 30. If 27 = 0, then M(G) < A([6]®®) = & and
we are done. So assume that z7 > 0. By Lemma 2.1, the edge 167 € E.
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Note that E is formed by removing 5 edges from [7]®). Since G is left
compressed and 167 € E, then the set {567,467, 367,267,457}, or the set
{567,467, 367,457,357}, or the set {567,467, 367,457,456} is removed from
[7]¢® in viewing of Figure 1 (take k = 7 there). We will discuss each case
below. Note that

[7)® = [6]® U {714, where 3 € 5]} U {167,267, 367,467, 567}.

Subcase 4.1: {567,467, 367,267,457} is not contained in E. In this case,
E = [6)® U {7ij, where ij € [5]?\ {45}} U {167}.

Ller

Applying Lemma 4.1 by taking b = 1 and k£ = 6, then we get A(G) =
This completes the proof of this subcase.

Subcase 4.2: {567,467,367,457,357} is not contained in E. In this case,
E = [6]® U {74j, where ij € [5]?\ {45,35}} U {167, 267}.

Applying Lemma 4.1 by taking b = 2 and k = 6, then we get A(G) = 3.
This completes the proof of this subcase.

Subcase 4.3: {567,467, 367,457,456} is not contained in E. In this case,
E = [6)® \ {456} U {7ij, where ij € [5]2\ {45}} U {167, 267}.
Observe that Ey N ES = 0. By (2), 1 = 72 < a. Let z3 & b. Observe
that E4 N Ef = and Eg N ES = (. By (2),
T4 =a:5d~i-'c, z6 =17 = d.
Note that 2a + b + 2¢ + 2d = 1. In viewing of edges in E,

MG) = a?(b+2c+2d)+2a(2bc+2bd+c2+4cd+d?)+(bc® +4bed) = F(a, b, ¢, d).

Using the software Matlab, we see that the maximum value of F(a, b, ¢, d)
under the constraint

2a+b+2c+2d=1,a2b>c>d>0

is < 0.09140413 < &;.

Case 5. m = 31. Taking k = 7 in Theorem 3.9(2) and using Figure 3,
we are done.

Case 6. m = 32. Taking & = 7 in Theorem 3.9(1) and using Figure 2,
we are done.
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Case 7. 44 < m < 50. The proof in this case goes as follows. Note that
(®31) < 44 <50 = (") + (53%). By Lemma 2.4, A(C3,m) = M([7]®¥) =
(3)/7% = & for 44 < m < 50. Since A3, increases as m increases, it is
sufficient to show that A3, = 5/49 for m = 50.

Let G = (V, E) be a 3-graph satisfying A(G) = A}, for |E| = 50. By
Lemma 2.3, we can assume G is left compressed. Let £ = (z1, 22, 23,24, ...)
be an optimal legal weighting for G satisfying conditions (1) on Page 4
and (3) on Page 5. By Lemma 2.5, z; = 0 for ¢ > 9 since otherwise
1Bl > )+ (5) =7 > 50. If zg = 0, then M(G) < A([7]®) = 5 and
we are done. So assume that zg > 0. By Lemma 2.1, the edge 178 € E.
Note that E is formed by removing 6 edges from [7]®. Since G is left
compressed and 178 € E, then the set {678,578,478,378, 278,568}, or the
set {678,578, 478,378, 568, 468}, or the set {678,578, 478,378,568, 567}, or
the set {678, 578, 478, 568, 468, 458}, or the set {678, 578, 478, 568, 567, 468}
is removed from [8](® in viewing of Figure 1 (take k = 8 there).

We will discuss the possible cases below. Note that

8] = [7]® U {817, where ij € [6](®} U {178,278, 378,478, 578, 678}

Subcase 7.1. The set {678, 578, 478, 378, 278, 568} is removed from [8](3).

In this case,
E = [7)® U {8ij,ij € [6]® \ {56}} U {178}.

Applying Lemma 4.1 by taking 6 = 1 and k = 7, then we get A(G)
This completes the proof of this subcase.

Subcase 7.2. The set {678, 578, 478, 378, 568, 468} is removed from [8](3).
In this case,

E = [71)®u {8ij,ij € [6)@ \ {56,46}} U {178,278}.

Applying Lemma 4.1 by taking b = 2 and k = 7, then we get A(G) = 3.
This completes the proof of this subcase.

Subcase 7.3. The set {678, 578,478, 378,568, 567} is removed from [8](®).

In this case,

E = [7]®\ {567} U {8ij,ij € [6]'® \ {56}} U {178, 278}.

3
19-

Observe that E; N ES = 0. By (2), z; = z2 < a. Similarly, E3 N E§ = 0,
EsNE§ =0, and E; N E§ = 0 imply that z3 = x4 &' b, 75 = 76 £ ¢,
z7 = 3 = d. Note that 2a + 2b+ 2c + 2d = 1. In viewing of edges in E,

MG) = a?(2b+ 2c+d) + 2a(b® + 4bc + ¢ + 2bd + 2cd)
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+  (2bc? + 2b%c + b%d + 4bed) + d(a? + 4ab + dac + b? + 4bc) + 2ad?
= a?(2b+ 2¢) + 2a(b® + 4be + ¢%) + (2bc? + 2b%c)

+2d(a? + 4ab + 4ac + b* + 4bc) + 2ad?
T X(a,b,c,d).

Using the software Matlab, testing result shows that the maximum value
of X(a, b, ¢,d) under the constraint

26 +2b+2¢c+2d=1,a>b>c>d>0.

is <0.1011297 < .

Subcase 7.4. The set {678, 578,478, 568, 468, 458} is removed from [8](®).
In this case,

E = [7]® U {8ij,4j € [6)® \ {56,46,45}} U {178, 278, 378}.

Applying Lemma 4.2 by taking [ = 3 (then b = 3) and k = 7, then we get
MG) = 2. This completes the proof of this subcase.

Subcase 7.5. The set {678, 578, 478, 568, 567, 468} is removed from [8](3).
In this case,

E = [7)®)\ {567} U {84j,4j € [6]D\ {56,46}} U {178,278, 378}.

Observe that Ei; =8 for 1 <i < j <3. By (2), &1 = 72 = 23 ¥ a. Let
24 = b, x5 = e, 26 = d, 7 = e, 23 = f. Note that 3a+b+c+d+e+f=1.

In viewing of edges in F,

MG) = a®+3a%(b+c+d+e)+3a(be+bd + be + cd + ce + de)
+bed + bee + bde + f[3a? + 3a(b+ ¢+ d) + bc] + 3aef
£ Y(a,bcde, f)-

Using the Software Matlab, testing result shows that the maximum
value of Y(a,b,c,d,e, f) under the constraint 3a +b+c+d+e+ f =
l,a>2b>c>d>e> f>0is <0.1010085 < 45—9. This completes the
verification. [ |

Remark 4.4 It is possible to verify the conjecture for bigger value m by
case analysis. Since as m gets bigger, case analysis will be more tedious,
we do not give any details for any further values m although it is possible.
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Remark 4.5 As a generalization of Lemmas 4.1 and 4.2, we proved the
Jollowing result in [11] recently.

Theorem. Let m and | be posilive integers satisfying (lgl) <m <
(31 + (13%). Let G be a 3-graph with m edges and G contain a clique of
size | — 1. Then MG) = A([l - 1]¥)).

We believe that if G is a 3-graph with m edges and G contains no clique
of sizel — 1, where (‘3') <m < (l':;‘) + ("22), then M\(G) should be strictly
less than A([L—1])®)). If one can verify this, then combining with the above
Theorem, one can verify Conjecture 1.8 for all m, where (';1) <m <
(}3Y) + (‘33). This would extend Theorem 1.4.

In [11], we also generalized Lemmas 4.1 and 4.2 to r-uniform hyper-
graphs. This gives us hope that the above Theorem might be generalized to
r-uniform hyergraphs.

Acknowledgments. We thank the anonymous referee for helpful com-
ments.
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