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Abstract

We investigate two modifications of the well-known irregularity
strength of graphs, namely the total edge irregularity strength and
the total vertex irregularity strength.

In this paper, we determine the exact value of the total edge
(vertex) irregularity strength for Halin graphs.

Keywords : total edge irregularity strength, total vertex irregularity strength,
Halin graph, generalized Halin graph.

1 Introduction and Definitions

As a standard notation, assume that G = (V, E) is a finite, simple and
undirected graph with |V(G)| vertices and [E(G)| edges. A labeling of
a graph is any mapping that sends some set of graph elements to a set
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of numbers (usually positive integers). If the domain is the vertex-set or
the edge-set, the labelings are called respectively vertex-labelings or edge-
labelings. If the domain is V U E then we call the labeling a total labeling.
In many cases it is interesting to consider the sum of all labels associated
with a graph element. This will be called the weight of the graph element.

An edge irregular total k-labeling of a graph G = (V, E) is a labeling o :
VUE — {1,2,...,k} such that the total edge-weights wt(zy) = o(z) +
o(zy) + o(y) are different for all pairs of distinct edges. Similarly, a vertez
irregular total k-labeling of a graph G = (V, E) is a labeling of the vertices
and edges with integers 1,2, ..., k such that the weights of any two different
vertices are distinct, where the weight of a vertex is the sum of the label
of the vertex itself and the labels of its incident edges. Moreover, the
minimum k for which the graph G has an edge irregular total k-labeling is
called the total edge irregularity strength of G, tes(G); and the minimum k
for which the graph G has a vertex irregular total k-labeling is called the
total vertex irregularity strength of G, tus(G).

The notions of the total edge irregularity strength and total vertex irreg-
ularity strength were first introduced by Baéa, Jendrol, Miller and Ryan
in the recent paper [6]. The original motivation for the definition of the
total edge (vertex) irregularity strength came from irregular assignments
and the irregularity strength of graphs introduced in [9] by Chartrand et al.
and studied by numerous authors [4, 5, 7, 12, 15]. Finding the irregularity
strength of a graph seems to be hard even for graphs with simple structure,
see [10, 11] and [18].

A simple lower bound for total edge irregularity strength determined in (6]
is given by the following.

Theorem 1 [6] Let G = (V,E) be a graph with mazimum degree A =

A(G). Then
tes(G) > mazx { ['E(G’gl + 2] . IVA;-I‘I } .

Ivanéo and Jendrol [14] conjectured that the bound from Theorem 1 is
attained for all graphs except Ks. Brandt, Miskuf and Rautenbach (8]
recently proved that this is true for graphs whose size is at least 111000
times their maximum degree.

Baga, Jendrol, Miller and Ryan proved the following theorem.
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Theorem 2 [6] Let G = (V, E) be a graph with minimum degree § = §(G)
and mazimum degree A = A(G). Then

[IV(AGE f‘é} <tws(G) < [V(G)|+A —26 +1.

In [6] the authors determined the exact value of the total edge irregularity
strength for certain families of graphs, namely paths, cycles, stars, wheels
and friendship graphs, and obtained the exact value of the total vertex
irregularity strength for stars, complete graphs, cycles and prisms.

Ivango and Jendrol [14] determined the total edge irregularity strength for
any tree. Jendrol, Miskuf and Soték (16, 17] showed the exact value of the
total edge irregularity strength of complete graphs and complete bipartite
graphs. Motivated by the papers [10] and [21] Miskuf and Jendrol [19]
determined the exact value of the total edge irregularity strength of grids.
Ahmad and Baéa determined the exact value of the total edge irregularity
strength of a categorical product of two paths in [1] and of a categorical
product of a cycle and a path in [3].

In this paper, we determine the exact value of the total edge (vertex) ir-
regularity strength for Halin graphs.

2 Main Results

A Halin graph H(T) (see [13]) is a planar graph constructed from a plane
embedding of a tree T with at least four vertices and with no vertices of
degree 2, by connecting all the leaves of the tree (the vertices of degree
1) with a cycle C that passes around the tree in the natural cyclic order
defined by the embedding of the tree. The tree T is called the characteristic
tree of H(T), and C is called the adjoint cycle of H(T). Every wheel W,
is the Halin graph H(S,).

A 2-connected planar graph H(G) without vertices of degree 2, possessing
a cycle C such that

(i) all vertices of C have degree 3 in H(G),
(ii) H(G) — C =G is connected graph

is called a generalized Halin graph. The cycle C is called the outer cycle of
H(G) and its vertices are called outer vertices. The graph G = H(G) - C
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Figure 1: The generalized Halin graph

is called the characteristic graph of H(G) and its vertices are called inner
vertices, see Figure 1.

In the next theorem we determine the exact value of the total edge irregu-
larity strength of generalized Halin graph H(G).

Theorem 3 Let H(G) be o generalized Halin graph of size ¢ with t inner
vertices and | outer vertices such that 1 <t <! and !’g-;_Z‘I —1<1. Then

tes(H(G)) = [ %3]

Proof. Let k = [9*3'—2] According to Theorem 1 we have tes(H(G)) > k.
To show that k is an upper bound for tes(H(G)) we construct a total k-
labeling for H(G). Let V(H(G)) = {v; : 1 < i <{}u{z; :1<j <t}
be the vertex set and E(H(G)) = {vivi41: 1 <i <l -1} U {vwv} U {e; :
e; is incident to v; for 1 <i <!} U{f,: fs isincident to inner vertices
for 1 <s < g — 21} be the edge set of H(G).

For | > 5 we define a total k-labeling o of H(G) as follows:
Case 1. If k — 1 # {0, 1}, then

o(z;)=k for 1 <1<,

1 for1<i< k-2
k-2 fori=k-1

o(vi) =14 fork<i<i-1
k—2 fori=|,
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i for1<i<k-—3
1 fori=k-2
o(vivir1) =< 5 fori=k-1
l+2—1 fork<i<l-2
4 fori=1-1,
U(U(’Ul)=2,
i fori<i<k-2
2 fori=k-1
o(€) =3 gt2-k—i fork<i<i-1
3 fori=1

o(fs)=2l-2k+2+s for 1<s<gq-2L
Case 2. If k — 1 = 0, then we use the total k-labeling from Case 1, where
o(n) =k—2, o(vi-1v)) =5 and o(e;) = 4.

Case 8. If k — | = 1, then we use the total k-labeling from Case 1, where
o(e) = 2.

Observe that if k—14# {0,1}, then

wt(viviy1) = 0(vi) + 0(Vit1) + o(vivig1)

142 for1<i<k-2
kE+1 fori=1

=< 2k+2 fori=1-1
2k+3 fori=k-1

2k4+1+2—1¢ fork<i<l-2,

k+1+1¢ for1<i<k-1
wt(e;)) =< 2k+1 fori=1
20+2+k—1i fork<i<i-1
and
wt(fs) =2l+2+s for 1<s<qg-2L
If k—1=0, then

1+2 forl<i<k-2
wt(vvipr) =4 i+1  fori=1
2k+1 fori=k-1,

[ k4140 for1<i<k-1
wt(e‘)_{2k+2 fori=1=k
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and
wi(fs)=2l+2+s for 1<s<qg-—2L

Ifk-1l=1,then
wt(vvip) =1+ 2 for 1<i<k-1,

pey [ KH1+i for1<i<k-2
wt(es) = o fori—=k—1

and

wt(fs)=2l+2+s for 1 <s<qg—2L.
To take care of H(G), for 3 <! < 4, we give the following special labelings:
For! = 3,4 and t = 1 we have wheels and from [6] it follows that tes(W,,) =
[252].

For | = 4 and t = 2 we define the total 4-labeling o as follows o(v;) =
o(v2) = 1, o(vz) = o(v4) = 2, o(z1) = o(z2) = 4, o(vivip1) = 1 for
1 <1i< 3, o(vgvy) = 3, o(z1z2) = 3, g(e1) = 2, a(ex) = o(es) = 3,
0(64) =4.

For! =3 andt =3 and for | = 4 and t = 4 we put o(v;) = 1, o(e;) =
o(vivit1) = 0(Ti%i+1) = ¢ and o(z;) =k for every 1 <i <.

For ! = 4 and t = 3 we define the total 5-labeling ¢ as follows: o(v;) = 1,
o(e;) = o(v;vi41) = i for every 1 < i < 4. o(z;) = 5 and o(z;7j41) = j
for every 1 < j < 3.

It is easy to check that the weights of the edges of generalized Halin graph
H(G) under the labeling o constitute the set {3,4,...,g + 2} and the
function o is a map from V(H(G)) U E(H(G)) into {1,2,...,k}. Thus

tes(H(G)) < [%3] :
Combining with the lower bound, we conclude that

tes(H(G)) = [‘ig—ﬂ .

This completes the proof. a
Nierhoff [20] proved that for all graphs G = (V, E) with no component of

order at most 2 and G # K3, the irregularity strength of G is at most
|[V(G)| — 1. If we extend an edge labeling (irregular assignment) to the
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total labeling such that every vertex of graph G receives the value 1 then
we obtain a vertex irregular total labeling and

tvs(G) < |V(G)| - 1. (1)

Ahmad and Baga in [2] showed that for Jahangir graph Jn2, n 2 4,
tvs(Jn,2) = [2+L] and for circulant graph Cn(1,2), n > 5, tvs(Cn(1,2)) =
|‘¢] Halm graph H(S,) is the wheel W,,. Wijaya and Slamin in [22]
showed that tvs(W,) = [2$3].

A tree on p vertices is called a double star S, », if it has exactly two vertices
that are not leaves, one of degree m, say the vertex a, and the other, say
the vertex b, of degree n with p = m + n. Let H(Sm,n) be Halin graph
with double star Sy, as its characteristic tree. The following lemma gives
the lower and upper bounds of total vertex irregularity strength for Halin
graph H(Sm ).

Lemma 1 Let H(Sm,n) be Halin graph with the characteristic tree Sm n
for3 < m < n. Then

max { [meptt], [2d2], [2223 ]} < tos(H(Sm)) < b1

Proof. Halin graph H(Sp, ) contains m + n — 2 vertices of degree 3,
one vertex of degree m and one vertex of degree n. The upper bound
of total vertex irregularity strength follows from (1). To prove the lower
bound consider the weights of the vertices of H(Sy,,n). The smallest weight
among all vertices of H(Sy, ») is at least 4, so the largest weight of vertex
of degree 3 is at least n + m + 1. Since the weight of any vertex of degree
3 is the sum of four positive integers, thus at least one label is at least
[2gp£L].

The largest value among the weights of vertices of degree 3 and m is at

least .+ m + 2 and this weight is the sum of at most m + 1 integers. Hence
nt+m

the largest label contributing to this weight must be at least [—#12]

If we consider all vertices of Halin graph H(S,,,) then the lower bound

["—',*';’-j,‘—ii’] follows from Theorem 2.

This gives max { [2iml] [";‘;’_’:‘1"2] , [""”"*3]} < tvs(H(Sm,n)) and we
are done. o

Lemma 2 tvs(H(S33)) = tvs(H(S34)) = 3.
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Figure 2: Halin graphs H(S33) and H(S34)

v

v U4

v Un

Un+l

Figure 3: Halin graph H(S3 )

Proof. From Lemma 1 it follows that tvs(H(S33)) > [§] = 3 and
tvs(H (S3,4)) > max{[3], [2]} = 3. For the converse, we define a suitable
vertex irregular total labelings by Figure 2. m]

Theorem 4 Let H(S3,) be Halin graph with the characteristic tree Sz,
forn > 5. Then tvs(H(S3n)) = [2£2].

Proof. Let V(H(S3,)) = {vi : 1 <£i £ n+ 1} U {a,b} be the vertex
set and E(H(S3)) = {vivig1 : 1 < ¢ < n} U {ab} U {vpravn} U {e; :
e; isincident to v; for 1 < i < n + 1} be the edge set of Halin graph
H(S3,,), see Figure 3. From Lemma 1 it follows that tus(H(S3.)) >

max{[ 2447, [2427, (2481} = [248]. Let [243] = k. To show that & is an
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upper bound for tvs(H(S3,.)) we define a total k-labeling as follows.

o(a) =0(ab) =1 and o(b) = k.
itl i -
o(v;) = [5°] forlsisn+2-k
n+3—i forn+4—-k<i<n+1.
When i = n + 3 — k, then
() = k for n =2,3 (mod 4)
)= [2t4=k] for n=0,1 (mod 4),
ifl ; -
o(e;) = [%5°] _for1525n+2‘ k
n+3—i forn+3-k<i<n+1,
o (viies) = [§1+1 for1<i<n+1-k
V) = o forn+3—-k<i<n.
When i =n+2 — k, then

[242=k] + 1 for n =0 (mod 4)
k

0(Vn+2-kUnt3—k) = { otherwise
]

and
0(Vn41v1) = L.

Thus, the vertex weights of H(S3,,) are as follows:

[a—y

. wt(a) = o(a) + o(e1) + a(ez) + o(ab) =4,
2. wt(v1) = o(V1Un41) + 0(v1) + 0(V1v2) + o(e1) =5,

. for2<i<n+1-k

wi(v;) = o(v_1v;) + o(v;) + o(vvipr) + o(e;)
=2[(+1)/3]1+ [(: —1)/3] + [/3] + 2,

for n = 0 (mod 4)

Wt(Unt2-k) = O(Vns1-kVn+2—k) + T(Vny2—k) + O(Vns2_kUnsa—k)+

o(ensar) = [(n+1—k)/3) +2[(n+3 - k)/3]+
[(n+2 - k)/3] +2,

forn=1, 2, 3 (mod 4)

WH(Vn42-k) = O(Vn41-kUns2—k) + 0(Vny2—k) + O(Vngo—kVns3—k)+

o(ento—k) =[(n+1—k)/3]| +2[(n+3—-k)/3] +k+1,
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10.
11.

. for n =0 (mod 4)

Wt(Vn43—k) = 0(Vnt2-kVUn+3-k) + 0(Vn43—k) + 0 (Vn43—kUnta—k)+
o(ensa-k) =[(n+2—k)/3] + [(n+4—k)/3] + 2k,

. for n =1 (mod 4)

Wt(Vn43—k) = O(Vnt2-kUn43—k) + O(Vn+3—k) + O(Vn43-kVUnsa-k)+
o(ents-k) = [(n+4—-k)/3] +3k -1,

. for n =2, 3 (mod 4)

Wt(Vnt3-k) = 0(Vn42-kVn+3—k) + O(Un43-k) + O(Vn3-kUnta—k)+
o(ents-k) =4k -1,

forn+4-k<i<n

wt(vi) = 0’(1),'..1'05) + 0'(1),') + 0'('0{‘0,'4.1) + 0'(8,')
=4n 4+ 11 — 43,

Wt(Vn+1) = 0(VnUn41) + 0(Vns1) + F(Vngav1) + o(ent1) =7, and

the weight of the central vertex b is

n+l
wt(b) = o (b) +0(ab) + ) _ a(e:)
n42-k = n+1
=k+1+ Y [G+1)/81+ > (n+3-1).
=3 i=n+3—k

One can easily check that distinct vertices in H(S3,,) have different weights
and so tvs(H(Ss,,)) < k. Combining with the lower bound, we conclude
that tvs(H(Ss,,)) = k. This completes the proof. O

Theorem 5 Let H(Sy ) be Halin graph with the characteristic tree Sm n
for 4 <m < n. Then tus(H(Sm,n)) = [2EptL].

Proof. Let V(H(Smyn)) = {vi : 1 < i < m+n—2}U{a,b} be the
vertex set and E(H(Sp ) = {vivis1 1 1 £ i < m+n -3} U {ab}u
{¥m4n—2v1} U{e; : &; isincident to v; for 1 < i < m +n — 2} be the
edge set of Halin graph H(Sm ), see Figure 4. From Lemma 1 it follows
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Vm4n-2

Um+n-3

Figure 4: Halin graph H(Sm )

that tvs(H(Smn)) > max{[Zp+l], fmmii'{‘z], [’":Ilﬂ]} = [ﬂf—‘*—l] for
3<m<n.

Let k = [m42+1] Tt is enough to prove that tvs(H(Sm,n)) < k. We define
a total k-labeling o in the following way.

o(a) = o(b) = 0(ab) = 0(Vm4n-3) = F(Um4n-2) = F(Um+n-3Umin-2) =k,

O(Um4n—2v1) =1 and o(v;) =1 for every 1 <i<k+2.
1 if1<i<k
ole;) =
k ifk+1<i<m+n-2,
1 ifl1<i<k

o\viy; = i
(vivie) { [=E+3] jfk+1<i<m+n-—4.
For3k—-2<m+n-4

o) [izkil] fk+3<i<3k-3
ag\v;) = .
[i=k+l] 41 if3k-2<i<m+n-4.

For3dk—2>m+n—4

o(v;) = [MT+1] for k+3<i<m+n-—4.
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This labeling gives weight of the vertices as follows:

m-3

wt(a) =4k + »_ o(e:)
i=1

and bt
wt(d) =2k+ Y ofe).
i=m—2
For3k-2<m+n-—-4
3+i if1<i<3k-3
4+ if3k—-2<i<m+4n—4
UH) =\ gk [mtncket] oy nos
3k+1 ifi=m+n-2
For3k-2>m+n—4
3+1 fl1<i<m+n-4
wt(v;) = 3k+ [2AR=k=L) ffi=m+n-3
3k+1 ifi=m+n-2

It is a matter for routine checking to see that distinct vertices in H(S, )
have different weights. Thus o is the desired vertex irregular total k-
labeling. Combining with the lower bound, we conclude that

tos(H(Smn)) = k = [ﬂ“*—l] .

4
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