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Abstract

Let G be a finite group and = a positive integer. The n-th com-
mutativity degree P,(G) of G is the probability that the n-th power
of a random element of G commutes with another random element
of G. In 1968, P. Erdés and P.Turan investigated the case n = 1,
involving only methods of combinatorics. Later several authors im-
proved their studies and there is a growing literature on the topic
in the last 10 years. We introduce the relative n-th commutativity
degree P.(H,G) of a subgroup H of G. This is the probability that
an n-th power of a random element in H commutes with an element
in G. The influence of P,(G) and P.(H, G) on the structure of G is
the purpose of the present work.
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1 Introduction

All the groups which we consider are finite. For every group G, the n-th
commutativity degree P,(G) of G is the probability that the n-th power
of a random element of G commutes with another random element of G.
More precisely,

Pn(G) — |{(:c,y) €EG chfz: ['Tn’y] = l}l (1)

(1) has been recently introduced in [1] by N. M. M. Ali and N. Sarmin.
They computed (1) for some values of n and some 2-generators 2-groups
of nilpotency class 2. The importance of P, (G) is due to the fact that
d(G) = P,(G) is the commutativity degree of G, introduced by P. Erdés
and P. Turan in [3]. Such a work became a classic reference for the stud-
ies of several authors, as testified for instance by {4, 5, 7, 11]. There are
many generalizations of d(G). The n-th nilpotency degree d*(G) of G was
studied [4] and [11]. The mutually commuting n-tuples degree d,(G) of
G was studied in [5]. Among these two notions, we will see that P,,(G) can
be placed and this justifies our interest to deal with it. The main results
of the present paper are as the following.

Theorem A. Let G be a non-abelian group and p be the smallest prime
dividing the order of G. Then the following statements are equivalent:
(i) 2y ~Zp X Zy;
(i) G is isoclinic with an extra special p-group of order p®;

(iii) Pn(G) = I’T—i , for all n whenever it is not divisible by p.

Theorem B. If G and H are two isoclinic groups, then P,(G) = P,(H)
for every n > 1.

Section 2 is devoted to prove some basic properties of P,(G). Succes-

sively we will give the details of the proofs of Theorems A and B in Section
3. Terminology and notations are standard and can be found in [10].
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2 Some Basic Results
The following two definitions have been already mentioned above.
Definition 2.1. Let G be a group. For everyn > 1

yersZngl) EG™ML [y, Zpg] =1
d"(G) = {(z1,. . s Znt1) |G|n+l[f'31 Tn41] = 1} @)

1s called n-th nilpotency degree of G and

{(@1,. .-, Tns1) € G : myz; = 3504} 3)
|G|n+1

dn(G) =

is called mutually commuting n-tuples degree of G.

Obviously for n = 1 in (2) and (3) we find the commutativity degree
d(G) in [7, 11]. There are some significant results on d*(G) and d,(G) in
(4, 5, 11]. In these works it was studied the general concept of relative
n-th nilpotency degree d*(H,G) of a subgroup H of G. By using the idea
given in [4], we may introduce the following notion.

Definition 2.2. Let H be a subgroup of a group G.

_ {(h,g) € HxG:[h* g] =1}
F(H,G) = il

is called relative n-th commutativity degree of G.

Clearly, if H = G then P,(G) = P,(H,G). We note that P,(H,G)
and P,(G) are sometimes equal to one. For instance, if G is abelian or has
exponent dividing n then P,(G) = P,(H,G) = 1. We may also easily see
that if G is a nilpotent group of class 2 in which its derive subgroup has
exponent dividing n, then we will again have P,(G) = P,(H,G) = 1. Of
course, we may have P,(H,G) =1 and P,(G) < 1 for some groups G and
subgroups H of G and positive integer n (take H C Z(G), for instance).

Some lemmas are necessary for the proof of the main theorems. Let us
start with an initial fact, which compares P,(H,G) and P,(H).

Lemma 2.3. Let H be a subgroup of a group G. Then P,(H,G) <
P,(H), for every n > 1. The equality holds if G = HZ(G).
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Proof. We have

(ol ICa ()]
Pu(H,G Co(h™)| = == < =
#.6)= |H||G|,,EZH' ol Hl,,ezﬁ o ST P
1 .
= HE > ICu(h™)| = Po(H)
heH

by [4, Lemma 3.2]. If G = HZ(G), then [G : Cg(z)] = [H : Cy(z)] for
every ¢ € G. So, P,(H,G) = P,(H) for every n > 1.

Lemma 2.4. Let H be a proper subgroup of a group G. Then I-@:LH-IP,,(H ,G) <
P,(G) for everyn > 1.

Proof. We can see that

Pu(G) = 3z X 106" = (3 ICalg™l+ Y ICale™]
I l geG l | geH gEG—-H
n |H|
= GRUHIGIPLH,G)+ 3 Calg™l > 157 PulH,C).

9€G-H
This leads to the desired result.

Lemma 2.5. Let H and K be subgroups of a group G such that K is
contained in H. Then P,(H,G) > m—mP (K,G) 2 TC_'TP (K,H) for
everyn > 1.

Proof. The proof is similar to that of Lemma 2.4.

One of the main difference between P,(G), d*(G) and d,(G) is that
d™(G) is always increasing and d,(G) is always decreasing for every n > 1,
but P,(G) does not have the same growth. It is sometimes increasing and
sometimes decreasing, up to the structure of G and the choice of n. For
instance, if G is a dihedral group of order 8, then either P,(G) = 5/8 if
n odd, or P,(G) = 1 if n even. More generally, if G is a nilpotent group
of class 2, then either P,(G) = 1 if exp (G’) divides n, or P,(G) = P,(G)
otherwise, where r = n — exp(G’)t for some ¢ > 1. In other words, if
n = r mod(exp(G’)), then P,(G) = P-(G), since Po(G) = 1. Of course,
it is always valid that P,(G) = P;(G) = d(G) for every n > 1. The same
situation is true for P,(H,G).

The next result compares factor groups with respect to (1).
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Lemma 2.6. Let N be a normal subgroup of a group G. Then WTP ( N) <
P.(G) < P.(%), for every n > 1.

Proof. By [4, Lemma 3.8 and 10, Corollary 2.24], it is clear that
|9—%)ﬂ| < |Cg (zN)| £ |Cg(z)] for every z € G. Thus we have

G G
NP2 [2Pa( ) = INT? gﬁ Cg ("M 2 T 10g (=" N)lIOn(=") 2 [GFP(C)

= Y 1Cel=" 2 X 1CgE" N = IV Y [Cg(@"N)| = INll s PPa(3):

r€G z€CG =Ne§
It is easy to check that if NV is the identity subgroup then both inequalities
will be equalities. Moreover, if N NG’ = 1, then the second inequality is
actually an equality.

We can extend Lemma 2.6 to the case of P,,(H, G) as follows.

Theorem 2.7. Let N and H be subgroups of a group G such that N is
normal in G and N C H. Then WP (N’N) < P,(H,G) < P, (N’N
Moreover, the equality on the right hand side holds when NNG’' = 1.

Proof. The proof of the first part is very similar to that of Lemma 2.6
so we omit it here. For the second part, we observe that, if NN G’ =1,
then | €GN | = |Cg (h"N)| and this implies Po(H,G) = Pa(#, §7)-

It is not actually easy to determine the exact value of P, (G) for every
group G and for every positive integer n. But we may compute it for some
known groups. The following example gives a specific formula for P, (Daom),
where m > 2and n > 1.

Example 2.8. Let Dy, be the dihedral group of order 2m and n be a
positive integer with (m,n) =t. Then

N e . 3m? 2 .
(8) if m is odd, then P,(Day) is 3™ or T ";(:;';2)"', whenever n is even

or odd, respectively.

.y . . 2 2
(i) if m and n are even, then Pn(Dap) is 3234tm o 3mARm yhenever
m

T is odd or even, respectively.

(41) if m is even and n is odd, then Pn(Day,) is -m—ﬂ‘;%#m

Proof. (i) Suppose Dy, = {e,a,a®---,a™ !, b,ab,ab,--- ,a™ 1b}
and m is an odd number. We have to count the number of pairs (z,y) €
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Dy, with [z",y] = e. Obviously for identity element x we have 2m pairs.
Putz=a’ ,1<j<m-—1. Itis clear that " commutes with all y = o,
where 0 < i < m—1 and so we have m(m — 1) pairs here. Consider y = a’b,
0 <i < m—1, then [(a’)*,a’b] = a=%™ = e if m|2jn. Since (m,n) =t
and m is odd, we should have Zt[j. Thus j can be multiple of Z* whenever
it is between one and m — 1, i.e. j = 2, 2Tm, ,5{5 such that %"—‘ < m.
Hence for such j we have (¢ — 1)m elements. Now, assume = = a’b and
0 £ j <m—1. We know that z has order 2. If n is an even number so
there are 2m? pairs in this case. If n is an odd number, then z” = z and
it will only commute with identity element and itself. Thus we have 2m
pairs here. This completes (i). The proof of (ii) and (iii) are very similar
to what we have just done for (i).

We used GAP in [6] to verify the values in Example 2.8 for Dy when
n is small enough. Some details are the following:

Py(Dyo) = 8/10, Pio(D1o) =1, P11(D1o) =4/10, Pi5(D1o) =6/10 .

The next result follows easily from the definitions and can be extended
to a finite number of groups. We omit its proof.

Proposition 2.9. If G; and G, are two groups, then P,(G; x G3) =
P (G1)PL(Go).

We end this section recalling a notion in [8], useful in the proof of
Theorem B.

Definition 2.10. Let G and H be two groups; a pair (p,v) is called
an isoclinism of groups G and H if ¢ is an isomorphism from G/Z(G) to
H/Z(H), ¥ is also an isomorphism from G’ to H' and ¥([g1,g2]) = [h1, h2)
whenever h; € p(g;Z(G)), for all g; € G, h; € H, i € {1,2} such that the
following diagram commutes

G G H H
ZO) X Z© T Z( X Z
l !

G’ — H'

If there is an isoclinism from G to H, we say that G and H are isoclinic
and denote it by G ~ H. It can be easily checked that ~ is an equivalence
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relation in the universe of all finite groups. Moreover, two isomorphic
groups are obviously isoclinic, while the converse is not true. For instance,
Qs and Dg are isoclinic but not isomorphic (see [11] for details).
Finally we recall that G is an extra special p-group of order p?™+! if
= Z(G) ~ Z, and G/Z(G) is an elementary abelian p-group of rank
2m.

3 Proof of Main Theorems

The next bound plays an important role in the proof of Theorem A.

Lemma 3.1. Let G be a group, p be a prime and G/Z(G) an elementary
abelian p-group of rank s. Then P,(G) =1 if p divides n. Otherwise,

PHpi-1 pP+p-1
B < P,(G) SWI—-

Proof. Since m%—) is an elementary abelian p-group, (zZ(G))? = Z(G)
and therefore z? € Z(G). Moreover, G is nilpotent of class 2. First, suppose
that p|n, then there is a positive integer ¢ such that n = pt. So, for every
arbitrary pair (z,y) in G? we can see that

e, 9] = [a%,3] = [e%, 9] [(@P) N y) = . = 2Py = 1.

Hence P,(G) = 1. Now, assume that p does not divide n. Then it is clear
that if z € Z(G) then z™ ¢ Z(G). Thus we can find a lower and upper
bound for |Cg(z)| when z € Z(G). Obviously, Z(G) # Ce(z) and so

=[G : Z(G)] =[G : Ce(2)}[Cc(z) : Z(G)] 2 [G : Ca(z)]p.

Therefore |Cg(z)| > ;,1,—_11- Similarly, we have |C¢(z)] < El. Thus

Pn(G)=ﬁZ|CG($")| ‘Glzl > G+ Y ICaE)]

zeG z€Z(G) 2¢Z(G)

|Glgucv‘nZ(G)H Y. 1CsE™I,

=€ Z(G)
and consequently
1Z(G)l | 161~ 12(6)] |G| 1Z(G)| , IGI-12(G)] |G|
S Pn G S + -
C] oF  pm1 =@ = g GF
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The result follows.

If s = 2 in Lemma 3.1 and p does not divide n, then the lower and upper
bound coincides. This means that P,(G) = &Iﬁ"—l. Furthermore, if p = 2
ie. -27%5 ~ Zs X Ly, then either P,(G) = 1if n is even or P,(G) =5/8 ifn
is odd. Already Dg and Qg satisfy this circumstance. Moreover, consider
the group

G = (a,bla® = b3,bab™! = a?). (5)
We can check that G is a metacyclic group and % ~ Z3 x Z3. Thus
by the above remark we have P,(G) = 11/27 for all n not divisible by 3
and P,(G) = 1 otherwise. For example P5;(G) = P1o(G) = 11/27, and
Ps(G) = Py(G) = 1.

Mimicking the techniques of Lemma 3.1 and use Lemma 3.2 in [4] to
prove the following generalization.

Theorem 3.2. Let H be a subgroup of a group G and p be a prime such
that m}'{ﬁ is isomorphic to Zp X ... X Ly, .
[ —
s-times

(i) If p divides n, then P,(H,G) = 1.
(ii) If p does not divide n, then L + Y\ 5=% < P.(H,G).
(i3) If p does not divide n and Z(G) = Z(H) then P,(H,G) < "',' T

We remind the fact that |[Cy(z)| < Ll for z ¢ Z(H) and c =<

for z € G.
Now, we prove Theorem A.

Cy

Proof of Theorem A. (i) implies (iii) by Lemma 3.1 for s = 2.
We claim that (iii) implies (i). By hypothesis the value of probability
is valid for n =1 so

’;*’f’_ d(G) = IG|22|CG(x)|_|GP(Z ICe(z)l+ Y.  ICa(=)))

z€G x*€2Z(G) z€G-Z(G)

Iz,l-l—ucuzwn + 'Gl(lGl 1Z@))).

This would imply that |G/Z(G)| < p? and since p is the smallest prime
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that divides the order of G, we have |G/Z(G)|=1or por q (p < g) or p%.
If |G|/|Z(G)] = 1 or p or g then G is abelian and this is a contradiction.
Hence |G|/|Z(G)| = p? and noncyclic, as claimed.

We claim that (ii) implies (i). G is isoclinic with an extra special p-group
of order p? and so G/Z(G) ~ Z, x Z,.

We claim that (i) implies (ii). Assume that G/Z(G) =~ Z, xZ,. One can
easily find that |G’| = p (see [10]). Now, if H is an extra special p-group
of order p® then we have H/Z(H) ~ Z, x Z, and Z(H) = H' ~ Z,. Thus,
G/Z(G)~ H/Z(H) and G’ ~ H'. This completes the proof.

As mentioned in Lemma 3.1, if G/Z(G) is an elementary abelian p-
group of rank s, then we will have a lower and upper bound for P,(G).
The following theorem gives the exact formula for P,(G) when G is an
extra special p-group.

Theorem 3.3. Let G be an extra special p-group of rank 2k. If p does
ke
not divide n, then Pn(G) = B2 Otherwise Pa(G) = 1.

Proof. If p divides n then P,(G) = 1 by Lemma 3.1. Assume n is
not divisible by p. We claim that |G| = p|C¢(z)| for every =z € Z(G). Fix
an element £ € G and consider the map ¢ : y € G — [z,y] € G'. p is
a homomorphism of groups whose kernel is Ce(z). Since z is not in the
center, G/Cg(z) has order p. Now, if z € Z(G), then z" € Z(G) because
G/Z(G) is an elementary abelian p-group of rank 2k and p does not divide
n. Hence,

Pn<c)=|—cll—22|cc(z">|=ﬁ[ Y Cele+ Y ICaa)) =

z€CG z€Z(G) z€Z(G)

1 Z(G 1 |Z(G
grlz@etci-z@ne) = EEM (-l E2E L,

We illustrate Theorem 3.3 with an example.

Example 3.4. Consider the group G = {a,b,cla® = b® = ¢ = 1,bac =
ab,ca = ac,cb = be) One can easily see that |G| = 27, |G'| =|Z(G)| =3
and G/Z(G) is an elementary abelian group of rank 2. Thus G is an exira
special 3-group of order 27. Now, using GAP, we computed P,(G) for some
values of n. For instance, if n = 1,2,4,5,7,8,10 then P,(G) = 11/27 and
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for n = 3,6,9 we have P,(G) = 1 thus verified some results of Theorem
3.3.

Now we recall two known results of P. Lescot in [11] and J.C. Bioch in
[2]. The first states that two isoclinic groups have the same commutativity
degree, so that Theorem B generalizes it. The second will play an important
role in the proof of Theorem B and is appended below.

Theorem 3.5. Let G and H be groups. Then G is isoclinic to H if and
only if there is a group X with normal subgroups M ~ Z(G) and N ~ Z(H)
suchthatG'z%NXN%zH.

Proof. Assume G and H are isoclinic. It is enough to put
X ={(g9,h) € G x Hlp(9Z(G)) = hZ(H)} and the proof follows (see [2] for
more details). The converse is obvious.
Now we are able to prove Theorem B.

Proof of Theorem B. Assume that G and H are isoclinic groups. By
Theorem 3.5, there is a group X with normal subgroups N and M such
that G ~ £ ~ X and similarly H ~ % ~ X. On the other hand, we have
X' ~ (%)’ = X'TN o~ Nf.](;(, so NN X' = 1. Hence, by the remark given
after the proof of Lemma 2.6 we have P,(G) = Pn(%(r) = Pp(X). Similarly,
P.(H) = P,(£) = Pa(X) and therefore P,(G) = P,(H) as required.

Finally, we illustrate Theorem B using the following example.

Example 3.6. Let Gy = (a,bla® = b%*,b~1ab = a™1), where k is any
positive integer which is not divisible by 3. Then we can show that G} N
Z(Gk) = 1 and Gy is isoclinic with the symmetric group S3. Thus, by
Theorem B we have P,(Gi) = Pn(S3) for alln > 1. We computed the
probability for the group for some values k and n and they verify Theorem
B. Some details are following:

Py(S3) = Pi(G2) = 1/2, Py(S3) = P2(Gs) = 5/6 , Pa(S3) = P3(G7) =2/3,

Py(S3) = P4(G11) = 5/6, Ps(S3) = P5(G13) =1/2, Ps(S3) = Ps(Gs) =1,
P;(S3) = P;(Gs) = 1/2, Ps(S3) = Ps(G10) =5/6, Po(S3) = Po(G13) = 2/3.
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