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ABSTRACT. A signed k-dominating function of a graph G = (V, F)
is a function f : V' — {+1,-1} such that 37,y ) f(v) = &
for each vertex v € V. A signed k-dominating function f of a
graph G is minimal if no g < f is also a signed k-dominating
function. The weight of a signed k-dominating function is w(f) =
Y vev f(v). The upper signed k-domination number I's x(G) of G
is the maximum weight of a minimal signed k-dominating function
on G. In this paper, we establish a sharp upper bound on I'; (G)
for a general graph in terms of its minimum and maximum degree
and order, and construct a class of extremal graphs which achieved
the upper bound. As immediate consequences of our result, we
present sharp upper bounds on I, x(G) for regular graphs and
nearly regular graphs.
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1 Introduction

All graphs considered in this paper are finite connected simple graphs. Let
G = (V,E) be a graph with vertex set V and edge set E. Terminology
not defined here will generally conform to that in [1]. For a vertex v € V,
the open neighborhood of v is Ng(v) = {u € V| uv € E} and the closed
neighborhood of v is Ng[v) = {v} U Ng(v). The degree of v in G is dg(v) =
|Ng(v)|, and the minimum degree and mazimum degree of G are denoted
by §(G) and A(G), respectively. When no ambiguity can occur, we often
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simply write d(v), é and A instead of dg(v), 6(G) and A(G), respectively.
If each vertex in G has an even degree, then we call G an Fulerian graph.
If each vertex in G has an odd degree, then we call G an odd-degree graph.
A graph G is called r-regularif d(v) =rforallve V. Ifd(v)=r+1lorr
for all v € V, then we call G a nearly (r + 1)-regular graph. For a subset
S C V, we let ds(v) denote the number of vertices in S that are adjacent to
v, the closed neighborhood of S is N[S] = |J,¢s Ne(v], and the subgraph of
G induced by S is denoted by G[S]. For vertex-disjoint subsets X,Y C V,
we use e(X,Y) to denote the number of edges between X and Y.

For a positive integer k > 1, a signed k-dominating function (SkDF) of
a graph G is a function f : V — {+1, -1} such that ZHGNG[‘O] f(u) 2 k for
each vertex v € V. The weight of f is w(f) = >, cv f(v), and for SC V
we define f(S) = 3 5 f(v), so w(f) = f(V). For a vertex v € V, we
denote f(Ng[v]) by f[v] for notational convenience. An SkDF f of G is
minimal if there does not exist an SkDF g, f # g, for which g(v) < f(v)
for each vertex v € V. The upper signed k-domination number I'; 1(G) of
G is the maximum weight of a minimal SkDF on G. In particular, the
T5,1(G) = I's(G) corresponds to the well-known upper signed domination
number (see, (2, 3, 4, 5, 6]). Throughout this paper, we always assume that
a graph G has minimum degree §(G) > k —1 and k € N. A minimal SkDF
of weight I'; (G) is called a I'; x(G)-function.

In [4] and [3] Favaron and Henning independently gave the sharp upper
bounds on T’y of an r-regular graph in terms of its order.

Theorem 1 (Favaron [4] and Henning [3]) If G is an r-regular graph, r >
1, of order n, then T4(G) < n(r+1)2/(r?+4r—1) if r is odd, and T,(G) <
n(r + 1)/(r + 3) if r is even, and these bounds are sharp.

Further, Wang and Mao [6] established the best possible upper bounds on
T’ of a nearly (r + 1)-regular graph in terms of its order.

Theorem 2 (Wang and Mao [6]) If G is a nearly (r + 1)-regular graph
of order n, then T's(G) < n(r® + 3r + 4)/(r® + 51 + 2) for r odd, and
[s(G) < n(r +2)2/(r? + 6r + 4) for r even, and these bounds are sharp.

In [5] Tang and Chen presented sharp upper bounds on I’y of an arbi-
trary graph in terms of its minimum degree, maximum degree and order.

Theorem 3 (Tang and Chen [5]) If G is a graph of order n, then T's(G) <
(A+3A-64+1)n/(6A+3A+6—1) for§ odd, and T's(G) < (6A +4A —
0)n/(6A + 4A + &) for & even. In particular, if G is an Bulerian graph,
then T'5(G) < (6A +2A — 8)n/(0A + 2A + 8). Furthermore, these bounds
are sharp.
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Obviously, Tang and Chen generalized the results in Theorems 1 and 2
to general graph, if§ = A=rord =7 and A =7+ 1 in Theorem 3, then
we see that Theorems 1 and 2 are special cases of Theorem 3.

In this paper, we generalize the results I'; in Theorems 3 to I's ;. of an
arbitrary graph. We establish the upper bound on I'; ;. for a general graph
in terms of its minimum degree, maximum degree, order and positive integer
k, and construct a class of extremal graphs which achieved the upper bound.
In particular, if G is an r-regular graph or a nearly (r + 1)-regular graph,
we present sharp upper bound on Iy in terms of its degree, order and
positive integer k.

2 Main results
Theorem 4 If G is a graph of order n with minimum degree 6 and maxzi-

mum degree A, then

A +k+2)—(6—k)
AG+k+2)+(B—F)"

for 6 —k+1 odd,
Fs,k(G)S
AG+k+3)-(0-k+1)

A(6+k+3)+(6—k+1)n for 6 —k+1 even.

In particular, if G is an Eulerian graph and k is odd , or G is an odd-degree
graph and k is even, then
Ab+k+1)—(0—-k+1)
< .
Lok@) S RGrEs D+ 0GR+ D"

Furthermore, these bounds are sharp.

Clearly, if £ = 1, then (A(6+ k +2) — (6 — k))n/(A(6+ k +2) +
(6—k)) = (6A +3A -6+ 1)n/(6A +3A+ 6 — 1) for 6 being odd, and
(AG+Ek+3)—(6—k+1))n/(A(6+k+3)+ (6 —k+1)) =(6A+4A -
0)n/(6A+4A+46) for § being even. Furthermore, if G is an Eulerian graph,
then T5(G) < (A6 +k+1)—(6—k+1))n/(AG+k+ 1)+ (6 —k+1)) =
(6A + 2A — 8)n/(6A + 2A + 6). Thus, we see that Theorem 3 is special
case of Theorem 4.

To prove Theorem 4, we shall need the following lemmas.

Lemma 5 ([2]) If r and n are positive integers with r < n and n is even,
then we can construct an r-regular graph on n vertices.
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Lemma 6 A signed k-dominating function f on a graph G is minimal if
and only if for every verter v of weight +1, there ezists a vertez u € Nv)
such that flu] =k or k+ 1.

The proof of Lemma 6 is straightforward and therefore omitted. Now

we can present the proof of Theorem 4.
Proof of Theorem 4. Let f be a I'; x(G)-function of G, and let P = {v €
V| f(v) = +1} and M = {v € V| f(v) = —1}. Further, we let |P| = p and
|M| = m, thus, w(f) = |P|— |[M}|=n—2m. If k =6 or § + 1, then the
results are trivial. Hence in what follows we assume k < 6 — 1.

For each vertex v € P, f{v] = dp(v)+1—dp(v) = d(v)—2dp(v)+1 2 k,
and so dy(v) < |(d(v) — k + 1)/2]. We write sy = [(6 — k + 1)/2],
t1 = |(A —k+1)/2]. Hence we can partition P into ¢; + 1 sets by defining
P; = {v € P| dy(v) = i} and letting |P;| = p; for i = 0,1,---,¢;. Then we
have

t)
n=m+p=m+2pi (1)

i=0
For any vertex v € M, flv] =dp(v) — 1 —dum(v) =2dp(v) —d(v) — 1 > k,
and so dp(v) > [(d(v)+k+1)/2]. We write s2 = [(6+k+1)/2],t2 = [(A+
k +1)/2]. We define M; = {v € M| dp(v) = j} for j = 39,50+ 1,---, 12,
and M’ = M - UL, M;. Let |M;| = m;, and so |[M'| = m — %2 m;.
Clearly, the sets J\/I::,2 y Mgy 41, - -y My,, M’ form a partition of M. Since each
vertex in M’ is adjacent to at most A vertices of P, we have

21

Y ipi=e(P, M) < (spms, + -+ tame,) + Alm = (my, + -+ + my,)].
i=1

Hence,

t2

Sip € Am— 3 (A—j)m, @)

i=1 j=s2

If Py = @, then by (1) and (2), we have

t ty
n=m+y) p<m+y ip; < (A+m.

i=1 i=1
Solving the above inequality for m, we obtain that m > n/(A + 1), and
hence I'; x(G) = n — 2m < (A — 1)n/(A + 1). Observing that
A—1n< . {A(5+k+2)—(6—k)n Ab+k+3)—(6—-k+1) }
A+1 A +k+2)+(0—k) "A6+k+3)+(6-k+1) |~

310



Then we see that the conclusion holds. Thus we may assume that Py # 9.

According to our partition for P and M, we obtain that for any v €
Ui, P; and such that flv] = d(v) —2i+1 > k+2, we have i < (d(v) — k+
1)/2—1. Hence, wheni < [(§—k+1)/2| —1 = s; — 1, we have f[v] > k+2
for any v € U:_‘.Bl P.. Similarly, for any v € M’, we have dp(v) 2 t2 +1 =
[(A+k+1)/2] + 1, it is clear that f[v] = 2dp(v) — d(v) -1 > k+2. Soif
flvJ=kork+1lforveV, thenve (Ut_sl P)u (UJ_s2

For any v € P, since f[v] =d(v)+1 > k+2and f is minimal, by
Lemma 6, v has at least one neighbor u such that v ¢ Py and flu] = &
or k+ 1. Let Q = {u € N[R)| flu] = k or k + 1}. Noting that for any
'vGUf‘_BIP’,, flv) > k+2, we see that Q C|Ji~, P. So

1."“8

po = [Pol < e(Po, @) = (P, ) (BN Q). 3)

i=81

For any vertex u € P,NQ (s; < i <t;), by Lemma 6, there must exist a
nelghbor u’ of u such that f[u’] = k or k+ 1. Noting that v’ € (U,_‘,J AL

() e, M;). I € Ul_“ P; and v’ # u, then each u has at most k+4—1
neighbors in Pp; If v’ € (J{L, P; and 4’ = u, then each u has at most k + i
neighbors in Pp; If o’ € 2., M. i, then each u has at most k + ¢ neighbors
in P.

Hence we can write P, NQ (s; < ¢ < t;) as the disjoint union of two
sets QP] and QP/’, where QP] = {v € P,NQ | dp,(u) = k + i} and
QP! = {u € PiNQ | dp,(u) < k+i—1}, et |QP!| = g}, [QPY| = |PNQ|~p}-
Thus, by inequality (3), we have

1—81

j=s2

ty t)
Po < e(PO’ U QR:) +6(P0, U QPz”)

=8 =81
ty

SG+kp+ D G+k-1)(P.NQ|-p))

1'.=81 i=8;

S G+ R+ 30 G+ k- 1) — 5)

i=8y i=8

= Z,(i+k—1)pi+}ip§. (4)

i=38y i=38

IA

IA

We now distinguish two possibilities depending on the parity of § —k+1.
Case 1. § — k+ 1 is odd.
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Then sy = [(§ — £+ 1)/2] = (6 — k)/2. Noting that when ¢ > s; =
(6 = k)/2, the inequality (6 + k + 2)i/(§ — k) 2 i + k + 1 holds, then by
equality (1), inequalities (2) and (4), we obtain that

n < m+(2(z+k-1)p.+2p,)+2p,
i=s, i=s
81—1
= m+Z(z+k+1)p,+Zpa Zp=+2p,
i=8 i=s) i=s)
81—1
< 6+k+2§:zp,+2p, ZP.+ZPI
i=s, i=1 i=8, i=38;
S+k+2«
< mt == (sz Z )
i=1 i=s) i=s;
t

i=1

+k+2 6+k+2
< m+ & mA — Z(A J)m;
6+k+2
-k
Then we have n < m + (6 + k + 2)mA/(d — k), which implies that m >
(6 —k)n/(A(6 + k +2) + (6 — k)), and hence

AG+k+2)-(B-k)
“AC+k+2)+ (0 —k)

That the bound is sharp may be seen as follows. For any positive
integers | > kand r > I + k and ¢, where 2/ + k < ¢ < 2r — 1, let F,
be the graph with vertex set V = X UY U Z with |X| =, |Y| = 2r and
|Z| = 2r(l + k), where X and Y are independent sets of vertices. The edge
set of F} ,. is constructed as follows: Add 27! edges between X and Y so that
G[X UY] forms a complete bipartite graph with partition sets X and Y.
Add 2r(! + k) edges between Y and Z so that each vertex of Y is precisely
adjacent to { + k vertices of Z and each vertex of Z is precisely adjacent to
one vertex of Y. Add edges joining vertices of Z so that G[Z] is a g-regular
graph (since ¢ < 2r(l + k) = |Z| and |Z| is even, it follows from Lemma 5
that such an addition of edges is possible). The graph F; . is shown in Fig.
1.

Jj=s2

< mA.

For(G)=w(f) =n—-2m <

By construction, Fj, is a graph of order n = ! + 2r + 2r(l + k) with
maximum degree A = 2r and minimum degree § = 2l + k. Let f be a
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Figure 1: The graph F, (G|[Z] is a g-regular graph).

function defined on V such that f(v) = —1 for v € X and f(v) = +1 for
v € YUZ. It is easy to check that f is an SkDF of F} ,, and by Lemma 6,
f is minimal. Clearly, w(f) =n —2|X| = 2r + 2r(l + k) — [, then it is easy
to check that

_A0+k+2)— (J—k)n

T AG+E+2)+(6—-k)
Consequently, I's x(Fl») = (A(6+k+2)— (6 —k))n/(A(6+k+2)+ (6 - k)).

Case 2. 6 — k + 1 is even.

Then s; = |(6 — k+ 1)/2] = (6 — k+ 1)/2. Noting that when ¢ > s; =
(6 — k+1)/2, the inequality (6 + k+3)i/(§ —k+1) > i+ k+1 holds, then
by equality (1), inequalities (2) and (4) again, we have

w(f) =2r +2r(l + k) —

t t1 ty
no < oma (Y GHk-Dpi+ Y s+ om
i=sy i=8y i=1
81—1

t t ¢
= m+Z(i+k+1)Pi+Z;pi-Zl:pi+zlp;
i=

i=s; i=sy i=s,

ty s1-1 t) 12}
< m P S it Yon - Y w4
1=s8; i=1 i=sy i=s1
S+k+3. 4 b,
< me s (Un- 2w)

t=8y =38
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5+k+3

S mE R

Then we have n < m + (6 + k + 3)Am/(d — k + 1), which implies that
m2>(@0—k+1)n/(A(6+k+3)+ (6 —k+1)), and hence

_ o AQB+k+3)—(6—k+1)
Fok(G) =w(f)=n-2m < AG+k+3)+0—-Fk+1) "

That the bound is sharp may be seen as follows. For any positive
integers | > k and r > | + k, let G be the graph with vertex set V =
XUYuUZwith |X| =, |[Y| = 2r and |Z| = 2r(l + k), where X is an
independent set of vertices. The edge set of Gy, is constructed as follows:
Add 2r! edges between X and Y so that G[XUY] forms a complete bipartite
graph with partition sets X and Y. Add 2r(l + k) edges between Y and
Z so that each vertex of Y is precisely adjacent to ! + k vertices of Z and
each vertex of Z is precisely adjacent to one vertex of Y. Add edges joining
vertices of Y so that G[Y] is a 1-regular graph. Add edges joining vertices of
Z so that G[Z] is a (2l+k—2)-regular graph (since 2l+k—2 < 2r(l+k) = |Z|
and |Z| is even, it follows from Lemma 5 that such an addition of edges is
possible). The graph G, is shown in Fig. 2.

By construction, Gy, is a graph of order n = | + 2r + 2r(l + k) with
maximum degree A = 2r and minimum degree § =2/ + k — 1. Let f be a
function defined on V' such that f(v) = —1 for v € X and f(v) = +1 for
v € YUZ. It is easy to check that f is an SkDF of G, ,, and by Lemma 6,
f is minimal. Clearly, w(f) =n — 2|X| = 2r + 2r(l + k) — [, then it is easy
to check that

w(f) =242 +0) - 1= ROLEEA B oke ),

Consequently, I's x(Gi,r) = (A0 +k+3)— (6 —k+ 1))n/(A6+k+3)+
(6-k+1)).

In particular, if G is an Eulerian graph, that is, every vertex of G has
even degree, then for any vertex v € V, f[v] is odd. Further, if k is odd,
then each vertex u € P, NQ (s; < ¢ <t;) has at most 7 + k — 1 neighbors
in Py, and f[u] = k. Similarly, if G is an odd-degree graph, then for any
vertex v € V, f[v] is even, further, if k is even, then each vertex u € P,NQ
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Figure 2: The graph G, (G[Z] is a (2l + k — 2)-regular graph).

(s1 €1 < t;) has at most i + k& — 1 neighbors in Py, and f[u] = k. Thus
é — k + 1 is even, and the inequality (4) can be improved as

po < Y (G+k-1)p; (5)

=81

Since (0+k+1)i/0—k+1)>i+kwheni>s =|(0-k+1)/2] =
(6 — k+1)/2, then by equality (1), inequalities (2) and (5), using similar
proof above, we have

+k+1

S mE RIS

which gives

e AG+k+1) - (—k+1)
Lor(@) =wlf)=n-2m< A DTGk D"

If G is an Eulerian graph and & is odd, that the bound is sharp may be
seen as follows. For any positive integers [ > k and r > [ 4+ (k — 1)/2 and
odd number g, where 2l + k < g < 2r, let H;, be the graph with vertex set
V = XUYUZ with |X| =22, |Y| = 4ir and |Z| = 4ir({ + k — 1), where X
and Y are independent sets of vertices. The edge set of H , is constructed
as follows: Add 4/2r edges between X and Y so that each vertex in X
has degree 2r while each vertex in Y has degree {. Add 4ir(I+ k& — 1)
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edges between Y and Z so that each vertex of Y is precisely adjacent to
I+ k — 1 vertices of Z and each vertex of Z is precisely adjacent to one
vertex of Y. Add edges joining vertices of Z so that G[Z] is a g-regular
graph. The graph H;, is shown in Fig. 3. By construction, H;, is a

Figure 3: The Eulerian graph H,,(k and q are odd and 2l + k£ < ¢ < 2r,
G|Z] is a g-regular graph).

graph of order n = 2! + 4lr(l + k) with maximum degree A = 2r and
minimum degree § = 2l + k — 1. Let f be a function defined on V such
that f(v) = —1 for v € X and f(v) = +1 forv € YU Z. It is easy to
check that f is an SkDF of H;,, and by Lemma 6, f is minimal. Clearly,
w(f) =n—2|X| = 4ir(l + k) — 212, then it is easy to check that

_ _AQB+k+1)—(6-k+1)
w(f) =i+ k) =2 = T R ™

Consequently, [ p(Hi») = (A0 +k+1) - (6 —-k+1))n/(A0+k+1)+
(6 -k+1)).

If G is an odd-degree graph and k is even, that the bound is sharp may
be seen as follows. For any positive integers ! > k and r > [ + k/2 and
even number g, where 2/ + k < ¢ < 2r, let I; , be the graph with vertex set
V = XuYUZ with | X| = 22, |Y] = 21(2r+1) and | Z| = 2[(2r+1)(I+k~-1),
where X and Y are independent sets of vertices. The edge set of I, is
constructed as follows: Add 22(2r + 1) edges between X and Y so that
each vertex in X has degree 2r + 1 while each vertex in Y has degree .
Add 21(2r + 1){l + k — 1) edges between Y and Z so that each vertex of
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Y is precisely adjacent to [ + & — 1 vertices of Z and each vertex of Z is
precisely adjacent to one vertex of Y. Add edges joining vertices of Z so
that G[Z] is a g-regular graph.

By construction, I;, is a graph of order n = 21? + 2I(2r + 1)(I + k) with
maximum degree A = 2r + 1 and minimum degree § = 2/ + k — 1. Let f
be a function defined on V such that f(v) = —1 for v € X and f(v) = +1
for v e YU Z. It is easy to check that f is an SkDF of I, ., and by Lemma
6, f is minimal. Clearly, w(f) = n —2|X| = 21(2r + 1)(l + k) — 2!2, then it
is easy to check that

_A@+k+)-(6—k+1)
TAQG+E+)+(6-k+1)

Consequently, Ty x(I;) = (A0 +k+1)—(§—k+ 1))n/(AG+k+ 1)+
(6 —k+1)). ]

As immediate consequences of Theorem4 when A=d=rorA=r+1
and § = r, we have the following results.

w(f) = 2@2r + 1) + k) — 22

Corollary 7 If G = (V,E) is an r-regular graph with v > 1 of order n,
then
(r+1)(r+k)

7 - d,
(r+1)2+(k+1)('r—1)~l forr—k+1 od

Ps,k(G) <
(r+1)(r+k-1) n
(r+1)2+k(r-1)

Furthermore, these bounds are sharp.

forr —k+1 even.

Corollary 8 If G = (V, E) is a nearly (v + 1)-regular graph with r > 1 of
order n, then

(r+Dr+k+1)+(k+1)

2 +r(k+4)+2 forr —k+1 odd,

Tsk(G) <
(r+1)(r+k+2)+k

2 r(k+5) +4 forr —k+1 even.

Furthermore, these bounds are sharp.
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