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Abstract

It will be proved that the problem of determining whether a set of vertices
of a dually chordal graphs is the set of leaves of a tree compatible with it can
be solved in polynomial time by establishing a connection with finding clique
trees of chordal graphs with minimum number of leaves.
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1 Introduction

Chordal and dually chordal graphs were found to have many applications, es-
pecially in biology. Both classes are endowed with characteristic tree structures,
clique trees in chordal graphs and compatible trees in dually chordal graphs, which
in several cases are connected with the solution of problems associated to the ap-
plications. A good example of this are phylogenetic trees [4, 5], used to model the
evolutionary history of species, proteins, etc. In them, it is necessary that leaves
represent the present individuals (or objects) and inner vertices should indicate
possible ancestors. This makes desirable, also in a more general context, the abil-
ity to determine what vertices can be the leaves of a compatible tree or a clique
tree.

The leafage of a chordal graph is the minimum number of leaves of a clique
tree of the graph. A polynomial algorithm, running in time O(n?), to find the
leafage of a chordal graph has been proposed recently [3]. The goal of this paper
is to show that this enables an answer to the following problem: given a dually
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chordal graph G and A C V(G), determine if there is a tree compatible with G
whose set of leaves is A. For that purpose, every dually chordal graph is found to
be the clique graph of a chordal graph in such a way that there is a correspondence
between the compatible trees of the former and the clique trees of the latter. This is
stronger than the well known fact that dually chordal graphs are the clique graphs
of chordal graphs. Then the problem is transformed into that of finding the leafage
of a chordal graph.

2 Some graph terminology

This paper deals just with graphs without loops or multiple edges. For a graph
G, V(G) is the set of its vertices and E(G) that of its edges. A set A C V(G)
is complete if all its elements are pairwise adjacent vertices of G. A maximal
complete set is a cliqgue and C(G) will be used to denote the family of cliques of
G. A cligue edge cover of G is defined as any subset F' of C(G) such that any
edge of G is contained in at least one element of F.

Given two vertices v and w of a graph G, the distance between v and w, or
d(v, w), is the length of a shortest path connecting v and w in G. For a vertex v €
V(G), the closed neighborhood of v, N(v], is the set composed of v and all the
vertices adjacent to it. We say that w dominates v when N{v] C N(w]. The disk
centered at vertex v with radius k is the set N*[v] := {w € V(G), d(v,w) < k}.

Let T be a tree. For all v,w € V(T'), T{v, w] will denote the path in T' from v
to w. And £L(T") will denote the set of leaves of T'.

Let F be a family of nonempty sets. The intersection graph of F has the
members of F as vertices, two of them being adjacent if and only if their intersec-
tion is nonempty. The clique graph K (G) of a graph G is the intersection graph
of C(G).

A graph such that C(G) is a Helly family, i.e., any subfamily of pairwise in-
tersecting cliques has a nonempty intersection, is called a clique-Helly graph.

3 Basic notions and properties

A chord of a cycle is an edge joining two nonconsecutive vertices of the cycle.
Chordal graphs are those without chordless cycles of length at least four. A clique
tree T of G is a spanning tree of K(G) such that, for any v € V(G), the set
{C € C(G), v € C} induces a subtree of T. One of the many characterizations
for chordal graphs says that a graph is chordal if and only if it has a clique tree
[6].

A vertex w is a maximum neighbor of v if N2[v] C N[w]. A linear ordering
v1...v,, Of the vertices of G is a maximum neighborhood ordering of G if, for



i =1,...,n, v; has a maximum neighbor in G[{v;, ..., vn}|. Dually chordal graphs
can be defined as those possessing a maximum neighborhood ordering.

Moreover, more characterizations of dually chordal graphs have been given.
In fact, given a connected graph G, it is dually chordal if and only if [1]:

1. There is a spanning tree T of G such that any clique of G induces a subtree
inT

2. There is a spanning tree T of G such that any closed neighborhood of G
induces a subtree in T.

3. Gis cliqgue-Helly and K(G) is chordal.
4. G is the clique graph of a chordal graph.

1t is even true that any spanning tree fulfilling 1. also fulfills 2. and vice versa.
Such a tree will be said to be compatible with G. We also have the following
equivalence:

Theorem 1. [2] Let T be a spanning tree of a graph G. Then T is compatible
with G if and only if, forall z,y,z € V(G), zy € E(G) and z € Tz, y] \ {z,y}
implies that zz € E(G) and yz € E(G).

4 Leaves and dominated vertices

Before the goal of this paper is achieved, some properties about domination will
be necessary to find some conditions that the leaves of a compatible tree should
satisfy. The graphs considered are always connected.

Lemma 1. Let G be a dually chordal graph and T a tree compatible with G. If v
is a leaf of T and w is the vertex such that vw € E(T') then v is dominated by w.

Proof. For any vertex u in N{v]\ {v, w} it holds that w € T[u, v]. From Theorem
1 we infer that w is adjacent to u and thus N{v] \ {v,w} C N{w]. As {v,w} is
also a subset of N[w], the inclusion N[v] C N{w] follows. O

Corollary 1. Let G be a dually chordal graph, |V (G)| 2 3, and T a tree com-
patible with G. Then each vertex in L(T) is dominated by at least one vertex of
V(D) \ £(T).

Proof. Trees with more than two vertices do not have adjacent leaves. Then, for
any vertex v € L(T), the only vertex adjacent to it in T is not in £(T") and
dominates it according to Lemma 1. O

Lemma 2. Let G be a dually chordal graph and T be a tree compatible with G.
Then, given v € V(G), the set D = {w € V(G) : N[v] C N[w]}, i.e., v itself
and the vertices dominating it, induces a subtree of T.



Proof. Let w € V(G). Then w € D if and only if, for all v € N[v], u € N[w),
thatis, w € N[u] forall u € Njv). Thusw € Difandonlyifw € [} N[y

u€EN[v)
andsoD = (] Nlu]
u€N[v]
Since T is compatible with G, any closed neighborhood induces a subtree in
T. And if some subsets induce subtrees so does their intersection. Therefore D

induces a subtree, a

As it was said before, clique trees of chordal graphs will be essential for the
solution of the problem. In the next theorem we are going to see that not only
every dually chordal graph G is the clique graph of a chordal graph, as the char-
acterization of dually chordal graphs indicates, but also that some of the chordal
graphs whose clique graphs equal G have the especial property that their clique
trees are exactly the trees compatible with G. Thus, any problem about the com-
patible trees of G can be viewed as a problem about clique trees of any of those
chordal graphs. This allows to take advantage of the fact that many problems
about clique trees of chordal graphs have been comprehensively studied. Among
them, we can find those regarding leaves.

Theorem 2. Let G be a dually chordal graph and F' be a clique edge cover of G.
Let H be the intersection graph of F U {{v} : v € V(G)}. Then

(1) H is chordal.
2) K(H)~G.
(3) Any clique tree of H is isomorphic to a tree compatible with G and vice versa.

Proof. Let T be a tree compatible with G. Then any member of F U {{v} : v €
V(G)} induces a subtree in T. As intersection graphs of subtrees of a tree are
chordal {7], (1) follows.

Given any vertex v € V(G), theset D, = {{v}}U{C € F: v € C}is
a clique of H because D, is complete and the equality Ngy[{v}] = D, implies
maximality (and also that {v} is simplicial in H). In fact, every clique of H is
equal to D,,, for some v € V(G). A proof of this is given below.

Let D € C(H). Then the elements of F' N D are pairwise intersecting. As
dually chordal graphs are clique-Helly, there is a vertex w which is an element
of each clique of G in F N D and therefore F N D ¢ Ny[{w}] = D,,. This
implies that F' N D is not a maximal complete set of H and thus there exists
v € V(G) such that {v} € D. Hence, v is an element of each clique of G in D,
so D € D,. Since D and D, are in C(H), it follows that D = D,,. Therefore,
C(H)={D,: ve V(G)}.

Now we need to demonstrate that D,,D,, € E(K(H)) if and only if uv €
E(G), which implies that K (H) ~ G. And the reasoning is as follows:
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Dy,D,e E(K(H) e D,NnD,#£0&3CeF,Ce D, ANCeD, &
ICeF,ueCArveC & uwe EG)

where for the last equivalence we use the fact that F' covers all the edges of G.
This proves (2).

Let T be a clique tree for H and T” the spanning tree of G such that uv €
E(T") if and only if D, D, € E(T). Let z, y be vertices adjacent in G and
z € T'[z,y]\{z, y}. Then D, and D, are adjacentin K (H) andlet C € D.ND,,.
As T is a clique tree, the subset {D € C(H) : C € D} induces a subtree of T,
implying that D, also belongs to it because D, € T[D,D,]. Consequently
D.ND, # ®and DyND, # P and hence zz,yz € E(G), making T’ compatible
with G.

Conversely, let T be a tree compatible with G and T' the spanning tree of
K(H) such that D, D, € E(T") if and only if wv € E(T'). For any v € V(G),
the set {D € C(H) : {v} € D} = {D,} so it obviously induces a subtree.
Let C € F, D; and D, such that C € D, N D, and D, be any vertex of
T'[Dz,Dy)\ {Dg,Dy}. Thenz € C,y € C and z € T[z,y] \ {z,y}. Since T
is compatible with G and C induces a subtree in T, 2z € C, thatis, C € D,. This
implies that the set {D € C(H) : C € D} induces a subtree in 7" and therefore
T’ is a clique tree of H. a

Having narrowed down before what the elements of £(T') can be for a tree
T compatible with a dually chordal graph G, it remains to introduce an auxiliary
graph G’ which will contain information about the problem. The results required
now are the following:

Lemma 3. Let G be a dually chordal graph, T a tree compatible with G and
u, v, w vertices such that vv € E(T), v € T[u,w) and N[u) N N[v] € N{w].
Then T' = T — uv + uw is also compatible with G.

Proof. Let = be any vertex of G. We need to prove that N[z] induces a subtree in
T'. Call T[A] and TB] the connected components of T — uv, with u € A and
v € B. The proof is divided into three cases.

If N[z] C A then N[z] induces the same subtree in T and T". If N|z] C B
the reasoning is similar. Otherwise we have two vertices y, z € N|z] such that
y € Aand z € B. As N[z} induces a subtree in T and u, v € T'[y, z] we conclude
that u,v € N|z], that is, z € N([u} N N[v] and therefore € N{w]. Now, u and
v are connected in T’ by the path formed by merging uw and T'[w, v] (contained
in N{z] because w,v € N|z] and T is compatible with G); and any other two
vertices of N[z] adjacent in T are still adjacent in T”. Therefore, vertices of N/(z]
adjacent in T" are connected in T” by paths within N [z] and this is enough to claim
that V[z] induces a subtree in 7", making T” compatible with G. O
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Theorem 3. Let G be a dually chordal graph and A C V(G) be a set of vertices,
each being dominated by a vertex in V(G) \ A. Let G’ be a graph constructed
from G by adding, for each v € A, avertex v* and the edge vv*. Then G' is dually
chordal. Moreover, there is a tree T compatible with G such that L(T) = A ifand
only if there is a tree T' compatible with G' such that L(T') = A* := {v*, v €
A}

Proof. Let T be a tree compatible with G. Then the tree T such that V(T") =
V(G)U A* and E(T') = E(T) U {vv*, v € A} is compatible with G’, so this
graph is dually chordal. Furthermore, if L(T") = A then L(T') = A*.

Conversely, suppose that there exists a tree 7/ compatible with G’ such that
L(T') = A* and set Ty = T — A*. Choose T” so that |£(Tp)| is maximized.
Since C(G) € C(G’), any clique of G induces a subtree of T” and thus in Tj as
well, so we conclude that T is compatible with G. Now we show that £L{Tp) = A,
which will prove the claim.

It is straightforward that £(T5) C A, otherwise any vertex in £(T) \ A would
also be a leave of T”, which is a contradiction.

If L(To) # A, take a vertex u € A\ L(T) and let w be a vertex in V(G) \ A
dominating u and w’ the vertex adjacent to u in Tp[u, w].

By Lemma 3, if for any vertex z different from w’ and adjacent to u in T
we add the edge wz to Ty and remove uz, we get a new tree 1) compatible
with G such that the degree of w is bigger in T} than in Tp, u is a leaf of T}
and the remaining vertices have the same degree in Ty and 73. Then £(T}) =
L(To) U {u}, contradicting the way Ty was chosen. Therefore, L(Tp) = A. O

Now it is possible to prove the main theorem:

Theorem 4. Let G be a dually chordal graph and A be a subset of V(G) such
that for each vertex of A there is a vertex in V (G) \ A dominating it. Determining
if there exists a tree compatible with G and whose set of leaves equals A can be
reduced, in polynomial time, to the problem of finding the leafage of a chordal
graph and hence it is itself polynomial.

Proof. Let G’ be the same graph as in Theorem 3 and H' be a chordal graph such
that K (H') ~ G’ and constructed as in Theorem 2. Denote by 7" a clique tree for
H' with minimum number of leaves and let T* be a tree compatible with G’ and
isomorphic to 7. By part (3) of Theorem 2, T* is a compatible tree for G’ with
minimum number of leaves.

If L(T*) = A*, Theorem 3 implies that there is a tree T compatible with G
and L(T) = A. Otherwise, since the degree in G’ of the vertices in A* equals
1, A* G L(T*). As the number of leaves of T™ is minimum, no tree compatible
with G’ has A* as set of leaves and this time Theorem 3 implies that there is no
tree T' compatible with G and such that £(T") = A.



We finish the proof by showing that H' can be constructed in polynomial
time. For each edge of G’ take C € C(G’) containing it. The resulting collection
of cliques is a clique edge cover of G/, call it F', whose cardinality is bounded
by |E(G')|, and so by |E(G)| + |V(G)|. Thus, the intersection graph of F' U
{{v} : v € V(G’)} can be obtained in polynomial time. Set H' equal to this
graph. O

Consequently, given G dually chordal graph and A C V(G) such that each
vertex of A is dominated by a vertex in V(G) \ A, determining if there exists a tree
T compatible with G and such that £(T') = A depends on whether the leafage of
H’ equals | A| or not.

It is suitable to stress that, in case that the answer to the problem is affirma-
tive, a tree compatible with G with set of leaves equal to A can be efficiently
constructed. The algorithm presented in [3] produces a tree with |A| leaves iso-
morphic to a tree compatible with G’ and then it is easy to obtain a tree Ty com-
patible with G and £(Tp) C A. In case that L(Tp) # A, we can apply the ensuing
mechanism of increasing the number of leaves described in Theorem 3 until the
set of leaves equals A.

If it is not true that any vertex of A is dominated by one of V(G) \ A, deciding
whether the tree exists is trivial because, by Corollary 1, in this case only graphs
with at most 2 vertices have to be considered.
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