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ABSTRACT. In this paper, we give a necessary and sufficient condi-
tion for a function with the form tr(}°7_, a;z(9-1)) being general-
ized bent function. We indicate that these generalized bent functions
are just those which could be constructed from partial spreads. We
also introduce a method to calculate these generalized bent functions
by means of interpolation.

1. INTRODUCTION

Boolean bent functions were first introduced by Rothaus [5] in 1976.
In [3], the authors generalized the notion of boolean bent functions to the
case of functions over an arbitrary finite field. Let Fj; be a finite field with
g elements. Let f be a function mapping F,» to Fj,, where p is a prime
number. The Walsh coefficient of f at b € Fyn is defined by

Wf(b) = Z ég(x)+tr(bx)’
z€Fpn
where £, is a complex primitive p-th root of unity and tr(z) is the absolute
trace function, i.e. tr(z) = Ypo z?'. The function f is said to be a
generalized bent function if all its Walsh coefficients satisfy |W;(b)|> = p™.
In this paper we concentrate on generalized bent functions defined on
the finite fields Fj2», having the form

pn
f@) =tr(}_ aiz'®" 1),

i=1
with a; € Fpzn. Bent functions having the form tr(az®"~!), with @ € Fyzn,
defined on the finite field Fyen, are called Dillon bent functions[4]. In
the second section of [1], the authors studied the generalized Dillon bent
functions, which are of the form tr(az*®" 1)) with @ € Fye and ¢ an
integer, defined on the finite field Fy2» for an odd prime p. Our main
interest is the following question.
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Let ¢ = p". For a function f : Fpz — F, with the form f(z) =
tr(37_, a;z*(9~1), what conditions make it a bent function.

In section 2, we give a necessary condition for functions of this kind being
generalized bent functions. In section 3, we point out the sufficiency of this
necessary condition. In fact, we find these generalized bent functions are
just those which can be constructed from partial spreads [2]. In section 4,
we introduce a method to calculate the representation of such a generalized
bent function as the form 37, ¢;z*(9~1), when we know its values.

2. A NECEsSARY CONDITION

Suppose that f(z) = tr(3 7, a;z9~D) is a generalized bent function
defined on Fgz with ¢ > 3. According to the equation (2) of (1}, W,(0) =
g€y or —qéo, with ip being some integer.

We claim that W;(0) = g.

Proof of the claim.

Firstly, we have f(z) = f(az), for all nonzero a € F,, because a?~! = 1.
As a Fg-linear space of dimension 2 over F,, Fj2 has q + 1 non-trivial
subspaces, the intersection of any two of which is {0}. So we can find
g + 1 elements ;, a3,...,0q+1 in Fg2 as the bases of the corresponding
Fy-subspaces. Now we compute

g+1
Wi = 3 g9=1+3 9=1+3 > &
z€F 2 z#0 j=l1z€F;a;
q+1 q+1
= 14) > g =14(g-1)) gl
j=1z€Fza; j=1
Denote f(a;) by f;. If Ws(0) = g0, we get
q+1 ) ]
1+ Z(q —1)65 = g&pe = (g — )& + &5
Hence, &’0 -1=(¢g- 1)(2"f} ;',0), which is impossible unless ig = 0,

because otherwise the prlnclpal ideal (£i0 — 1) is the prime ideal over (p)
in the algebraic integers ring Z[£;], and coprime to (g — 1). For the basic
facts on cyclotomic fields, please refer to the second chapter of [6].

If W;(0) = —q€°, we get

q+1

1+ (¢-DEP = - = (1- )& ~ &,
=1
Hence £° +1=(1— q)(zgj__'i ,{’ + &}°), which is contradictory to the fact

that 1 + { is a unit in the algebraic integers ring Z[£,)] in case of i # 0.

270



If ip =0, we get 2 = (1 — q)(z;’.:} ,’,’f + 1) which is contradictory to the
condition ¢ > 3. Thus we prove the claim. O

Using the notations in the proof, we have 1 + E?ﬁ}(q 1)¢ g =

Consequently, Z;’f; 5= 1, which implies that for any nonzero a € F,,,
there are % i’s satxsfymg f; = a and there are 1 + ﬂ Jj’s satisfying f; = 0.

Taking f as a function mapping Fj: to F,, we can erte f as a polynomial
with coefficients in Fp, f(z) = 31, c,-a:i(q‘l). Associate with f another
polynomial function g(z) = Y7_, c;z*. Obviously, g(z77!) = f(z). We
know all a9, for nonzero a € Fj2, constitute the subgroup of order g+ 1
in the multiplicative group Fq‘,. Thus we get a necessary condition for f
being a bent function.

Theorem 1 If f(z) = tr(3%, 2;z*9~1)) is a bent function defined on
Fgp, then as z runs over all the elements of the subgroup of order ¢ + 1
in the multiplicative group a2 the function g(z) = Y1, c;z* takes every
nonzero element in F, exactly £ times and takes 0 1+ 2 times.

3. SUFFICIENCY

Now we indicate that the above necessary condition is also sufficient.

Suppose that f(z) = tr(}°7_, a;z%9~V) is associated with g(z) = 17_, ciz’.
We know that f takes the same value on the nonzero elements of a F-
subspace in Fg2. All the F;-subspaces of dimension one make a spread for
Fpa. As g(z77') = f(z) and by condition, as = runs over all the elements
of the subgroup of order g+ 1 in F, ;,, g takes every nonzero element in F,
exactly 19; times and takes 0 l+9p times, f satisfies the condition (4) in [2].
So f must be a generalized bent function.

Actually, from the proof of the claim of section 2, we know that the gen-
eralized bent functions of the form tr(3°7_, a;z*(?"~1)) are just the partial
spreads generalized bent functions constructed in [2].

4. A METHOD TO CALCULATE PARTIAL SPREADS GENERALIZED BENT
FUNCTIONS

Suppose that f(z) = tr(}°7_, a;2*(9~1) associating with g(z) = 3°7_, iz
is a bent function defined on F2, and suppose we know its values. We want
to calculate all the ¢;'s.

Take an element of order ¢ + 1 in (;2, say wo. Then wyp, w3, ..., w§,

and wi*! = 1 constitute the subgroup of order g + 1 in F. By the
necessary condition, for any nonzero a € F, there are 1 7 s satisfying

9(w)) = a and there are 1+ 4 2 J's satisfying g(wj) =0. Denote g(wl) = T,
je{1,2,..,q+1}. Deﬁnebas

(0012 .. p-101 .. p=1 .. 01 2 .. p—1),
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containing % copies of F, and one more 0. Define 7 as

(rm r2 .. Tq41 ).
Then f is a generalized bent function if and only if r can become b after
some permutation.

We know g is a polynomial of degree < ¢. So, as we have already known
the values of g on g+ 1 different points, wo, w?, ...,wg"'l, we can recover the
coefficients ¢;’s by interpolation as follows. .

Write g(z) = Y7, cir® as g(z) = Y_]_, ciz*, with ¢y being 0. For

q
g(wa) = ZC;((U%)' = rj)j € {1) 2a N l}a
i=0
we obtain a system of linear equations defined on Fy2 in variates cp, c1, ¢2, ..., ¢4.
After some permutation among these equations, we get a system of linear
equations with the following coefficients matrix

1 1 1 ) S 1 1
1 w wf « .. W@t W
2(g—1
1 w? wd wf . W2OTD |
-1 2
1 ol Wi W WY W

denoted by A. Define C as
(Co €1 C ... G )

Then these equations can be written by matrix equation AC’ = R’, where
C’" and R’ are the transposed vectors of C and R respectively, and R is a
permutation of r. A is a Vandermond matrix and its inverse A~! is

1 1 1 1 1 1

-1 2

1 Wi wgq wgq w((,q )Z wi
- 2(q—1 3(g—1 -1 -1
1wl 1 Wo(q ) Wo(q ) w((]q ) c‘)(«;;(q )

1 wo wd w wd™! wg

So, as we know the values of f, it is easy to calculate these ¢;’s. And then,
it is easy to represent f as the form tr(T"7_, a;z%9-D).

Further, given any permutation of b, it is easy to calculate a bent function
with the form f(z) = Y0, c;iz*(@-D.

Example Let ¢ = p = 5, and w is a primitive element in the multiplica-
tive group Fj5. Denote g = Ef=0 c;z*. Suppose that R is

(00123 4).

Then we have g(1) = 0, g(w?) = 0, g(w®) = 1, g(w'?) = 2, g(w'®) =3,
9(w?°) = 4. We know that Fw?, j = 1,2,...,6, are all the one-dimensional
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subspaces of Fy2, and then constitute a spread. f(z) = g(zP~!) takes
the same value at the nonzero elements of a subspace. So f satisfies our
necessary and sufficient condition and is a bent function.

Now, A is
1 1 1 1 1 1 \
1 wt wd w!? wl® 20
1 w® wl® w2 w32 40
1 wl2 w24 36 8 %0 |
1 w6 @2 8 B4 80
1 w20 0 80 4,80 100 /
and A~ 1is
1 1 1 1 1 1 \
1 w20 0 4,60 4,80 100
1 w!® w32 48 64 80
1 w!2 w24 @36 98 4,60
1 w® w6 w2t 32 0
1 wt wd w2 w6 20 )
Then

C'=A""R'=(0 0 w'" 1 w!® 0)
determining a bent function on Fys, f(z) = wl7z® + 1?2 + w13z!® =
tr(w!?z8 + 3z12). O
The above method is also valid for boolean bent functions, as the con-
struction from spreads is valid for fields of characteristic two [2].
We note that in [2], the authors have given the functions constructed
from spreads in another form, but they didn’t try to calculate the ¢;’s.
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