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Abstract

A graph G with no isolated vertex is total restrained
domination vertex critical if for any vertex v of G that
is not adjacent to a vertex of degree one, the total re-
strained domination number of G — v is less than the
total restrained domination number of G. We call these
graphs 4¢.-vertex critical. If such a graph G has total
restrained domination number k, then we call it k& — y¢,--
vertex critical. In this paper, we study some properties
in ~;-vertex critical graphs of minimum degree at least
two.
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1 Introduction

For notation and graph theory terminology we in general fol-
low [10]. Specifically, let G = (V, E) be a graph with vertex set
V of order n and edge set E. We denote the degree of a vertex
v in G by dg(v). For a set S C V, the subgraph induced by S is
denoted by G[S]. The (open) neighborhood of vertex v € V is
denoted by N(v) = {u € V | wv € E} while N[v] = N(v) U {v}.
Foraset S CV, N(S) = J,cs N(v) and N[S] = N(S)US. The
set S is a dominating set if N[S] = V, and a total dominating
set if N(S) = V. For sets A,B C V, we say that A domi-
nates B if B C N|[A] while A totally dominates B if B C N(A).
The minimum cardinality of a total dominating set is the total
domination number, denoted v,(G).

An end-vertez in a graph G is a vertex of degree one, and a
support vertez is one that is adjacent to an end-vertex. A (ver-
tex) cut-set in a connected graph G is a subset S of vertices
such that G — S is disconnected. The connectivity of G, written
k(G), is the minimum size of a vertex set S such that G — S is
disconnected or has just one vertex. A graph G is k-connected
if its connectivity is at least k. For a subset S of vertices, we
denote by ¢(G — S), the number of components of G — 5. We
also use o(G — S) for the number of odd components of G — S,
(see [15)).

A set of pair-wise independent edges in a graph G is called a
matching or 1-factor. A matching is perfect if it is incident with
every vertex of G. A graph G is called factor-critical if G — v
has a perfect matching for every vertex v.
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Note that the removal of a vertex in a graph may decrease the
domination number. A graph G is called domination vertex
critical if y(G—v) < ¥(G), for every vertex v in G. For references
on domination vertex critical graphs see for example [1, 2, 3, 6,
8, 12].

Chen et al. [4], introduced the study of total restrained dom-
ination, which was further studied by some other peoples, for
example Cyman et al. [5] and Hattingh et al. [9]. A set
S C V(G) is a total restrained dominating set, or just TRDS, if
every vertex of G is adjacent to a vertex in S and every vertex
in V(G)\S is also adjacent to a vertex in V(G)\S. The total
restrained domination number of G, denoted by 7.-(G), is the
minimum cardinality of a TRDS of G.

Gera et al. [7], studied vertex and edge critical total restrained
domination in graphs. For a graph G let S(G) denotes the set
of all support vertices of G. A graph G is total restrained domi-
nation vertex critical, or just y-vertex critical, if for any vertex
v of V(G) \ S(G), (G — v) < 7 (G). Similarly, G is total
restrained domination edge critical, or just +-edge critical, if
for any e € E(G), 7(G + €) < v-(G). They characterized all
~i--vertex critical trees, as well as those ;-vertex critical graphs
G for which v (G) — (G — v) = n — 2 for some v € V(G).

In this paper, we continue the study of +,.-vertex critical graphs
with minimum degree at least two. We call a graph G, k — ;-
vertex critical if G is -y,.-vertex critical and 7, (G) = k. We first
present some basic lemmas. We then focus on 3 — ~;-vertex
critical graphs and study connectivity and matching properties
for these graphs.

All graphs in this paper are connected, and have minimum de-
gree at lease two. Thus we henceforth do not state these prop-
erties in each result in this paper. We call a vertex v, a total
restrained domination critical vertex, or just v -critical vertex,
if %+(G — v} < 4+(G@). Thus a graph G is ~,-vertex critical if
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each vertex v of G is a ~y,-critical vertex. For a vertex v in a
Ye--vertex critical graph G, we denote by S, a minimum TRDS
for G — v.

We make use of the following known results.

Theorem 1.1 (Chen, Ma and Sun [4]). (1) For a path P,
onn > 2 vertices, yr(Pa) = n — 2| 272],
(2) For a cycle C, onn > 3 vertices, ¥-(Cn) =n — 2| §].

Theorem 1.2 (Lovasz and Plummer, [11]). A graph G is
factor-critical if and only if o(G—S) < |S|-1 for all S C V(G).

Theorem 1.3 (Sumner, [13]). Let G be a m-connected graph
of even order and with no induced Ky m+1. Then G has a perfect
matching.

Theorem 1.4 (Tutte, [14]). A graph G has a perfect matching
if and only if o(G — S) < |S| for all S C V(G).

2 Some basic results

In this section we state some basic results on ;-vertex critical
graphs with minimum degree at least two. We begin with the
following lemma.

Lemma 2.1. Let G be a y--vertez critical graph and v € V(G).
If Sy, N Ng(v) # 0, then Ng(v) C S,.

Proof. Let G be a y,-vertex critical graph and let S, N Ng(v) #
@ for some vertex v. Let u € S, N Ng(v). Assume to the
contrary that Ng(v) € S,. Let w € Ng(v)\S,. We observe that
v is totally dominated by u and v is adjacent to w. This implies
that S, is a TRDS for G, a contradiction. Hence Ng(v) C
Sy. O
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Corollary 2.2. Let G be a vi--vertex critical graph and v €
V(G). Then,

(D)If S, N Ng(v) # 0, then 7 (G — v) = % (G) — 1.

(2) If e = wv € E(G), and Nglu] C Ng[v], then v (G —v) =
7tr(G) - 1.

(3) If deg(v) = 2, then v, (G — v) = % (G) — 1.

Note that removing any vertex from a cycle C, results in a
path P,_;. Also by Theorem 1.1, v,(P,) = n — 2|2%*| and
Y%r(Cp) = n —2|2]. Now it is straightforward to obtain the
following.

Lemma 2.3. A cycle C,, is y-vertez critical if and only if n =
3(mod 4).

The next result provides a forbidden condition for a graph G to
be 7:-vertex critical.

Proposition 2.4. If a graph G has non adjacent vertices u and
v with Ng(u) C Ng(v), then G is not v,.-vertez critical.

Proof. Let u and v be two non adjacent vertices in a graph G
with Ng(u) C Ng(v). Assume to the contrary, that G is v~
vertex critical. For u to be dominated by S,, we have S, N
Ng(v) # 0. By Lemma 2.1 we deduce that Ng(v) U {u} C
S, Let w € Ng(u). Since deg(u) > 2, we find that (S, \
Nglu]) U {v,w} is a TRDS for G of size less than v,(G), a
contradiction. O

Corollary 2.5. If a graph G has a vertez of degree 2 that belongs
to a 4-cycle, then G is not v;,-vertex critical.

3 33— vy,-vertex critical graphs

In this section we present the main results of this paper. We
focus on 3 — ~;,-vertex critical graphs with minimum degree at
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least two. First we study the diameter in these graphs.

Theorem 3.1. A 3-y,.-vertex critical graph G has a diameter
of at most 3. This bound is sharp.

Proof. Let G be a 3-y,-vertex critical graph with diam(G) = d.
Let z,y € V(G) such that d(z,y) = d, and let P be a shortest
path between = and y. For i = 0,1,2,...,d, we let V; = {v €
V(G) : d(z,v) = i}. Let v € V; be the vertex on P. For z
to be dominated by S,, we have S, N V; # 0. Since G is not a
complete graph, and G is a 3-y;,-vertex critical graph, we deduce
that S, C V1 UV,. It follows that d < 3.

To see the sharpness let H; be a copy of P, and let Hs be a copy
of Hy. Let F be the graph obtained form H, U H, by adding all
edges between H; and Hj except for a perfect matching between
corresponding vertices of H; and Hj, and then adding two new
vertex z and y such that z is joined to every vertex in H; and
y is joined to every vertex in H,. It is easy to see that F' is a
3 — y,-vertex critical graph of diameter 3. O

Lemma 3.2. If G is a 3 — . -vertez critical graph and G # K,
then 6(G) = 3.

Proof. Let G be a 3 — ~,,-vertex critical graph and G # K.
Assume to the contrary, that 6(G) = 2. Let = be a vertex with
deg(z) = 2, and let N(z) = {y,2}. Without loss of generality
assume that degg(y) > dege(z). In order for Sy to dominate
z, it follows that z € S,. Since S, is a TRDS for G — y, we
deduce that S, = {z,z2}. By Lemma 2.1, Ng(y) C {z, 2}, and
so G = Cj3, a contradiction. Thus, §(G) > 3. a

Since for a vertex v in a ~y;.-vertex critical graph G, S, dominates
G — v, we obtain the following.

Observation 3.3. Let G be a 3 — y;,-vertex critical graph, and
let S be a vertex cut-set with at least two vertices. Then for any
vertetv € S, S, NS # 0.
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In the next theorem we show that a 3 — +,,.-vertex critical graph
is 3-connected.

Theorem 3.4. If G is a 3 — y-vertex critical graph, then
k(G) > 3.

Proof. Let G be a 3 — ~y,-vertex critical graph. We first show
that G has no cut-vertex. Assume to the contrary, that G has a
cut vertex z. Since G[S,] is connected, and G—z is disconnected,
then S; does not dominate G — z. This is a contradiction. Thus
G is 2-connected.

Now assume that k(G) = 2. Let S = {z,y} be a minimum
vertex cut-set. By Observation 3.3, z € S,. If z is adjacent to
y, then by Lemma 2.1 and Observation 3.3, Ng(y) € Sy, and so
by Lemma 3.2, |S,| = 3, a contradiction. Thus z is not adjacent
to y. Also by Lemma 3.2 any component of G — S has at least
two vertices. We show that Ng(z) N Ng(y) = 0. Suppose to
the contrary, that Ng(z) N Ng(y) # 0. Let z € Ng(z) N Ng(y).
Since S, dominates G — 2, by Lemma 2.1 and Observation 3.3,
{z,y} € S. and so S, = {z,y}. This implies that z is adjacent
to y, a contradiction. Thus Ng(z) N Ng(y) = 0. Let G; and G,
be two components of G — S. Since y € S, and S; dominates
G — z, we may assume, without loss of generality, that y is
adjacent to all vertices of G;. But z € S, and S, dominates
G — y. This implies that z is adjacent to some vertex in Gj.
We conclude that Ng(z) N Ng(y) # 0, a contradiction. Thus
k(G) > 3. O

We now study some properties of vertex cut-sets.

Lemma 3.5. Let G be a 3 — y,-vertex critical graph, and let S
be a vertex cut-set with |S| = 3. If G — S has a component of
order 1, then ¢(G — S) = 2.

Proof. Let G be a 3 — ~y,-vertex critical graph, and let S =
{z,y,z} be a vertex cut-set. Let Gy,Gy,...,Gi be the com-
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ponents of G — S, where V(G;) = {a}. From Lemma 3.2
we find that N(a) = S, and from Lemma 2.1 we find that
S.NS = 0. Since G[S,] is connected, S, is contained in a
component G; # G;. But S, dominates only G;. It follows that
i=k=2 O

Lemma 3.6. Let G be a 3 — v,.-vertex critical graph, and let S
be a cut-set with |S| = 3. If G — S has a component of order 2,
then ¢(G - S) < 3.

Proof. Let G be a 3 — y-vertex critical graph, and let S =
{z,y,2} be a vertex cut-set. Let Gy, Gy, ..., G be the compo-
nents of G— S, where V(G,) = {21, z2}. Assume to the contrary,
that £ > 4. From Lemma 3.5 we obtain that |V(G;)| > 2 for
i = 2,3,...,k. Moreover, z; is adjacent to 2z, since otherwise
G — S contains k£ + 1 components.

If there is a vertex v € V(G) \ S such that S C Ng(v), then
since |S,| = 2, by Lemma 2.1 we obtain that S, C V(G;) for
some j € {1,2,...,k}. But then S, does not dominate G — v,
a contradiction. We deduce that for any v € V(G)\ S, S €
Ng(v). Since S,, dominate z3, we obtain that S,, NS # 0.
Similarly, S,, NS # @. Thus using Lemma 3.2, we find that
|52, NS| = ]S, NS| = 2. Without loss of generality assume that
Ng(z1) = {22, z,y} and Ng(22) = {z1,y, z}. By Lemma 2.1, we
find that z € S,,. Further, S,, NS = {z}. We conclude that
z is adjacent to all of the vertices of at least two components
among G, Gjs..., and Gy. Similarly, z € S, and z is adjacent to
all of the vertices of at least two components among G, Gj,...,
and Gi. Since k > 4, we obtain that there is a component G,
for some r € {2,3, ..., k} such that z and z are adjacent to all
vertices of G,. Let u,, € V(G,). It follows that y € S,, . Since
[V(G,)| = 2, there is a vertex u,, € V(G;,) \ {u-,} such that
y € N¢(u,,). Thus S C Ng(ur,), a contradiction. O

Theorem 3.7. Let G be a 3 — y--vertex critical graph, and let
S be a vertez cut-set such that any component of G — S has at
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least three vertices. If ¢(G — S) > 3, then |S| > 4.

Proof. Let G be a 3 — ~;,-vertex critical graph and let S be
a vertex cut-set such that ¢(G — S) > 3 and any component
of G — S has at least three vertices. Let Gy, G, ..., Gx be the
components of G — S. Assume to the contrary, that |[S| < 3.
By Theorem 3.4, we obtain that |S| = 3. Let S = {z,y,2}. If
G[S] is connected, then there is a vertex w € S such that w is
adjacent to the two vertices of S\{w}. Then by Lemmas 2.1, 3.2,
and Observation 3.3, we obtain that |S,| > 3, a contradiction.
Thus G[S] is disconnected. According to Observation 3.3 we
may assume that y € S,. Since G[S] is disconnected, we may
assume that S; = {y,y1} where y; belongs to a component of
G — S. Since ¢(G—S) > 3, y is adjacent to all of the vertices of
at least two components of G — S. Without loss of generality,
assume that z € S,. As before, we find that z is adjacent to
all of the vertices of at least two components of G — S. Since
k > 3, we obtain that there is a component G; for some j €
{1,2,...,k} such that y and z are adjacent to all vertices of
G;. Thus {y,2} C Ng(u) for any vertex u € V(G,). Now we
consider S,,, where u; € V(G;). By Lemmas 2.1, and 3.2 we
find that z € S,,. Since |V(Gj)| > 3, we obtain that Ng(z) N
V(G;) # 0, and thus Ng(z) N Ne(y) N Ng(z) # 0. This produce
a contradiction. g

In the rest of the paper we study matching properties in 3 — ;.-
vertex critical graphs. By Theorems 3.4 and 1.3, we obtain the
following:

(1) Any 3 — 7-vertex critical claw-free graph of even order has
a perfect matching,

(2) Any 3 — ~y,-vertex critical K 4-free graph of even order has
a perfect matching.

Theorem 3.8. Any 3 —;,-vertex critical claw-free graph of odd
order is factor-critical.
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Proof. Let G be a 3 — y,-vertex critical claw-free graph of odd
order. If G is not factor-critical, then by Theorem 1.2, there
is a subset S C V(G) such that o(G — S) > |S|. Since G is
of odd order, we obtain o(G — S) > |S| + 1. By Theorem 3.4,
o(G — S) 2 4. Since |S,| = 2 for any vertex v, we observe that
G has a K 3 as an induced subgraph, a contradiction. O

Similarly the following is verified.

Theorem 3.9. Any 3 —~y,.-vertez critical K 4-free graph of odd
order is factor-critical.

Now we study matching properties for K, s-free graphs.

Theorem 3.10. Any 3 — ~,.-vertez critical K, 5-free graph of
even order has a perfect matching.

Proof. Let G be a 3 — y,-vertex critical K, s-free graph of even
order. Suppose to the contrary that G has no perfect match-
ing. By Theorem 1.4, there is a subset S C V(G) such that
o(G — S) > |S| + 1. Since G is of even order, we conclude that
o(G—S) > |S| + 2. Since by Theorem 3.4, |S| > 3, we find
that o(G — S) > 5. But then Lemmas 3.5, 3.6 lead that any
component of G — S has at least three vertices. Now Theorem
3.7 implies that |S| > 4. We deduce that o(G — S) > 6. Let
Gi, Gy, ..., Gk, be the odd components of G — S, where k > 6.
We proceed with Fact 1.

Fact 1. A(G[S]) < 2.

To see this let £ € S. By Observation 3.3, S; NS # 0. Let
y€ S, NS. If S; € S, then y dominates the vertices of at least
five components of G—S. This is a contradiction, since G is K 5-
free. Thus, S, C S. Let S; = {y, z}. Assume that ¢(G—-S) > 8.
Since G is K s-free, we obtain that y can not dominate the
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vertices of at least five components of G — S, and similarly 2
can not dominate the vertices of at least five components of
G — S. Thus ¢(G — S) = 8, and we may assume without loss of
generality that y dominates V(G1) U V(Gs) U V(G3) U V(Gy),
and z dominates V(Gs) U V(Gs) U V(G7) U V(Gs). Let y; €
Ne(y)NV(G;) for i = 1,2,3,4. Then yy, ...,y4, 2 form a K; 5, a
contradiction. We deduce that, c¢(G — S) < 7. Now we observe
that
24|S|<o(G-5)<ce(G-8)<T.

This implies that |S| < 5. But Ng(z)N{y, 2} = 0. So by Lemma
2.1 and Observation 3.3, z is adjacent to at most two vertices of
S. So deggisi(z) < 2, and so A(G[S]) < 2. This completes the
proof of Fact 1.

Let v; € V(G;). Since o(G — S) > 6 and G is K)s-free, we
find that S,, C S. If |S| = 5, then since S,, dominates S, we
find that there is a vertex wy € S, such that deggs)(w1) 2
3, contradicting Fact 1. So suppose that |S| = 4. Let S =
{z,y,2u}. By Fact 1 we may assume that Ngig)(y) = {z,u}.
By Lemmas 2.1 and 3.2 we obtain that S, NS = {z}. This
produces a K 5 centered at z, a contradiction. O

Theorem 3.11. Any 3 — ~,-vertex critical K, 5-free graph of
odd order is factor-critical.

Proof. Let G be a 3 — y,-vertex critical K, s-free graph of odd
order. Suppose to the contrary that G is not factor-critical. By
Theorem 1.2, there is a subset S C V(G) such that o(G — S) >
|S|. Since G is of odd order, we conclude that o(G—S) > |S|+1.
By Theorem 3.4, |S| > 3, and so o(G — S) > 4. It follows
from Lemmas 3.5 and 3.6 that any component of G — S has
at least three vertices. Now Theorem 3.7 implies that |S| > 4.
We deduce that o(G — S) > 5. Let Gy, G2, G3,G4, Gs be five
odd components of G — S. Let z € S. By Observation 3.3,
S;NS#OP. Letye S:NS. If S; € S, then y dominates the
vertices of at least four components of G—S. We can then choose
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a vertex from each of these components, and together with the
vertex in S; \ {y}, form a K5, which is a contradiction. So
S; € S. Similar to the proof of Theorem 3.10 we observe that
¢(G — S) < 7. Now we observe that

1+|S]|<o(G-8)<c(G-5)<T.

This implies that |S| < 6. For 4 < |S| < 5, with the same man-
ner as in the proof of Theorem 3.10, we produce a contradiction.
So we suppose that |S| = 6. Let S = {v1, v, ..., s}

If there is a vertex w € S such that deggsj(w) > 4, then by
Lemma 2.1 and Observation 3.3, either |S,| > 3, or G has a
K5, both of which is a contradiction. So A(G[S]) < 3. This
implies that G[S] has at most 9 edges.

For any vertex u € V(G), S, C S and |S,| = 2. But |V(G)| =
|S| + |V(G) — S| > 5+ 5(3) = 20. Since there are at most nine
pairs of adjacent vertices in S, we deduce that there are two
vertices u; and up in G such that S,, = S,,. This means that
Sy, is a TRDS for G, a contradiction. O
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