1

Tricyclic Graphs With Minimum Modified
Schultz Index And Maximum Zagreb Indices*

Shubo Chen®*!, Weijun Liu®
¢ School of Mathematics and Computer Science,
Hunan City University, Yiyang, Hunan 413000, P. R.China
b College of Mathematics and statistics, Central South University,
Changsha 410075, P. R. China

Abstract
For a graph G = (V, E), the modified Schultz index of G is defined
as §*(G) = S (de(u)-de(v))de(u,v) where dg(u) (or d(u)) is

{u,v}CV(G)

the degree of the vertex u in G, and dg(u, v) is the distance between u
and v. The first Zagreb index M, is equal to the sum of the squares
of the degrees of the vertices, and the second Zagreb index M2 is
equal to the sum of the products of the degrees of pairs of adjacent
vertices. In this paper, we present a unified approach to investigate
the modified Schultz index and Zagreb indices of tricyclic graphs.
The tricyclic graph with n vertices having minimum modified Schultz
index and maximum Zagreb indices are determined.

Introduction

We use Bondy and Murty [1] for terminologies and notions not defined here.

Let G = (V, E) be a simple connected graph with the vertex set V(G) and
the edge set E(G), and |V (G)| = n, |E(G)| = m are the number of vertices

and edges of G, resp. For any u,v € V, dg(u) (or simply by d(u)) and

dg(u, v) denote the degree of u and the distance (i.e.,the number of edges

on the shortest path) between u and v, resp, Ng(v) = {u|luv € E(G)}

denotes the neighbors of v, and dg(v) = |Ng(v)|. Pa, Cr and Ky n_1(or

Sp) be the path, cycle and the star on n vertices.

Schultz [2] in 1989 introduced a graph-theoretical descriptor for char-
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acterizing alkanes by an integer, namely the Schultz index, defined as

5@ = Y (do(u)+do(v))de(u,v) (1)
{uv}CV(G)

S. Klavzar and I. Gutman [3] introduced the modification of S(G),
5'"G)= Y. (de(v)-do(v))de(u,v) (2)
{uv}CcV(G)
which here we refer to as the modified Schultz indez. In [4], the authors
derived relations between W(G) and S(G), $*(G) for trees, i.e., S(G) =
aW(G) — (n—1)(2n — 1), S*(G) = 4W(G) — (n —1)(2n — 1). In [5] the
analogous results on (unbranched) hexagonal chain composed of n fused
hexagons were derived as well, S(G) = $W(G) — 3(2n + 1)(20n + 7),
S*(G) = 5W(G) — 3(2n + 1)2. More results in this direction can be found
in Refs. [6-10].

The Zagreb indices M; and M; were introduced in [11] and elaborated

in [12], defined as
Mi(G)= Y (do(w)?, Ma(G)= Y do(w)de(v)  (3)

veV(G) uwv€E(G)

The main properties of M; and M; were summarized in [13]. These indices
reflect the extent of branching of the molecular carbon-atom skeleton, and
can thus be viewed as molecular structure-descriptors [14]. Recently, find-
ing the extremal values or bounds for the topological indices of graphs, as
well as related problems of characterizing the extremal graphs, attracted
the attention of many researchers and many results are obtained. [15]
showed that the trees with the smallest and largest M) are the path and
the star, respectively. In [16], the authors gave the the unicyclic graphs with
the first three smallest and largest M. In [17], the authors ordered the uni-
cyclic graphs with respect to Zagreb indices. (18] gave the bicyclic graph
with the largest M,. [19] presented a unified approach to the extremal
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Zagreb indices for trees, unicyclic graphs and bicyclic graphs. In [20], the
authors presented expressions for the first and second Zagreb indices of
graph operations containing the cartesian product, composition, join, dis-
junction and symmetric difference of graphs. In [21], the authors studied
the Zagreb indices of graphs with order n and &(G) < k( resp., £'(G) < k),
the sharp lower and upper bounds were obtained with M;(i = 1,2) for the
set of graphs with #(G) < k < n — 1. In [22], the authors showed that
My /n < My/m for graphs with small difference between the maximum
and minimum degree, the extremal graphs were characterized as well.

The cyclomatic number of a connected graph G is defined as ¢(G) =
m—n+1. A graph G with ¢(G) = k is called a k— cyclic graph, for
¢(G) = 3, we named G as a tricyclic graph. Let 7;, be the set of all tricyclic
graphs with n vertices. We know, by Li et al.[23-27], that a tricyclic graph
G contains at least 3 cycles and at most 7 cycles, furthermore, there do
not exist 5 cycles in G. G. Guo and Y. Wang in [28] investigated the
laplacian radius of tricyclic graphs. Let 7, = Z3U Z1Uu Z8U J7, where
J,} denotes the set of tricyclic graph on n vertices with exact i cycles for
i = 3,4,6,7. Note that the induced subgraph of vertices on the cycles of
G € (i = 3,4,6,7) are depicted in Figure 1.

OOOOOOQ‘QOOO
30 OLC o©

O
@o@ 00 ‘OQ

> J 0 &

Figure 1. The arrangement of cycles of a tricyclic graph in 7, (i = 3,4,6,7)
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For any graph G € 7,,, G can be obtained from some graphs showed in
Figure 1 by attaching trees to some vertices.

In this paper, we shall investigate the lower bounds and upper bounds
for the modified Schultz index and Zagreb indices of tricyclic graphs by in-
troducing some grafting transformations, and characterize the correspond-

ing extremal graphs.

2 Preliminaries

Let E' C E(G), we denote by G — E’ the subgraph of G obtained by
deleting the edges of E/. W C V(G), G — W denotes the subgraph of G
obtained by deleting the vertices of W and the edges incident with them.
Let (G1,v1) and (G2, v2) be two graphs rooted at v; and vp respectively,
then G = (Gy,v1)v(G1,v;) denote the graph obtained by identifying v,
with vy as one common vertex v.

Lemma 1. Let C, be the cycle of order p, v is a vertex on Cp. Then

2

P , if p is even;

4

Y de@v)=9q ",
=€V(Cy) E—=, ifpisodd.

1, e
L if p is even;
W(C) =

-8-(p3 —p), ifpisodd.

Similar to the Lemma 1, we have

Theorem 1. Let C, be the cycle of order p, then
1, I
N if p is even;
S(Cp) =4W(Cp) =
§(p3 —p), ifpisodd.

For convenience, we provide some grafting transformations, which will
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decrease the modified Schultz index and increase Zagreb indices of graphs
as follows:

Transformations A. Let uv be an edge G, dg(v) = 2, Ng(v) =
{u, w1, w2, --- ,w}, and wy,wsy,- - ,w; are leaves adjacent to v. G =
G — {vwy,vwsa,- - - ,vw;} + {vw;,vws, -+ ,uw,}, as shown in Figure 2.

Lemma 2. Let G’ be obtained from G by transformation A, then

(1)[10] S*(G") < S*(G); (ii)[19] M1(G') > M1(G) and M2(G’) > M2(G).

Remark 1. Repeating Transformation A, any tree can changed into a
star, any cyclic graph can be changed into a cyclic such that all the edges
not on the cycles are pendant edges.

Transformations B. Let u and v be two vertices in G. uy,uz2,- - ,Us
are the leaves adjacent to u, vy, vs, - -+ , ; are the leaves adjacent tov. G’ =
G—{vvy,vvg, -+ ,vv }+{uvy, uvs, - -+ ,uv}, G = G—{uuy, vug, - ,uus}+

{vu1,vug,- - - ,vu,}, as shown in Figure 3.

Figure 3. Transformation B.

Lemma 3. Let G’, G” are graphs obtained from G by transformation

B. Then,
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(i)[10] S*(G’) < S*(G), or S*(G") < §*(G);

(i1)[19] Mi(G') > Mi(G) or M;(G") > M(G),i=1,2.

Remark 2. Repeating Transformation B, any cyclic graph can be
changed into a cyclic graph such that all the pendant edges are attached
to the same vertex.

Lemma 4. Let G’ and G” be the graphs depicted in transformation
B, G§ = Go — {u,v}. Then

(i)[10] S*(G’) > S*(G") if dgo(u) > dg,y(v) and Zcr dg;(z)dgy (z,u) <

2. dg; (z)dg; (z,v); otherwise $*(G') < S*(G"). e
"CEMC) > MG, if doy () > do (v) and
Y deo(z) > Y dg,(z); otherwise M;(G') < M;(G") for

TE€Ng, (u) 2€Ng, (v)
i=1,2.

Proof. We only prove the second case here.

Let dg,(u) = p and dg,(v) = g. By the definition of Zagreb indices, we
arrive at
My(G') = Mi(G") = (p+ s+t +¢* — (g +s+1)* —p* =2s + t)(p — )

(i) If u,v are not adjacent in G, then, by the definition of M5, we have
M(G') - Ma(G") = (s +0)[( X dGo ()= ¥ doo(a) +(p-9q)]

zENG, (u z€Ng, (v)
(ii) u,v are adjacent in G, then

M(G)=Ma(G") = (s+)( X doo(x)— ¥ doo(z)) +2(p—9q)]

.‘BGNGO (u) .‘L‘ENGO (v)

Therefore, if dg,(u) > dg,(v) and Y dg,(z) > X dgo(z),
z€Ngq(u) zENG, (v)

then M;(G’") > M;(G")(i = 1,2); otherwise M;(G') < M;(G")(i =1,2). &

Lemma 5. Suppose that G is a graph of order n > 7 obtained from
a connected graph Go ¥ P, and a cycle Cp = vov) -+ vp_1v0(p > 4 for p
is even; otherwise p > 5) by identifying vo with a vertex v of the graph
Go (see Figure 4), i.e., G = GovCyp. Let G’ = G — vp_1Vp—2 + VVp_2, i.e,,

G' = GovCp_jvK;. We name above operation as grafting transformation
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C. Then, we have (i) $*(G’) < §*(G); (ii) Mi(G’) > M:(G)(i = 1,2).

v,

o) =
G el

Figure 4. Transformation C

Proof. Let Gy = Go — v, Cp, = Cp — {v,vp-1}, Cp_y = Cp_1 —v.
(i) By the definition of modified Schultz index, we have

Case (1). p is even.

5*(G)
= Z day (z)dey (v)dey (z,¥) + Y, dey(2)de(v)dg; (x,v)
z,y€Cp z€G)
+4 ) de(z,y) +2e(v) Y dey(z,v) +4 ) dey(z,v) + 2d6(v)
z,y€C, z€C}, z€C},

+2 > day(z) Y lday(z,v) +2 Y doy(x)(dgy (x,v) +1)]
z€G}, yeC;, z€G}
p>—4p? +8
= Y dgy(z)dey (v)dey(z,y) + da(v) Y dey(z)dgy (z,v) + 9
z,y€Gp z€G

+2dg(0)(;p? — 1)+ 9% — 4+ 2do(v) +2 Y day(2)](p — 2)dey (x,v)

4 z€Gy

1
+ P =1 +2 ) day(2)ldgy (z,0) + 1]

z€G)

= Y doy(@)da;(v)dey (z,y) + [de(w) +2p - 2] Y dey(z)dgy (z,v)

z,y€Gy z€GY

+op? > dgy(x) + L - P+ Lptda()

2" &= G 2 2
z 0
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Similarly, we have

5*(G)
= Y dgy(2)dey (W)day (z:y) + lde(v) +2p— 2] Y dg; (z)dg; (x,v)
z,y€Gy z€G
2 3 2 2
p°—2p+2 p°P—3p°+6p—6 p°—2p+2
+ 9 zé' dG‘l) (z) + 3 + 2 dg(v)
Thus,

8*(G') - §*(G)

1 3 .
=(1-p) ) dgy(z) + (1 - p)dg(v) = 5(p—3)* + 5 < 0 (since p > 4)
z€Gy
Case (2). pis odd.

Similar to case (1), we have

5%(G)
= Y dgy(z)de,(v)da; (z,y) + [de(v) +2p - 2] Y dgy(2)dg; (z,v)
z,y€Cy zeGy
1 2 ly o 1 L 2
+50°=1) ) dgy(2) + 57° —p* = 5p+ 1+ 5(5° — 1)da(v)
z€Gy
and
5@
= Y dgy(z)dey (y)day (z,y) + [do(v) + 2p — 2] Y dey (z)dgy (z,v)
z,y€G, z€Gy
2—-2p+3 1 3p2+7p-7 p*—2p+3
+EE Y g + 590 - TR+ B ()
z€Gy
Thus,

5*(G') - 5"(G)

= (2-9) 3 doylo) + (2= PMlo(s) - 5=+ <0 (since p > 5)
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(ii) By the definition of Zagreb indices, we have
My(G) — Mi(G') = d4(v) + 4 — (de(v) +1)2 =1 =2(1 —dg(v)) <0
Similarly, we have

M3(G) — My(G')

= Y do(z)de(v) +4de(v) +4— D do,(z)(de(v) +1)
zGNaa (v) zENG{) (v)

- 5(dg(v) +1)
== ) dg(z) - (de(v) +1) <0

:ENG(') (v)

3 The smallest modified Schultz index and
largest Zagreb indices of J;

In this section we shall determine the graphs achieve the smallest modified

Schultz index and largest Zagreb indices in J!(i = 3,4, 6, 7), respectively.

3.1 The smallest modified Schultz index and largest
Zagreb indices in 3

Let H be a graph formed by attaching three cycles C,, Cs, C. to a com-
mon vertex u; see Figure 1.(c). Then let G, is the graph on n ver-
tices obtained from H by attaching k& pendent edges to the vertex wu.
We also set G = {G € Z,: G is a graph obtained from H by attach-
ing k pendent vertices to the vertex v of H except u} , where a + b +

c+k =n+2, and let GX, _ is one of the resulted graph. See Figure 5.

a,b,c
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Gk Gk

a,b,c a,b,c

Figure 5. The graphs G , . and Ga be
Immediately, by Lemma 4, the following result is obvious.

Gk

a,b,c

Lemma 6. Let Ga b are graphs depicted above, then

(i) 5*(Ck,,0) < S*(GE )

(i) Mi(GE o) > Mi(GE, )6 = 1,2).

Lemma 7. Let G is a n vertices tricyclic graph with exactly three cycles

Ca, Cb and C¢, then $*(G) > §*(G¢ , ) and M;(G) < Mi(GE, )(i=1,2)
with the equalities if and only if G = Gf , .
Proof. Let G is a n vertices tricyclic graph with exactly three cycles C,,
Cp and C,, then the arrangement of the three cycles contained in G are
depicted in Figure 1. a,b,c,d,e,f,g, respectively. Repeating transformation
A and B on G, and by Lemma 2 and Lemma 3, we have

(i) $*(G) 2 §*(GE,,.) or S*(G) 2 §*(GE, );

(1) M;:(G) < Mi(G bc) or M;(G) < M; (G‘l pe) fori=1,2.

Hence, by Lemma 6, we have

()S*(GE,.0) < (G, ); ()Mi(GE, ) > Mi(GE ) for i = 1,2.

a,b,c/?

Lemma 8. For any given positive integers a, b, ¢ and k, then

(i) S*(Gkpe) > S*(GhT1, ) and Mi(GE, ) < My(GE*], )G = 1,2),
ifa>4,bc>3;

(i) S*(Gk ) > S*(GhtL, ) and Mi(G, ) < Mi(GEEL, (i =1,2),
ifa,e>3,b>4;

(iii) S*(Gk,.) > S*(GELL_)) and Mi(GE, ) < Mu(GEYL_)(i=1,2),
ife>4,a,b>3.
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Proof. By the symmetry of three cycles C,, Cy, and C, contained in G,
here we only show that (i) holds. We omit the proofs for (ii) and (iii).
Let Go = CouCeukK), Gy = CouCeu(k + 1)K, then G§, . = C,uGo and
Gﬁﬂ be = Ca—1uGp. Applying transformation C on Ga,b,c and we get

ij_l ber DY Lemma 5, the results hold.

Combing Lemma. 6, Lemma 7 with Lemma 8, we have
Theorem 2. Let G € 2, then
(i) $*(G) = 2n% +13n ~ 9;
({i)M1(G) €n? —n+18 and M3(G) <n2+n+7.
The equalities hold if and only if G = G335.
Proof. Follows Lemmas 6, 7 and 8, for any graph G € 72,

§*(G) > §*(G335)-

It is ease to calculate out that the modified Schultz index and Zagreb
indices ofG“33 are §*(G33%) = 2n? +13n—9; M (G333) =n* —n+18,

3.2 The smallest modified Schultz index and largest
Zagreb indices in J}
Let Pat1, Pot+1, P41 be three vertex disjoint paths with a,b,¢ > 1, and at
most one of them is 1. Identifying the three initial vertices and terminal
vertices of them, resp. The resulting graph, denote as ©—graph ©(a, b, ¢).
Connecting the cycle Cy and ©(a, b, ¢) by a path Py, where k > 1, naming
the resulting graph as é—graph. From [23-27], we know that the are exactly
four types of ©—graph, see Figure 1. h,ijk. Z;} is the set of graphs
each of which is a é—graph, has some trees attached, if possible. Let
Ho = O(a,b,c)vCy, and Hff,b_c’d is a n vertex graph formed from Ho by

attaching k(k =n+5— a — b — ¢ — d) pendent vertices to v, see Figure 6.
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Figure 6. The graph HY, _,

Similar to the discussion way of section 3.1, we have

Lemma 9. Let G € ! such that G contains the ©(a,b,c) and the
cycle C4 with E(6(a,b,c)) N E(Cy) = 0. Then

(i) S*(G) = S*(HE, . a);

(il) Mi(G) < My(G)(Hf, . 4) for i=1,2.

The equalities hold if and only if G = Hf, _ .

Similarly, we have

Lemma 10. For any given positive integers a, b, c,d and k, then

(i) S*(Hgpca) > S* (Hk+1 bc,a) and Mi(H.f,b,c,d) < M; (H:tllbc,d) (=
1,2), for eithera > 4,b,c>2and bc>6,d >3 ora =3, b,c,d > 3;

(i) S*(HEpc,a) > S*(Hotly o) and Mi(HE, . 0) < Mi(HSPL, 0) (i =
1,2), for either b > 4,a,c>2and ac>6,d >3 orb =3, a,c,d > 3;

(iil) S*(Hepea) > S*(Hypeora) and Mi(HEy g) < Mi(HEPL_, )
(i =1,2), for either c > 4,a,6>2and ab>6,d >3 0or c=3, a,b,d > 3;

(iv) 8*(Hgpca) > S*(Hythy 1) and Mi(HE, o) < Mi(HIEL, )
(i=1,2), ford >4, a,b,c>2 and abe > 18.

And

Theorem 3. Let G € 4, then

(i) S*(G) = 2n? 4+ 13n — 15;

(ii)M;(G) < n? —n + 20 and M2(G) < n? +4n +11.

The equalities hold if and only if G 2 H}3% 5 (or H33% 3, Hi333)-
Proof. Note that H2333 = 323 3 = H:;'s“ By Lemma 10, for any
graph G € J4, $*(G) 2 5 HZ3%3) Mi(G) < My(HZ3% 3) fori=1,2,
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Note that the modified Schultz index and the Zagreb indices of H7'33 5
are

S*(HZ35 3) = 2n?+13n—15; My(H335 3) = n2—n+20, Ma(H3335 3) =
n? 4+ 4n +11.

3.3 The smallest modified Schultz index and largest
Zagreb indices in 7%

Let I,’f'b'c,d is a tricyclic graph with exact 6 cycles on n vertices obtained

from Figure 1(1) by attaching & pendent vertices to v showed in Figure 7(i);
J"f,,,,c is a tricyclic graph with exact 6 cycles on m vertices obtained

from Figure 1{m) by attaching k& pendent vertices to v showed in Figure

7(ii);
Kk

abc is a tricyclic graph with exact 6 cycles on n vertices obtained

from Figure 1(n) by attaching k pendent vertices to v showed in Figure
7(iii).

() If'},,,,c'd (it) Japed (iii) K5 p,c
Figure 7. The graphs I¥, . 4, J¥, .. KX, .

Lemma 11. Let G € Z5. Then

() $*(G) 2 S*(I5p.c,a) and Mi(G) < Mi(I¥, . ;) (i = 1,2), if the six
cycles in G are arranged the same way with the graphs depicted in Figure
1(1);

(ii) $*(G) = 8*(JF,.) and Mi(G) < Mi(Jk,.) (i = 1,2), if the six
cycles in G are arranged the same way with the graphs depicted in Figure
1(m);

(i) $*(G) > S*(K¥, ) and Mi(G) < Mi(Kk, ) (i = 1,2), if the six
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cycles in G are arranged the same way with the graphs depicted in Figure
1(n);

Similarly, we have

Theorem 4. Let G € J5,

(i) If the arrangement of the six cycles is the same as Fig 1(1), then
S*(G) > 8*(I3352) and Mi(G) < My(I335,) (i = 1,2). The equalities
hold if and only if G = I35 ,;

(ii) If the arrangement of the six cycles is the same as Fig 1(m), then
S*(G) = 8*(J333) and M;(G) < M,-(Jg‘,;,‘g) (¢ = 1,2). The equalities hold
if and only if G = J333%;

(iii) If the arrangement of the six cycles is the same as Fig 1(n), then
$*(G) > S*(K}33) and M(G) Mi(K33%) (i = 1,2). The equalities
hold if and only if G = K73 S.

Moreover, It is easily to compute out that

S*(I333.2) = 2n% +13n — 27, S*(J333) = 2n? + 13n — 22;

.‘5"'(K4 33) = 2n? +27n — 78, and

My(I335,) =n? —n+ 24, My(I335,) =n? +4n +19,

My(J333) =n? — n+22, My(J333) = n® + 4n + 16;

Mi(K73%) = n? —5n + 37, Mg(K433) =n? —n + 30.

Combining above results, we arrive at:

Theorem 5. Let G € J%, then

(i) S*(G) = 2n? + 13n - 27;

({i)M1(G) € n? —n+24, Ma(G) <n? +4n +19.

The equalities hold if and only if G = I:,"";,g‘z.

3.4 The smallest modified Schultz index and largest
Zagreb indices in I

Let R*(a,b,c,d, e, f) is a tricyclic graph with exact seven cycles on n ver-

tices obtained from Figure 1(o) by attaching k pendent vertices to v showed
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in Figure 8, wherea +b+c+d+e+ f+k=n+8.

Figure 8. The graph R¥, . ;. ¢

Applying the similar methods above, we can obtain the following results,
and we omit the proof here.

Theorem 6. Let G € J7, then

(i) 5*(G) 2 S*(R335,22,2);

(ii) Mi(G) < Mi(R33%5 222) (i =1,2).

The equalities hold if and only if G & R334 54,

Note that §*(R535 5.2,2) = 2n?+13n-30; My(R33%2.00) = n*—n+24,
Ma(R33% 222) = 7% +4n 4+ 22,

4 The smallest modified Schultz index and
largest Zagreb indices of .7,

Combining all the results above, we arrive at our main result:
Theorem 7. Let G € Z,, then
(i) $*(G) = 2n? 4 13n — 30;
(ii) M1(G) € n? — n + 24 and Mz(G) < n? +4n +22.
The equalities hold if and only if G = R334 5, .

Proof. By Theorem 2, 3, 5 and 6, for any graph G € 5.

5*(G) 2 max{S*(G33, A% S*(H;Eg 3)s S*(I§‘3 3,2) S*(Rz 2.2.2,2,2)}
= S'(R2,3’2,2,2‘2) = 2n + 13n - 30
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and

M;i(G) < min{M;(G333), Mi(H335.3), Mi(15332), S (R33%2.2.2)}
—M(R72122222) ("5= 1,2)

Therefore, R;,;;,2,2,2 has the smallest modified Schultz index and largest

Zagreb indices among all tricyclic graphs with n vertices.
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