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Abstract

For given a graph H, a graphic sequence 7 = (d;,ds, - - -, d, ) is said to
be potentially H-graphic if there exists a realization of = containing
H as a subgraph. In this paper, we characterize the potentially
C; 6-graphic sequences. This characterization partially answer the
problem 6 in Lai and Hul[21].
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1 Introduction

We consider finite simple graphs. Any undefined notation follows that of
Bondy and Murty [1]. The set of all non-increasing nonnegative integer
sequence © = (d,ds,--,dy) is denoted by NS,,. A sequence meNS,, is
said to be graphic if it is the degree sequence of a simple graph G of order
n; such a graph G is referred as a realization of #. The set of all graphic
sequence in NS, is denoted by GS,. A graphic sequence « is potentially
H-graphic if there is a realization of m containing H as a subgraph. Let
o(m) the sum of all the terms of 7, and let (z] be the largest integer less than
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or equal to . Let G — H denote the graph obtained from G by removing
the edges set E(H) where H is a subgraph of G. We denote by G + H the
graph with V(G+H) = V(G)|JV(H) and E(G+H) = E(G)|JE(H). The
join GV H of disjoin graphs G and H is the graph obtained from G + H
by joining each vertex of G and H. Let K} denote a complete graph on
k vertices. The complement G of a simple graph G is simple graph with
vertex set V, two vertices being adjacent in G° if and only if they are not
adjacent in G. In the degree sequence, rt means r repeats t times, that
is, in the realization of the sequence there are t vertices of degree r. For
1 <m < %, let Cp, n denote the graph K, V/(KE + Kn—2m) (See Bondy
and Murty[1] Psg).

Given a graph H, what is the maximum number of edges of a graph
with n vertices not containing H as a subgraph? This number is denoted by
ez(n, H), and is known as the Turdn number. In terms of graphic sequences,
the number 2ex(n, H) + 2 is the minimum even integer ! such that every
n-term graphical sequence 7 with o(r) > ! is forcibly H-graphical. Gould,
Jacobson and Lehel (8] considered the following variation of the classical
Turédn-type extremal problems: determine the smallest even integer o(H, n)
such that every n-term positive graphic sequence 7 = (d;,d, -, d,) with
o(m) 2 o(H,n) has a realization G containing H as a subgraph. They
proved that o(pK2,n) = (p — 1)(2n — p) + 2 for p > 2; 6(Cy,n) = 2[387]
for n > 4. Erdés, Jacobson and Lehel [4] showed that o(K,n) > (k —
2)(2n — k + 1) + 2 and conjectured that the equality holds. In the same
paper, they proved the conjecture is true for k = 3 and n > 6. The
conjecture is confirmed in (8] and [22,23,24,25]. Ferrara, Gould and Schmitt
[6] provided a graph theoretic proof for the value of o(K;,n). Ferrara,
Gould and Schmitt [7] determined o(F,n) where F;, denotes the graph of k
triangles intersecting at exactly one common vertex. Yin, Chen and Schmitt
[35) determined o(F; .k, n) for k > 2,¢ > 3,1 < r < t—2 and n sufficiently
large. Recently, Li and Yin [27] further determined o (K, n) for r > 7 and
n > 2r+ 1. The problem of determining (K, n) is completely solved. Yin
et al.[36,37,39,40] determined o(K,. s,n) for s > > 1 and sufficiently large
n. Yin, Li, and Mao (41] determined o(K,4+; —e,n) forr >3 andr+1 <
n < 2r and o(Ks—e,n) for n > 5. Yin and Li[38] gave a good method (Yin-
Li method) of determining the values o(K,+1 — e,n) . After reading[38],
using Yin-Li method Yin [42] determined o(K,4+1 — K3,n) for r > 3 and
n 2> 3r + 5. Yin[33] and Lai[18] independently determined o(K, 3,n).
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Lai [16, 17] determined o(K5 — Cy4,n), 0(Ks — P3,n), o(Ks — Py,n) for
n > 5. Determining o(K 41 — H,n), where H is a tree on 4 vertices is more
useful than a cycle on 4 vertices (for example, Cy ¢ C;, but P; C C; for
i > 5). So, after reading [38] and [42], using Yin-Li method Lai and Hu [20]
determined o(K,41 - H,n) forn > 4r+10,7>3,7r+1>k >4 and H be
a graph on k vertices which containing a tree on 4 vertices but not contain
a cycle on 3 vertices and o(Kyy1 — Po,n) forn > 4r + 8, r > 3. Using
Yin-Li method Lai [19] determined o (K41 — Z4, 1), 0(Kr+1 — (K4 —€), ),
o(Kr41— Kg,n) forn > 5r+16, 7 > 4 and 0(K41 — Z,n) for n > 5r+ 19,
r+1>k>5,7>5 where Z is a graph on k vertices and j edges which
contains a graph Z4 but not contain a cycle on 4 vertices.

A harder question is to characterize the potentially H-graphic sequences
without zero terms. Luo [29] characterized the potentially Ci-graphic se-
quences for each k£ = 3,4,5. Luo and Warner [30] characterized the po-
tentially K4-graphic sequences. Eschen and Niu [5] characterized the po-
tentially K4 — e-graphic sequences. Yin and Chen [34] characterized the
potentially K, s;-graphic sequences for r = 2,s =3 and r = 2,s = 4. Yin
and Yin [44] characterized the potentially K5 — e, K¢ — e and Kg-graphic
sequences. Hu and Lai [9,10,11] characterized the potentially K5 — Cy,
Ks — Py and K5 — Es-graphic sequences where E3 denotes graphs with 5
vertices and 3 edges. Hu and Lai [12,13,14] characterized potentially K3 3,
Ks — Cs, K¢ — C4 and K3 5-graphic sequences. Recently, Xu and Lai [32]
characterized potentially K¢ —Cj-graphic sequences. Chen [2] characterized
potentially K¢ — 3K2-graphic sequences. Yin [43] characterized potentially
K¢ — E(K3)-graphic sequences. Yin et al. [45] characterized potentially
K 1,s-graphic sequences, for s = 4 and 5. Yin, Zhong, and Yang [46]
characterized potentially K ; ¢-graphic sequences, they also give a simple
sufficient condition for a positive graphic sequence m = (d;,dz,---,dp) to
be potentially K ; s-graphic for n > s+ 2 and s > 2. Liu and Lai [28]
characterized potentially K ; 2 2-graphic sequences.

In this paper, we characterize potentially C; g-graphic sequences(Diagram
of Cy6 is shown in Appendix Figure 1). This charaterization partially an-
swer the problem 6 in Lai and Hu[21]. This characterization implies a
special situation due to Lai[19).
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2 Preparations
Let 7 = (dy,--,dn)eNS,,1 < k < n. Let

(dl - 11"'$dk—1 - 1,dk+1 - 17"'sddk+1 - 1,ddk+2)"'sdn)i
= ifdk2k1
k (dl - 11' "addk - 1a ddk-i-l:' ' '1dk—1’dk+1$ : "adn)’
if dr < k.

Denote 7, = (d},d5,--+,d},_;), where dy > dj > --- > di,_, is a rearrange-
ment of the n — 1 terms of m)|. Then 7, is called the residual sequence
obtained by laying off di. from #. For simplicity, we denote #/, by ' in this
paper.

For a nonincreasing positive integer sequence m = (d;,dg, - +,d,), we
write m(w) and h(w) to denote the largest positive terms of = and the
smallest positive terms of =, respectively. We need the following results.

Theorem 2.1 (8] If 7 = (d;,ds,"++,d,) is a graphic sequence with a
realization G containing H as a subgraph, then there exists a realization G’
of 7 containing H as a subgraph so that the vertices of H have the largest
degrees of .

Theorem 2.2 [26] If = = (d;,ds, -+, dy) is a sequence of nonnegative
integers with 1 < m(w) < 2, h(r) = 1 and even o(7), then 7 is graphic.

Lemma 2.3 (Kleitman and Wang [15]) = is graphic if and only if
#' is graphic.

The following corollary is obvious.

Corollary 2.4 Let H be a simple graph. If 7’ is potentially H-graphic,
then 7 is potentially H-graphic.

Theorem 2.5[3] Let 7 = (d;, --,dn) € NS, with even o(n). Then
m € GS, ifand only if forany t,1 <t <n-1,

n

t
ddi<it-1)+ ) min{t,d;}.
i=1 Jj=t+1
Theorem 2.6[19] If r > 4 and n > 7 + 1, then o(K,41 — Z4,n) >
U(Kr-!'l - K47n)y and

(r-1D2n-7r)-3(n-r)+1,
if n—ris odd
(r=1)2n-7)-3(n-r)+2,
if n — r is even

O'(Kr+1 - K4yn) 2
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Theorem 2.7 [31] Let m = (4*!,3%2,2%3 1%4) where o(n) is even,
T+ 2o+ x3+z4 =nandn > 1. Then € GS, if and only if 7 &
S, where S = {(2),(2%),(3,1),(3%),(3,2,1),(3%,2),(3%,1), (3%,1°),(4),(4,1?),
(4,2) ,(4,22),(4,2%),(4,2,12), (4,3%), (4,3%,2), (4,3,1), (4,3,13), (4,3%,1%),
(413’ 2, l)s (42)’ (42a 12)7(42’ 14)7 (4212, 12)’ (42)2)a (42722)) (42732)1 (4213’ 1))
(42,3,1%), (42,3,2,1), (4%), (4%,12), (43,2,1%), (4%,1%), (43,2), (43,2%),
(43,3,1), (4%), (44,1%), (4%, 2)}.

Before proving the result of Theorem 3.1, we need to develop Lemma 2.8-
Lemma 2.13. Let the degree sequence of Cy 6 is 71, so w1y = (d}, d3, d3, d}, ds,
dy)= (52,3%,2%) and 7** =(d; — d}, dp — dj,d3s — djy,dy — dy,ds — d5,dg —
dg,d7, +-,dn) . We denote 7* is subsequence of 7** without the compo-
nent 0. Let H be a simple graph, the graphic sequence of H is 7y =
(d¥,dY,dY,dy,d?,dg) and n}f = 7 — mg=(dy — dY, d2 — d5,d3 — d3,dq —

" ds — dY ,dg — dg d7, - - ,d,,). We denote 7 is subsequence of 7 without
the component 0.

Lemma 2.8 If 7 = (d;,5,4"" %) € GS,, where 1 < i < 3 and
n > 6, then 7 is potentially Cs ¢ graphic.

Proof: Case 1: i = 1. 7 = (d;,5,4""2). Let H = Cy 6 + {vavs, vavs,
vsvg}. So my = (52,4%). Thus, 7}y = (d) — 5,4"~%). Therefore, (1}) =
(4(n=6)~(d1-5) 3d1-5) where (r}) is the the residual sequence obtained
by laying off d; — 5 from 7¥;.

If n = 6, then m = (52,4%). It is easy to verify that m is potentially
C 6-graphic.

By Theorem 2.7, if (73;)' & S, then (n};)" is graphic. Hence 7 is poten-
tially H-graphic. Therefore, m is potentially C; ¢-graphic. By Theorem 2.7,
if ()" € 8, then (n}) =(4), (42),(4%), (4%), (32), (4, 3%) or (4%,3%). Hence
7 is one of those sequences: (52,4%), (52, 45),(52,47),(5%,4%),(7, 5, 4°),(7,5,47),
(7,5,48). It is easy to verify that all of these are potentially C2 g-graphic.

Case 2: i =2. 71 = (d1,52,4n-3). Let H = Co6 + {1)3’05,1)41)6,1)51}6}.
So my = (5%,4%). Thus 7}y = (d; — 5,1,4"%). Therefore, (7}) =
(4(n—-6)-(d1-5) 3d1-5 1), By Theorem 2.7, if (n}) ¢ S, then (r}) is
graphic. Hence  is potentially H-graphic. Therefore, 7 is potentially Co ¢-
graphic. By Theorem 2.7, if (7)€ S, then (x}) = (3,1), (3%,1), (4,3,1),
(42,3,1), (43,3,1). Hence 7 is one of those sequences: (6,52,4%),(8,52,4°),
(6,52,4%), (6,5%,45), (6,52,47). It is easy to verify that all of these are
potentially Cs g-graphic.

Case 3: i = 3. 7 = (dy, 5%,4™4). Let H = Cy g+{v3vs, v3vs, v4¥s, Vavs}-
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So my = (5%,42). Thus 7} = (d; —5,4"~®). Thus, (7}) = (4(*=8)—(d1-5),
3%-5). By Theorem 2.7, if () & S, then (7};)" is graphic. Hence 7 is po-
tentially H-graphic. Therefore, 7 is potentially C; ¢-graphic. By Theorem
2.7, if (n4) € 8, then (%) = (4), (42), (43), (4%), (32), (4, 32) or (42,32).
Hence 7 is one of those sequences: (54,43),(5%,44), (5%,45%), (54,4%), (7,5,
44), (7,58,45),(7,53,45). It is easy to verify that all of these are potentially
C ¢-graphic.

Lemma 2.9 Ifr = (5%4¢3"4%) € GS,, wheren > 6and n—4—i >
1, then 7 is potentially C ¢ graphic.

Proof: Case 1: i = 0. 7 = (5%,3"~4%). If n = 6, then m = (5%,3?),
which contradict 7 € GS,. Son > 6, let H = Ca6 + {v3vs,vav6}. So
g = (5%,4%,3%). Thus n}; = (1,1,3""%). By Theorem 2.7, if 7}; ¢ S,
then 7}; is graphic. Hence 7 is potentially H-graphic. Therefore, 7 is
potentially C»¢-graphic. By Theorem 2.7, if 7}; € S, then 7}, = (32,12).
Hence w = (54,3%). It is obvious that = is potentially C,¢-graphic.

Case 2: i = 1. m = (54,4,3"%). Let H = Cy 6 + {vavs, v3vg, v4vs}. So
7y = (5%,42,3). Thus 7} = (1,3"~%). By Theorem 2.7, if 7}; & S, then
wy is graphic. Hence 7 is potentially H-graphic. Therefore, 7 is potentially
C» 6-graphic. By Theorem 2.7, if 7}; € S, then 7}, = (3,1),(32,1). Hence
7 = (54,4, 32%), (5% 4,3%). It is obvious that = is potentially C; ¢-graphic.

Case 3: i > 2. 7 = (5%,4%,37"4%). Let H = Cy6 + {v3vs, v3vs, v4vs,
vave}. So my = (54,4%). Thus 7} = (4°2,3"~4~%). By Theorem 2.7, if
Ty € S, then 7} is graphic. Hence 7 is potentially H-graphic. There-
fore, m is potentially C g-graphic. By Theorem 2.7, if 7}; € S, then n};=
(3%),(4,32) ,(4%,3%). Hence m = (5%,42,32),(5%, 43, 32),(5%,44,32). It is
obvious that = is potentially Cs g-graphic.

Lemma 2.10 Let 7 = (d;,5%,47,3""1-*-J) € GS,, where i = 1,2,
n26andn~—1-i—j> 1. Then 7 is potentially Cs ¢ graphic if and only
if m # (52, 36).

Proof: Case 1:i =1. m = (d;,5,4%,3""277), wheren —2 —j > 1.

Case 1.1: j =0. 7 = (d1,5,3"2). Let H = Ca6 + {vsvs}. So 7y =
(5%,34). Thus 7} = (d) — 5,3"7%) and (7)) = (3(*—6)=(d1=95) 9d1~5)

If n = 6, then 7 = (5%,3%). It is easy to verify that = is potentially
Cy ¢-graphic.

By Theorem 2.7, if (7})" & S, then (r};) is graphic. Hence = is po-
tentially H-graphic. Therefore, = is potentially Cy ¢-graphic. By Theorem
2.7, if (7)) € S, then (n}) = (3%),(32,2),(2),(22). Hence 7 is one of
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those sequences: (52, 39),(6,5,37),(6,5,3°),(7,5,35). It is easy to observe
that (52, 3%) is not potentially Cs g-graphic but the others are.

Case 1.2: j = 1. 7 = (d1,5,4,3"3). Let H = Cp6 + {usvs}. So
my = (52,3%). Thus 7} = (d; — 5,1,3*"%) and (7)) = (3(r~6)-(d1=3),
2415 1), By Theorem 2.7, if (n%) € S, then (n};) is graphic. Hence
7 is potentially H-graphic. Therefore, 7 is potentially Cz¢-graphic. By
Theorem 2.7, if (x})’ € S, then (7}) = (3,1),(3,2,1),(3%,1). Hence = is
one of those sequences: (52,4, 3%), (6,5, 4, 3%), (52, 4, 35). It is easy to check
that = is potentially C; g-graphic.

Case 1.3: j=2. 7= (d1,5,42,3n-4). Let H = 02,6+{U3‘l)5,v4vs}. So
7y = (52,42,32). Thus 7}y = (di — 5,3"%) and (n};) = (3*~O) (-9,
2¢1-5), By Theorem 2.7, if (7%) & S, then (7}) is graphic. Hence
7 is potentially H-graphic. Therefore, 7 is potentially Cs ¢-graphic. By
Theorem 2.7, if (%) € S, then (7}) = (32),(32,2),(2),(2). Hence  is
one of those sequences: (52, 42,3%),(6,5,42,3%), (8,5,42,3%),(7,5, 42,3%). It
is easy to check that 7 is potentially C; ¢-graphic.

Case 1.4: j = 3. 7 = (d,5,4%,3"75). Let H = Cy6 + {vsvs,vav5}. So
my = (52,4%,2). Thus 7}y = (d; — 5,1,3"7%) and (x}) = (3(n~8)~(d1-9),
241-5 1). By Theorem 2.7, if (n};)’ ¢ S, then (n}) is graphic. Hence
7 is potentially H-graphic. Therefore, 7 is potentially Cog-graphic. By
Theorem 2.7, if (7)) € S, then (n3) = (3,1),(3,2,1),(3%1). Hence 7
is one of those sequences: (52,43,32), (6,5,43,33),(5%,43,3%). It is easy to
check that 7 is potentially C; g-graphic.

Case 1.5: j > 4. 7 = (dy,5,47,3""279). Let H = Cy 6 + {vaus, vavs,
vsvg}. So 7y = (52,4%). Thus 7}y = (d; — 5,49~4,37~277),

Case 1.5.1: d, —5 < j —4

Let (7};)" = (40-4~(d1-5) 3(d1~8)~(n=2-4)) By Theorem 2.7, if (7};) &
S, then (w;,)' is graphic. Hence 7 is potentially H-graphic. Therefore, 7
is potentially Cs ¢-graphic. If (7};) € S, by Theorem 2.7, then (7}) =
(32), (4,3%), (42, 32). Hence, 7 is one of those sequences: (6, 5,45,3), (5, 44,
3?), (6,5,47,3), (52,4%,32). It is easy to check that = is potentially Csg-
graphic.

Case 1.5.2: d1 —5>j—4

Let (73) = (3(»~0)+U-4)-(d1=8) 2(d1-5)+(i-4)) By Theorem 2.7, if
(w;,)' & S, then (1r;,)' is graphic. Hence 7 is potentially H-graphic. There-
fore, w is potentially C¢-graphic. If (ﬂ;,)' € S, by Theorem 2.7, then
() = (3%,2),(2),(2?). Hence, 7 is one of those sequences: (8,5,4%,3),
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(7,5,4%,32), (6,5,4%,3),(7,5,4,32). It is easy to check that = is potentially
C, 6-graphic.

Case 2: i = 2. 7 = (d;,5%,49,3"3-7), wheren -3 - j > 1.

Case 2.1: j = 0. m = (d;,5%,3""%). Let H = Co6 + {v3us,v3v6}.
So my = (5°,3%). Thus 7} = (dy — 5,3"7%) and (n};) = (3~8)-(d1=5),
241-5), By Theorem 2.7, if (w;{)l g S, then (w}‘,)' is graphic. Hence
m is potentially H-graphic. Therefore, 7 is potentially C;g-graphic. By
Theorem 2.7, if (7)€ S, then (n};) = (32),(32,2), (2), (22). Hence,  is
one of those sequences: (53,3%), (6, 52, 3%), (6, 52,34), (7,52,3%). It is easy
to observe that 7 is potentially C ¢-graphic.

Case 2.2: j = 1. m = (d;,5%,4,3"%). Let H = Cy,6 + {vavs, v3vs}.
So my = (5,3%). Thus 7}, = (d; — 5,1,3""%) and (7)) = (3(~6)~(d1-9),
241-8.1). By Theorem 2.7, if (n}) & S, then (7}) is graphic. Hence
7 is potentially H-graphic. Therefore, 7 is potentially Cs¢-graphic. By
Theorem 2.7, if (x}) € S, then (x%) = (3,1),(3,2,1),(3%,1). Hence, 7
is one of those sequences: (5°,4,3%),(6,52,42,3%),(5%,4,35). It is easy to
observe that 7 is potentially Cj g-graphic.

Case2.3: j=2. 7= (dl, 52,42,3"_5). Let H = Cg,e+{'l)3'l)5,‘l)3vs,v4'05}.
So my = (5%,42,3). Thus 7}y = (d; — 5,3"¢) and (n};) = (3(r-6)=(d1=5),
241-%) By Theorem 2.7, if (w},)' ¢ S, then (w;,)' is graphic. Hence 7 is
potentially H-graphic. Therefore, 7 is potentially Cs ¢-graphic. By Theo-
rem 2.7, if (7})" € S, then (7}) = (32),(3%,2),(2), (22). Hence, 7 is one
of those sequences: (5%,42,3%), (6,52,42,3%),(6,5%,42,3%),(7,5%,4%,3%). It
is easy to observe that 7 is potentially C5 ¢-graphic.

Case 2.4: j > 3. 7 = (d;,5%,47,3"379). Let H = C; 6 + {v3vs, vave,
vgus}. So wy = (5%,42,3). Thus 7} = (d; — 5,1,40~3) 37-3-7),

Case 2.4.1: d;—5 < j—3. Let (1};) =(40=3)=(d1=5) 3(n=-3-i)+(d1~5) 1),
By Theorem 2.7, if (11';,)' ¢ S, then (1r;,)' is graphic. Hence 7 is poten-
tially H-graphic. Therefore, 7 is potentially Csg-graphic. By Theorem
2.7, if (n}) € S, then (73%) = (3,1), (3%,1), (4,3,1), (42,3,1), (43, 3,1).
Hence, = is one of those sequences: (53,43,3), (7,52,45,3), (6,52%,44,32),
(53,43,33%), (5%,44,3), (5%,45,3), (5%,45,3). It is easy to observe that 7 is
potentially C; g-graphic.

Case 2.4.2: d) — 5> 7 - 3.

Let (n})" = (3(»=8)+(i-3)=(d1-8) o(i—%)—(i-3) 1), By Theorem 2.7,
if (73) ¢ S, then (ﬂ},)' is graphic. Hence 7 is potentially H-graphic.
Therefore, 7 is potentially C;¢-graphic. By Theorem 2.7, if (W;,)' €S,
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then (1r;,)'=(3, 2,1). Thus, 7 = (6,5%,4%,32). It is easy to observe that =
is potentially C; ¢-graphic.

Lemma 2.11 If r = (53 4% 37,2"~%-1-7) ¢ GS,,, where n—3—i—j >
1, n > 7 and j is odd, then 7 is potentially Cy¢ graphic if and only if
7 # (53,3,23).

Proof: Case 1:i =0. 7 = (53,37,2"3-79), wheren—3-; > 1.

Case 1.1: j = 1. 7 = (5%,3,2"%). Thus 7* = (2,2"~%). By Theorem
2.7, if n* € S, then w is potentially H-graphic. By Theorem 2.7, if 7* € S,
then 7* = (2,2). Hence 7 = (5%,3,2%). It is easy to observe that (53,3,23)
is not potentially C; ¢-graphic.

Case 1.2: j > 3. 7 = (53,37,2"3-J), Thus 7* = (2,37-3,2"~379),
By Theorem 2.7, if #* ¢ S, then 7 is potentially H-graphic. By Theorem
2.7, if ™ € S, then m* = (2,2). Hence = = (53,33,2). It is easy to observe
that (5%,33,2) is potentially C, g-graphic.

Case 2:i=1. 7 = (5%,4,37,2"%9), wheren -4 —j > L.

Case 2.1: j =1. 7 = (5%,4,3,2"3). Let H = Ca6 + {vavs}. So
g = (52,4,3%,2). Thus 7} = (1,1,2"7%). By Theorem 2.7, if n}; ¢ S,
then 7w is graphic. Hence 7 is potentially H-graphic. Therefore, 7 is
potentially Cye-graphic. By Theorem 2.7, 7}; € S, so 7 is potentially
C’g's-graphic.

Case 2.2: j > 3. m = (53,4,37,2"%79), Let H = C26 + {v3vs,v30}.
Somy = (5%,33). Thus 7}y = (1,3772,2"~%J). By Theorem 2.7, if n}; & S,
then 7}; is graphic. Hence 7 is potentially H-graphic. Therefore, 7 is
potentially Cs ¢-graphic. By Theorem 2.7, if 73 € S, then 7 = (3,2,1).
Hence 7 = (53,4, 33%,2). It is easy to observe that (5%, 4, 33, 2) is potentially
C,6-graphic.

Case 3: i = 2. = = (53,42,37,275-9). Let H = Cy 6+{v3vs, v3vs, v4¥s5}-
So g = (5% 4%,8). Thus n} = (1,1,37-1,27=5-J4). By Theorem 2.7, if
my € S, then 7} is graphic. Hence 7 is potentially H-graphic. Therefore,
7 is potentially C g-graphic. By Theorem 2.7, it is obvious that n}; € S,
therefor 7 is potentially C» g-graphic.

Case 4: i > 3. 7 = (53,4%, 37,27 3-74). Let H = Cy6 + {vavs, vavs,
vaus}. So my = (5%,42,3). Thus n}y = (1,4'-3,39,27—3~1-7). By Theorem
2.7, if 7y € S, then 7} is graphic. Hence 7 is potentially H-graphic.
Therefore, 7 is potentially C; g-graphic. If 7} € S, by Theorem 2.7, then
= (3,2,1),(4,3,2,1), (4%,3,2,1). Hence, m = (53%,43,3,2), (5%,4%,3,2),
(5%,4%,3,2). It is easy to observe that  is potentially Ca g-graphic.
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Lemma 2.12 If 7 = (d;,5,4%37,2"2""J) € GS,, where n > 6
and n —i— j —2 > 1, then « is potentially C;¢ graphic if and only if
m # (52,32,23) and (52,32%,24).

Proof: Case 1: i = 0. 7 = (d;,5,3%,2"2"9), where n —2 — j > 1.

Case 1.1: j = 2. 7 = (dy,5,3%,2""%), then 7* = (d; — 5,2"6).
Let (7*) = (2(n~6)=(d1-5) 1d1-5) By Theorem 2.7, if (=*) € S, then
(7*) = (2),(22). Hence, = = (52,32,23), (52,32,2%). It is easy to see that
m is not potentially Cs g-graphic.

Case 1.2: j = 3. 7 = (d;,5,3%,2*"%), then n* = (d; — 5,1,2"6).
Let (7*) = (2(r=6)=(d1=5) 1d1-5 1) By Theorem 2.7, (r*)' ¢ S, thus 7 is
potentially Cs g-graphic.

Case 1.3: j > 4. ® = (d1,5,37,2"7277). Let H = Cp6 + {vsvs}. So
ng = (52,3%). Thus 7}y = (d; — 5,3774,2n—2-79),

Ifdi —5 < j—4, let (1) = (30-4-(d1-8) o(n=2-i)+(di-5)) By
Theorem 2.7, if (7}) ¢ S, then (n},)' is graphic. Hence 7 is poten-
tially H-graphic. Therefore, 7 is potentially Cj ¢-graphic. If (7r;.,)' €S,
by Theorem 2.7, then (7)) = (3%,2),(2),(22). Hence m =(52,3%,2),
(5%,34,2),(6,5,3%,2),(5%, 3%, 22). It is easy to observe that 7 is potentially
C, ¢-graphic.

Ifj—4<d—5<n—6,let (ﬂ-;{)‘ = (2(n=8)+ (=4~ (dh~5) 1(d1—5)—(j—4)).
By Theorem 2.7, if (1r}‘_,)' ¢ S, then (1r;,)' is graphic. Hence 7 is poten-
tially H-graphic. Therefore, 7 is potentially C5 g-graphic. By Theorem 2.7,
(W;,)' ¢ S. Hence 7 is potentially C» g-graphic.

Case 2: i =1. 7 = (d,,5,4,37,2""377), wheren —3 —j > 1.

Case 2.1: j = 1. 7 = (d1,5,4,3,2"%). Then 7* = (d; - 5,1,2"%)
and (7*) = (2(n=6)~(d1=8) 141-5 1) By Theorem 2.7, (7*)' & S, then 7 is
potentially Cs g-graphic.

Case 2.2: j =2. m = (d1,5,4,3%,2"5). Let H = Cy6 + {vavs}. So
7u = (5%,4,3%,2). Thus 7} = (di — 5,2"76) and (7)) = (2(n=6)~(dr-8),
191-5), By Theorem 2.7, if (w;,)' g€ S, then (7r;,)' is graphic. Hence
w is potentially H-graphic. Therefore, 7 is potentially Cjg-graphic. If
(7%)’ € S, by Theorem 2.7, then (7}) = (2), (22). Hence 7 =(52,4,32,22),
(52,4,32,2%). It is easy to observe that 7 is potentially C; ¢-graphic.

Case 2.3: j > 3. m = (d1,5,4,37,2"379). Let H = Co6 + {vsvs}. So
mg = (52,3%). Thus 7}y = (d1—5,1,2""3%) and (};)" = (2(*~3-N-(1-8)
191-5,1). By Theorem 2.7, if (7}) € S, then (7}) is graphic. Hence
7 is potentially H-graphic. Therefore, 7 is potentially C;¢-graphic. By
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Theorem 2.7, it is clearly that (n;,)' & S, so 7 is potentially C; g-graphic.

Case 3: i = 2. 7 = (d;,5,4%,39,2"9-4), wheren - j —4 > 1.

Case 3.1: j = 0. m = (d;,5,4%,2"%), Let H = Ca5 + {vavs}. So
my = (52,42,22). Thus 7} = (di - 5,2"7%). Let (n}) = (2"~9)-(%:-9),
141-5), By Theorem 2.7, if (r};) ¢ S, then (w}) is graphic. Hence
7 is potentially H-graphic. Therefore, 7 is potentially C»e-graphic. By
Theorem 2.7, (w;{)' & S, then 7 is potentially Cs g-graphic.

Case 3.2: j = 1. 7 = (d;,5,4%,3,2"75). Let H = Cp + {v3vs}. So
wy = (5%,4,32,2). Thus 7}y = (d1—5,1,275). Let (x}) = (2(»~)—(d1-85),
141-5 1). By Theorem 2.7, if (7}) € S, then (r%) is graphic. Hence
m is potentially H-graphic. Therefore, 7 is potentially Csg-graphic. By
Theorem 2.7, (w;,)' ¢ S, then 7 is potentially C» g-graphic.

Case 3.3: j > 2. 7 = (d,,5,4%,37,2"7~4), wheren —j —4 > 1.
Let H = Ca6 + {vavs,vave}. So my = (52,4%,3%). Thus 7y = (d1 —
5,37=2 on—i—4),

Ifdy —5<j~2let (n}) = (3U~D(d1-5) 9(n—j-4)+(d1-5)) By The-
orem 2.7, if (r;,)' ¢ S, then (w;,)' is graphic. Hence 7 is potentially H-
graphic. Therefore, 7 is potentially C5 g-graphic. If (w},)' € S, by Theorem
2.7, then (n3) = (2),(22),(3%,2). Hence m = (52,42,32,2), (52,42,32,2?),
(6,5,42,33,2),(5%,42,34,2). It is easy to observe that 7 is potentially Cs ¢-
graphic.

Ifdy—5>j—2 let (xf) = (2(*~O+G-2)=(dr=5) 1(d1-5)-(-2)) By
Theorem 2.7, if (n};) & S, then (7} ) is graphic. Hence = is potentially H-
graphic. Therefore, 7 is potentially C; g-graphic. By Theorem 2.7, (W;,)' -4
S, therefore 7 is potentially C; g-graphic.

Case 4: i = 3. 7 = (d,,5,4%,37,2"%7), wheren —5—j > 1.

Case 4.1: j=0. 7 = (d1,5, 43,211—5). Let H = C2,6 + {'03’05,'04‘05}.
So my = (5%,4%,2). Thus 7} = (d; — 5,2"%) and (n}) = (2*~)~(d1-5),
19:-5). By Theorem 2.7, if (7};)" & S, then (w};)" is graphic. Hence m is po-
tentially H-graphic. Therefore, 7 is potentially Cs g-graphic. If (ny) €8,
by Theorem 2.7, then (n}) = (2), (22). Hence 7 = (52,43, 22), (52,43, 2%).
It is easy to observe that 7 is potentially Cs g-graphic.

Cased4.2: j> 1. n= (dl, 5, 43, 3j, 2"_5_j). Let H = 02,6+{v3v5,v405}.
So g = (52,4%,2). Thus n}; = (dy — 5,1,37~1,27—5-7),

Ifdi—5< j—1, let (xf) = (8U~—N-(1=8) o(n=5-j)+(d1~5) 1) By
Theorem 2.7, if (n}) € S, then (ﬂ'},)' is graphic. Hence 7 is potentially
H-graphic. Therefore, 7 is potentially C3g-graphic. If (w}‘,)' € S, by
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Theorem 2.7, then (7};) = (3,2,1). Hence, 7 = (52,4%,32,2). It is easy to
observe that 7 is potentially C» g-graphic.

Ifj—1<d;—5<n—6let(r}) = (1,20 +G-1)=(d-85) 1(d1~5)-(-1)),
By Theorem 2.7, if (ﬂ;,)' ¢ S, then (W',;)' is graphic. Hence 7 is poten-
tially H-graphic. Therefore, 7 is potentially Cs g-graphic. By Theorem 2.7,
(7r;1)' & S, therefore, 7 is potentially C; ¢-graphic.

Case 4.3: i > 4. 7 = (d,5,4%,39,2"19-2). Let H = Cp¢ +
{vavs, vave, vs5v6}. So my = (5%,4%). Thus 7} = (dy -5, 4°~4,37,2n—-3-2),

Case 4.3.1: d) —5<i—4.

Let (7)) = (4¢-9-(d1-8) gi+(d1-5) gn-i=j~-2) By Theorem 2.5, if
(11’;;)' &€ S, then (71';,)' is graphic. Hence 7 is potentially H-graphic. There-
fore, w is potentially C;¢-graphic. If (W},)' € S, by Theorem 2.7, then
(”;{)’ = (4’ 2)7(4) 22)1(4’ 23)7(4a 32’2)1(42a2)’ (42,22)’(43’2)) (43:22)»(44’2)7
(2), (22), (32,2). Hence, m = (52,45,2),(52 45, 22),(52, 45, 23),(52, 4%, 2),
(52, 45,32,2), (6,5,4%,3,2), (7,5,47,2),(5%, 4%,22), (52,47, 2),(5%,47,2?),
(52,48,2), (5%,44, 2),(5%,44,2?), (7,5,45,2),(6,5,4%,3,2),(5%,4%,3%,2). It
is easy to observe that 7 is potentially Cs ¢-graphic.

Case 4.3.2: d; —5>1i—4.

Let (f) = (3n=6)=(n=i=j=2)=(di=5)+(i=0)  g(n=i=j=21+(d1=5)=(i~)),
By Theorem 2.7, if (w;,)' ¢ S, then (7r;,)' is graphic. Hence = is potentially
H-graphic. Therefore, 7 is potentially Csg-graphic. Since (n —¢ — j —
2)+ (dy — 5) — (i — 4) > 2, by Theorem 2.7, if (11';,)' € S, then (‘}T;_{)I =
(22). Hence, 7 = (7,5,45,2),(6,5,44,3,2). It is easy to observe that = is
potentially C5 g-graphic.

Case 4.3.3: (i—4)+j<d;—5<n—6.

Let (7}) = (3t—4,2(n=6)=(d1=8)+i 1(d1-5)—(i~4)-j) By Theorem 2.7,
if (11';,)' & S, then (1r;1)' is graphic. Hence 7 is potentially H-graphic.
Therefore, 7 is potentially C;¢-graphic. If (w},)' € S, by Theorem 2.7,
then (73) = (2),(22),(3,1),(3%),(3,2),(32,2), (33,1),(3%,12). Hence, = =
(52,44,2),(52, 4%,22),(6,5,4%,3,2),(7,5,4%,2), (7,5,45,22),(8, 5, 45,3,2),
(7,5,48,2),(9,5,47,2),(9, 5,45, 22). It is easy to observe that 7 is potentially
C» ¢-graphic.

Lemma 2.13 If 7 = (5%,4¢,3%, 2% 1"~*-3-k-2) € GS,,, where n > 7
i+j>2,i+j+k>4andn—i—j—k—22>1 Then 7 is potentially
02,5 gra.phic.

Case 1: i =0. 7 = (52,3,2F 1"~i~k=2) wheren -~ j—k—-22>1.
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Case 1.1:j = 2. 7 = (52,32,2F,1"~%=4) then 7* = (2k~2, 17—k—4),
By Theorem 2.7, 7* € S, thus 7 is potentially C; g-graphic.

Case 1.2:j = 3. m = (52,3%,2%,1"7%~5), then n* = (1,2F"1, 1"~%-%),
By Theorem 2.7, 7* € S, thus 7 is potentially C; g-graphic.

Case 1.3:j > 4. 7 = (52,839,217 2-7-F) Let H = Ca6 + {vsvs}.
So 7y = (5%,3%). Thus 7} = (39~4,2%, 1"~3-%=2), By Theorem 2.7, if
Ty € S, then 7} is graphic. Hence m is potentially H-graphic. There-
fore, 7 is potentially C;g¢-graphic. If #}; € S, by Theorem 2.7, then
my =(3,1),(3%,1),(3%,12),(3,2,1). Hence, = = (52,35,1),(5%,37,1),(5%, 35,
12),(5%,3%,2,1). Obviously = is potentially C; g-graphic.

Case 2: i = 1. 7 = (52,4,37,2%,1"9-%-3) wheren—i—j—k-3>1.

Case 2.1:j = 1. m = (52,4,3,25,1"F—4), then n* = (1,2F~2, 1"~%9),
By Theorem 2.7, 7* & S, thus = is potentially C; g-graphic.

Case 2.2:j = 2. = = (52,4,32,2F,17~%=5), then n* = (1,1, 2¢-1,
17=*=5), By Theorem 2.7, 7* ¢ S, thus 7 is potentially C; ¢-graphic.

Case 2.3:j > 3. w = (52,4,37, 2k, 17-7-k-3),

Let H = Cy6 + {vsvg}. So my = (5%,3%). Thus TH = (1,393, 2k,
17=i—k=3) By Theorem 2.7, if n}; & S, then =}, is graphic. Hence  is
potentially H-graphic. Therefore, 7 is potentially C» ¢-graphic. If 73 € S,
by Theorem 2.7, then 7}, =(3%,12). Hence, = = (52,4,3%,1). Obviously =
is potentially Cy g-graphic.

Case 3: i = 2. 7 = (52,42,37,2F 1"~*—7-4) wheren—i—j—k—-4> 1.

Case 3.1:j = 0. 7 = (52,42, 2% 1"~%~4) then n* = (1,1,2F~2, 1*~k—4),
By Theorem 2.7, #* € S, thus 7 is potentially C; g-graphic.

Case 3.2:j = 1. m = (5%,42,3,2F,1"%-5) Let H = Co6 + {vavs}. So
my = (52,4,32,2). Thus 7} = (1,2, 1»~%-5). By Theorem 2.7, if 7} € S,
then 7} is graphic. Hence 7 is potentially H-graphic. Therefore, 7 is
potentially C3¢-graphic. By Theorem 2.7, 7}; ¢ S, thus 7 is potentially
Cs 6-graphic.

Case 3.3:5 > 2. 7 = (52,42,37,2k 17n~i~k=4) Let H = Cop +
{vsvs,vsvg}. So my = (5%,42,3%). Thus 7} =(39-2, 2k, 1"—i-k=4), By
Theorem 2.7, if 7}, ¢ S, then 7} is graphic. Hence = is potentially H-
graphic. Therefore, 7 is potentially C;¢-graphic. If 7; € S, by Theorem
2.7, then 7}y =(3,1),(3,2,1),(3%,1),(3%,12). Hence, 7 =(52,42,3%,1),(5%, 4%,
33,2,1), (52,42, 35%,1),(5%, 42, 34,12). Obviously r is potentially C; g-graphic.

Case 4: i = 3. m = (52,43,37,2F,1"~%-7-5) wheren—i—j—k—52> 1.

Case 4.1:5 = 0. 7 = (52,43,2%,1"~*-5), Let H = Cy6 + {v3vs,vavs}.
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So mg = (5%,4%,2). Thus 7}, = (2%¥-1, 1"~%-5). By Theorem 2.7, if
7wy € S, then 7 is graphic. Hence 7 is potentially H-graphic. Therefore,
w is potentially Cy g-graphic. By Theorem 2.7, 7}; € S, thus 7 is potentially
C> 6-graphic.

Case 4.2:j > 1. w = (52,43,37,2F,1"79-%=5) Let H = Cp ¢ + {v3vs,
vaus}. So my = (52,43,2). Thus 7} = (1,37~1,2%,1"~3-%-5) By Theorem
2.7, if 7} ¢ S, then 7 is graphic. Hence 7 is potentially H-graphic.
Therefore, 7 is potentially C>¢-graphic. If 7}; € S, by Theorem 2.7, then
7y = (32,1%). Hence, 7 = (5%,4%,3%,1). It is easy to observe that = is
potentially C5 g-graphic.

Case 5:i > 4. m = (52,4%,37,2F 1"~i=i=%=2) et H = Cy6 + {v3vs,
vave,vsvs}. So my = (5%,4%). Thus n}; =(4i74, 34, 2k 1n-i-i—k-2)
By Theorem 2.7, if n}; € S, then = is potentially H-graphic. There-
fore, 7 is potentially Csg-graphic. If n; € S, by Theorem 2.7, then
w3 =(3,1),(3,2,1),(33,1), (32,12),(4,12), (4,2,12), (4,3,1), (4,3,13), (4,32,
12), (4,3, 2,1),(42,12), (43,1%), (43,2,1%), (42,3,1), (42,3,1%), (42,3,2,1),
(43,12), (43,2,12), (4, 1), (43,3,1), (4%,12). Hence, m = (52,44,3,1),(52%,
44,3,2,1),(5%,44,33,1),(5%,44, 32,12),(52, 45, 12), (52,45, 2,1?), (52,45,3,1),
(52,45,3,19), (52,45, 32,12), (52,45, 3,2,1),(52, 46, 12),(52, 45, 14), (52,46, 2,
12), (5%,45,3,1), (5%, 45,3,1%), (5%,45,3,2,1), (5%,47,12), (5%,47,2,12),
(5%,47,14), (5%,47,3,1), (5%,48,12). It is easy to check that = is poten-
tially C; ¢-graphic.

3 Main Theorems

Theorem 3.1 Let 7 = (d,ds,--,d,) € GS, with n > 6. Then 7 is
potentially C3 ¢ graphic if and only if the following conditions hold:

(1) d2>5;d4 >3;dg > 2;

(2) ™ # (5°%,3,23), (52,32,23), (52,32,24), (52, 3).

Proof: First we show the conditions (1)-(2) are necessary conditions
for 7 to be potentially Co¢ graphic. It is easy to check that (52,3,2%),
(5%,32,23), (5%,32,2%) and (5%,35) are not potentially C;¢-graphic. (2)
holds. (1) is obvious.

Now we prove the sufficient conditions. Suppose the graphic sequence
 satisfies the conditions (1)-(2). Our proof is by induction on n. We first
prove the base case where n = 6. 7 is one of the following: (5°), (54,42),
(5%,42%,3), (5%,3%), (5%,44),(52,42,32), (52,4%,2), (5%,34), (52,4, 32,2). It
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is easy to check that all of these are potentially C5 g-graphic. Now suppose
that the sufficiency holds for n—1(n > 7), we will show that 7 is potentially
C3 6-graphic in terms of the following cases:

Case 1: d,, > 6. Consider 7’ = (d},d),---,d},_,) where d],_, > 5. It
is easy to check that 7’ satisfies (1) and (2). By the induction hypothesis,
7’ is potentially C; ¢-graphic.

Case 2: d, = 5. Consider 7’ = (d,dy,---,d},_,) where d; > 5 and
dl,_, > 4. It is clearly that = satisfies (2). If =’ satisfies (1), then by the
induction hypothesis, 7’ is potentially C; g-graphic, and hence so is .

If 7/ does not satisfy (1), i.e., dj = 4, then = = (57), a contradiction.

Case 3: d, = 4. Consider 7’ = (d,dy,---,d},_,) where dj > 4 and
dn_y 24

Case 38.1: dy > 6. It is clearly that df, > 5 ,d}, >4 and d},_; > 3. It s
easy to check that #’ satisfies (1) and (2). By the induction hypothesis, 7’
is potentially C; g-graphic, and hence so is =.

Case 3.2: dy =5

Case 3.2.1: dg = 5. It is clearly that dy > 5 and dg > 4. It is easy
to check that #’ satisfies (1) and (2). By the induction hypothesis, 7’ is
potentially C; ¢-graphic, and hence so is 7.

Case 3.2.2: dg = 4.

Case 3.2.2.1: ds = 5, then d; is even, so d; > 6. It is clearly that
dy > 5 and d > 4. It is easy to check that 7’ satisfies (1) and (2). By the
induction hypothesis, 7’ is potentially Cs ¢-graphic, and hence so is 7.

Case 3.2.2.2: ds = 4, then m = (d;,5%,4" 1), where 1 < i < 3 and
n—1—1 2> 1. By Lemma 2.8, if 7 satisfies (1) and (2), then 7 is potentially
C» ¢-graphic.

Case 4: d, = 3. Consider 7’ = (d},d},---,d’,_,) where d/,_; > 2.

Case 4.1: dy > 6,s0dy > 5,d; >3 and d;,_; > 2. It is clearly that
«' satisfies (1). If n’ satisfies (2), then by the induction hypothesis, #’ is
potentially Cs g-graphic.

If 7’ does not satisfy (2), 7' = (52,3%), then 7 = (62,4, 3%). It is easy
to check that 7 is potentially C; g-graphic.

Case 4.2: dy =5

Case 4.2.1: ds = 5,s0dy > 5,d5 >4,dy >3andd,_;, 22 Itis
easy to check that 7’ satisfies (1) and (2). By the induction hypothesis, 7’
is potentially Cs g-graphic, and hence so is .

Case 4.2.2: ds =4 o0or 3
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Case 4.2.2.1: d4 =5

Case 4.2.2.1.1: d; > 6. It is clearly than d; > 5,d} >4 and d,_, > 3.
It is easy to check that 7’ satisfies (1) and (2). By the induction hypothesis,
w’ is potentially C3 g-graphic, and hence so is .

Case 4.2.2.1.2: dy =5, then 7 = (5%,4%,3"~%~%), wheren —4—-i > 1.
By Lemma 2.9, if 7 satisfies (1) and (2), then 7 is potentially C; ¢-graphic.

Case 4.2.2.2: d4 = 4 or dy = 3, then 7 = (d;, 5%,47,3"~1~#~7), where
i=lor2andn-1-14¢—j>1. By Lemma 2.10, if 7 satisfies (1) and (2),
then 7 is potentially C; ¢-graphic.

Case 5: d,, = 2. Consider 7’ = (d},d,---,d},_;) where d},_; > 2.

Case 5.1: dy > 6,s0dy > 5,dy >3 and d,_; > 2. It is clearly that
7’ satisfies (1). If 7’ satisfies (2), then by the induction hypothesis, 7’ is
potentially C5 g-graphic.

If n’ does not satisfy (2), then n' =(53,3,23),(52,32,23),(5%,32,24),
(52,3%), then © = (62,5,3,24),(62,32%,2%),(6%,32,2%),(6% 3%,2) It is easy
to check that 7 is potentially C; g-graphic.

Case 5.2: dy =5

Case 5.2.1: dy = 5, thend) > 5,d, >4 and d],_; > 2. It is easy
to check that #’ satisfies (1) and (2). By the induction hypothesis, 7' is
potentially Cs g-graphic, and hence so is .

Case 5.2.2: dy =4 or 3

Case 5.2.2.1: d3 =5

Case 5.2.2.1.1: d, > 6, thend) >5,d5=4,d; >3and d/,_, > 2. It
is easy to check that 7’ satisfies (1) and (2). By the induction hypothesis,
7’ is potentially C, g-graphic, and hence so is =.

Case 5.2.2.1.2: d; = 5, then 7 = (53,4¢,37,2"~3-i~J) where n — 3 —
t—j =1 and jis odd. By Lemma 2.11, if 7 satisfies (1) and (2), then 7 is
potentially C» g-graphic.

Case 5.2.2.2: d3 = 4 or 3, then 7 = (d;,5,4%,37,2"~2-i7), where
n—2-—i—j 21 By Lemma 2.12, if 7 satisfies (1) and (2), then 7 is
potentially C; g-graphic.

Case 6: d, = 1. Consider 7’ = (d},d5,---,d},_,).

Case 6.1: d; > 6,s0d5 > 5,d; >3,dg >2and d,_, > 1. It is clearly
that ' satisfies (1). If #’ satisfies (2), then by the induction hypothesis, 7’
is potentially C; ¢-graphic.

If n’ does not satisfy (2), ' =(53, 3, 2%),(52, 32, 23),(52, 32,2%), (52, 39),
then = = (6,52,3,2%,1),(6, 5,32,2%,1),(6,5,3%,24,1),(6,5,3%1). It is easy
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to check that = is potentially Cs g-graphic.

Case 6.2: d; =5

Case 6.2.1: d3 =5, thend] =d; =5,d; > 4,d}, > 3,dg > 2and
d;,_, 2 1. It is easy to check that n’ satisfies (1) and (2). By the induction
hypothesis, 7’ is potentially C2 ¢g-graphic, and hence so is =.

Case 6.2.2: d3 = 4 or 3, then 7 = (52,4¢,37, 2% 17~i-i—k-2) where
i+j+k>4andn—i—j—k—22>1 ByLemma 2.13, if 7 satisfies (1)
and (2), then 7 is potentially C; ¢-graphic.

Theorem 3.1 partially answer the problem 6 in Lai and Hu[21]: Char-
acterize potentially K,.; — G-graphic sequences for the remaining G.

4 Application

In the remaining of this section, we will use the above theorems to find

exact values of o(Cs6,n).
Theorem 4.1 (Lai[19]) If »r > 4 and n > 5r + 16, then

(K1 — Kq,n) = 0(Krp1 — (Kq —€),n) =

(r-D@2n-r)-3n-7)+1,
if n—ris odd
o(Kr41 = Zam) = (r=1)2n-r)-3n—-71)+2,
if n ~r is even
5n —4,if n — 5 is odd
Corollary 4.2 For n > 6, 0(C26,n) —{ 5n—3.ifn—5 is even °
When n > 41, Corollary 4.2 is a special case for Theorem 4.1(r = 5).
Owing to Ca ¢ Which is just the gragh K — (K4 — €), we note that the value
of 0(Ca,6,n) was determined by Lai in [19]. Corollary 4.2 can be derived
form Theorem 2.6.
Proof: First we claim o(C3¢,n) 2{
6.
Since Ca6 is just the graph K¢ — (K4 — €) and o(Kg — (K4 —€)) >
o(Kg¢ — K,). Consequently, when r = 5, by Theorem 2.6, for n > 6,

5n — 4,if n — 5 is odd

>
5n — 3,if n — 5 is even , for n 2

5n —4,if n — 5 is odd
o(Ca6,n) 2 { 5n —3,if n -5 iseven
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Now we show if 7 is an n-term (n > 6) graphic sequence with o(n)
satisfies o(m) > 5n — 4, then there exists a realization of = containing a
02,6-

Case 1: n — 5 is odd.

Ifd; < 4, then o(7) < (n—1)+4(n—1) = 5n—5<5n—4, a contradiction.
Hence, d3 > 5.

If dy < 2, by Theorem 2.5, then o(7) < dy +da + d3 + 2(n — 3) <
3x(8-1)+3 7 min{3,d;} +2(n—3) = 2n+2(n—3) = 4n—6 < 5n—4,
a contradiction. Hence, d4 > 3.

If dg = 1, by Theorem 2.5, then o(7) < dj +d2+d3+dy+ds+ (n—5) <
5x(5—1)+3_7_¢ min{5,d;}+(n—5) = (n+15)+(n—5) = 2n+10 < 5n—4,
a contradiction.

If # =(52, 32,24), then o () = 24 <5x 8 —4 = 36, hence 7 #(52, 32,24).

If m =(52, 3), then o(7) = 28 <5 x 8 — 4 = 36, hence 7 #(52, 3%).

Thus, 7 satisfies the conditions (1) and (2) in Theorem 3.1. Therefore
m is potentially C; ¢-graphic.

Case 2: n — b is even.

Ifdy < 4, then o(7) < (n—1)+4(n—1) = 5n—5<5n—3, a contradiction.
Hence, dy > 5.

If dgy < 2, by Theorem 2.5, then o(n) < dj +dy +d3 +2(n — 3) <
3x(3-1)+3 7 min{3,d;} +2(n—3) =2n+2(n—3) =4n—6 < 5n -3,
a contradiction.Hence, d4 > 3.

If dg = 1, by Theorem 2.5, then o(7) < dy +da +ds+dg+ds+(n—5) <
5% (5—1)+ 7 ¢ min{5,d;}+(n—5) = (n+15)+(n—5) = 2n+10 < 5n-3,
a contradiction.

If # =(5%,3,23), then o(m) = 24 <5 x 8 — 3 = 37, hence 7 #(5%,3,23).

If m =(52, 32,2%), then o() = 22 <5x 8 —3 = 37, hence 7 #(52, 32, 23).

Thus, = satisfies the conditions (1) and (2) in Theorem 3.1. Therefore,

5n —4,if n -5 is odd . .
o(Ca6,1) ={ 5n —3.if n— 5 is even and hence 7 is potentially C;¢-
graphic.
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