FIBONACCI NUMBERS AND POSITIVE BRAIDS
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ARSTRACT. The paper contains enumerative combinatorics for posi-
tive braids, square free braids, and simple braids, emphasizing con-
nections with classical Fibonacci sequence.

1. Introduction

The classical Fibonacci sequence, (Fr)n>o : 0,1,1,2,3,5,... appears
from time to time in enumerative questions related to Artin braids (2],
the geometrical analogue of permutations. The positive n-braids can be
defined as words in the alphabet {z;,z2,...,Zn-1}:

1 i-1 i i+l 42 n
/
Z; /

in which we identify two words obtained using finitely many changes of type

olwiz;)8 — alz;z:)8 (for |i — j] > 2)
(T %i412:)8 +— (Tiy12:Ti4+1)B (fori=1,2,...,n—2):
a o o a
/ ' [ / / /7
/ /
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B B 8 B

A central role is played by the Garside braid [11]: A, = z1(z22)1)..(Tn-1..71)-
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We will denote by MB,, the set of positive n-braids, by MB;} the set of
positive n-braids not containing A, as a subword, and by Div(A,,) the set
of positive n-braids which are subwords of the Garside braid:

Div(A,) = {w € MB,| there exist a, 8 € MB, such that A, = awf}.

A square free positive braid is a positive braid not containing a subword
of the form T:‘, where k£ > 2: for instance, 8 = zizox)72 is not square
free, because B = z2z971, but Ay = T1297123z92) = (T2x173)? is square
free. A well known result ([11], Theorem 9, and [9], Lemma 5.4) says that
the set of square free positive n-braids is exactly the set Div(A,). There
are many ways to define the set of simple n-braids, SB, C Div(A,) (see
e.g. [4]). One definition is:

Definition 1.1. A simple braid is a positive braid 8 € MB,, which contains
a letter x; at most once.

In our first computations Fibonacci numbers (F)) appear; by and b,‘:
represents the number of braids of length k in MB; and MB7 respectively.

Theorem 1.2. The generating function of MBj is

Gpy(t) = D bit* =142t + 462 + 763 + 12t + 20t° + . .
k>0
where by = Fry3—1, k> 0.

Theorem 1.3. The generating function of MB:T," 18
- ik _ 2 3 4 5
Gy (B) =D btk = 1+2t+46% + 663+ 10t* + 165 + ...
k>0
where b} = 2Fi4q, k> 1.
Theorem 1.4. The number of simple braids in SB,, is Fon;.

The paper contains some other combinatorial results related to positive
braids.

In the next section the proofs of the first two theorems are given.

In the third section the generating polynomial of the square free braids
is computed (Proposition 3.1} and the recurrence relation for its coefficients
arc presented (Proposition 3.2).
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A proof of Theorem 1.4, the generating polynomial for simple braids,
and some propertics of its coefficients (Proposition 4.1) are contained in
scction 4.

The fifth scction contains enumerative results related to the set of con-
jugacy classes of simple braids (Proposition 5.1).

Conncctions between multiple Fibonacci-type recurrence [13] and Jones
polynomial and Conway-Alexander polynomial for closed braids are pre-
sented in [8] and [3]. The close relations between simple braids in SB,, and
the corresponding simple permutations in the symmetric group ¥, and also
the simplc parts of the Cayley graph and of the permutahedron, the parts
corresponding to the simple braids and simple permutations, are studied in

[5]-

2. Positive braids

The gencrating function for positive braids was computed by P. Deligne
[10) using invariants of Coxeter groups. A direct computation for 3-braids
was done by P. Xu [16] and an inductive algorithm for G g, (t) and some
gencralizations are contained in Z. Igbal [12]. Using any of these references,
we have

Corollary 2.1. ([10], [16], [12]) The generating function for positive 3-
braids is given by

1
(1-t)(1—t—¢t2)

GMBs (t) =
Proof of Theorem 1.2. The cxpansmn in simple parts Gump, (t) = =2 _‘t
17— and the cquality (1 —¢t — t2)~ Z Fi1t* gives the result

b = (2Fm+F1)-1= (Fk+1+Fk+2) 1= Fiy3—1. O

Proof of Theorem [.8. Every positive braid 8 can be written in a unique
way as a product 8 = AXB* with B+ € MB} (see [11]), therefore the

decomposition MBs = [[ Ak .- MBY implies:
k20

s 1+t+t
_ 3 6 1 _— +ik
Cup; ) =1+ +8+..)7 Cma(t) = T3 ;b A

Simple computations show that by = 1, bf = 2 = 2F,, bf = 4 = 2F3, and,

for k > 3, b —bf_, —b{_, =0, hence the result. a
For a universal upper bound of the growing type of MB;, see {7].
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3. Square free braids

To represent an element of Div(A,), i.e. a positive square free braid,
we choose the canonical form given by the smallest elements in the length-
lexicographic order (see [6], [1]):

.BK,J = ﬂk;,j; ﬁkz.jz vee ﬁknj.

where By ; = TxTp—1...2j412;, 0 < s <n-1,1< k) <kz... < ks <n-1,
and j, < k), for h =1,..., s (the case s = 0 corresponds to the unit 8 = 1).
For simplicity, we will write Div, for Div(A,). Let us denote by d,;
the number of divisors of A, of length ¢ and by Gpi,, (t) the generating
polynomial of the square freec n-braids.

n(n—1)/2 .
Proposition 3.1. Gp;,,, (1) = Y. dpt
i=0
=(1+t)(1+t+t2) ... (1 +t+t2+... 41,

Proof. We start the induction with n = 2: Divy = {1,z,} and Gpi,,(t) =
1 4 t. The canonical form of square free braids shows that the map

f:Divoy x {1,80-1,1,8n-1,2)- -+, Bn—1,n-1} — Divp,

defined by f(w,1) = w, f(w, Bn,k) = w" Bn,k, is a bijection. The generating
polynomial of the set {1, Bn—1.k }k=1,...n-1 18 1+t+.. .+t 50 Gpiy,. (t) =
Gpiv,_, (t) - (L4t +...+ 1), =

Corollary 3.2. The sequence (dpi)._, nn-1 18 symmetric and unimodal
' 1—0,...,47—2

and satisfies the following recurrence relation:
a) dl,() =1, dl,i =0 ’LfZ #0,‘
b) duy1i =dni+dni-1+...+dni-n.

Example 3.3. First values of the sequence d,, ; (on the n-th line) are given
in the triangle:

.....................................................................

4. Simple braids

The canonical form of a simple braid in S8, is

BK,J = Bry,jrPra.gz - - - Bhaojo
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where 1 <k <ky<...ky<n—-1,75<kijforalli=1,2,...,s, and also

Jir1 > ki foralls =1,2,...,5—1 (sce [4]). Let us denote by SB, the subset
of simple braids of length ¢ in SB,, and o, ; its cardinality The generating

polynomial of simple n-braids is denoted by Gsg, (t) = E On, ;tt. We are
interested in counting the number of simple braids Gsp,, (1)

Proposition 4.1. The sequence (0,,;) is given by the recurrence:
@) o0 =1and g1 =0 fori#0;
b) Oni =0On-1, +0On_1,i-1 + On—2,i-2+ ... + On-ip-

Proof. The set SB:, can be decomposed as a disjoint union as follows:
SB: = 8B._ | I(SB x{@no DISBL 2 % {Zn-1Zn-2}) L. I{Zn_1..2n-:}
O

An cquivalent recurrence for the sequence (o, ;) is given by the next
Corollary:

Corollary 4.2. The sequence (0,;) satisfies also the recurrence:
a)org=1andoy; =0 fori#0;
b) oni=20p-1,i-1+0n-1,i— On-2,i-1.

Example 4.3. First values of o,,; (on the n-th line) are given in the tri-
angle:

This scquence appears in N. J. A. Sloane list at the position A 160232 (see
[14]).

Example 4.4. Starting with 0,0 = 1, 0,1 = n — 1, and using the
recurrence of Proposition 4.1 or the recurrence of Corollary 4.2 we get
On2 = (n—1)(n+2)/2), op3 = (n = 3)(n+4)(n—1)/3! and op g =
(n — 4)(n + 1)(n® + 5n — 18)/4!. Using the same recurrences we find that
the last non zero coefficient is op n—y = 2772 (if n > 2).

Proposition 4.5. o0, ; is a polynomial in n of degree i and its leading
coefficient is 1/1).

Proof. The induction by i starts with 6,0 = 1 and op,; = n — 1. Using
Proposition 4.1, we have

Oni— On—1,i = 0On-1,i—-1 T On-2i-2+ ...+ 0n—ig0
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where the sum is a polynomial in n of degree 7 — 1 and leading coefficient
1/(i-1)!. This implics that o, ; is a polynomial in n of degree 7 and leading
cocfficient is 1/3!.

O

Proof of Theorem 1.4. By definition Gsg, (1) = 0n,0+0n1+0n2+0nn-2+
...+ On.u-1. Using the recurrence given in Proposition 4.1, we expand
n—1
GSB"(I) = Z On.i and get
=0
Gss, (1) =2Gsg,_,(1)+Gss,_,(1)+Gsa,,_.(1)+...+Gsp,(1)+Gsa, (1).
Starting an induction with GSB;(I) =1=F =F, GSBg(l) =2 = F;,
Gsg,(1) = 5 = Fs, we obtain

Gsp, (1) = 2Fn 3+ Fops+...+F+FB+F
= 2, 3+ Fop s5+...+F5+ Fy

= 2B 3+ Fon_s+ Fon_6 =2Fpn_3+ Fon_4
= Foug+ Fon_3 =Fon_y. O

5. Conjugacy classes of simple braids

Positive n-braids 8 and 3’ are called conjugate if there is a positive n-
braid a such that Sa = af’ (this is an equivalence relation, see [11]). In
[4] it is proved that every conjugacy class of a simple n-braid contains a
unique simple braid of the form

ﬂA = (a:l:rg - .xsl_l)(rsl+l e :1332..1) o (zsr_l-}-l .o ..’1:3'__1),
where A = (a3,4a2,...,a,) is a sequence of integers satisfying a; > ags >
..2a>2and s; =a; +az+...+a;.

We denote by ¢, ; the number of conjugacy classes of positive simple n-
braids of length i. A partition of a positive integer m is a representation of m
in a form mn = my +ma+...4+my where the integers m,, mo, . .., my satisfy
the inequalities m; > mg > ... > my > 1. The number of partitions of m
into k parts is denoted by P(m, k) (see [15]). By convention, P(0,0) = 1.
Proposition 5.1. The number of conjugacy classes of simple n-braids of
length i is given by

¢n,i = P(i + min(i,n - i), min(i,n — 9)).
Proof. Consider B4 = (z122... 25, -1)(Tsy41-- - Tsg=1) -+ (Tspy 41 - - - Tap=1)s
the canonical representative of a conjugacy class in SBy, of length ¢ = s,.—r.
We associate to the sequence A = (a; = a2 2 ... 2 a,) (here a, > 2)
the partition of 7, 7 = (a; — 1) + (a2 — 1) + ...(ar — 1). The condition
S = a1 +azx+ ... +a, < n implies i + r < r, therefore the number of
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conjugacy classes of simple braids of length i is given by the number of
partitions of 7 into at most n — ¢ parts:

¢ni =P, 1)+ P(3,2) + ...+ P({,min(i,n - 7).

k

Using the relation P(n + k,k) = Y. P(n,k) (k < n) (see [15]), we obtain
i=1

the result. O

Example 5.2. First values of the sequence ¢, ; (on the n-th line) are given
in the triangle:

........................
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