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Abstract. The Merrifield-Simmons index, denoted by i(G), of a graph
G is defined as the total number of its independent sets of G. A fully
loaded unicyclic graph is a unicyclic graph with the property that there is
no vertex with degree less than 3 in its unique cycle. Let %,! be the set of
fully loaded unicyclic graphs. In this paper, we determine graphs with the
largest, second-largest, and third-largest Merrifield-Simmons index in %;}.
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1. Introduction

Graph theory has provided chemist with a variety of useful tools, such
as topological indices. The Merrifield-Simmons index of a graph G is a
prominent example of topological indices which is of interest in combina-
torial chemistry. It is defined as the total number of independent vertex
subsets, denoted by i(G), of a graph G. Merrifield and Simmons showed
the correlation between this index and boiling points. For detailed infor-
mation on the chemical applications, we refer to [1, 2, 3] and the references
therein.

Now there have been many papers studying the Merrifield-Simmons
index. In {4], Prodinger and Tichy showed that the path P, has the mini-
mal Merrifield-Simmons index and the star S, has the maximal Merrifield-
Simmons index for all trees with n vertices. In [5, 6], The authors studied
the Merrifield-Simmons indices of the unicyclic graphs. Li and Zhu (7]
studied bounds for the Merrifield-Simmons index of unicyclic graphs with
a given diameter. In [8, 9], Deng et al characterized the bicyclic graph
with the maximal and smallest Merrifield-Simmons index. In {10], Li and
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Zhu studied tricyclic graphs with maximal Merrifield-Simmons index. Gut-
man (11}, Zhang and Tian [12] studied the Merrifield-Simmons indices of
hexagonal chains and catacondensed systems, respectively.

In order to present our results, we introduce some notations and termi-
nologies. For other undefined notation we refer to Bollobds [13]. All graphs
considered here are both connected and simple. If W C V(G), we denote
by G — W the subgraph of G obtained by deleting the vertices of W and
the edges incident with them. Similarly, if £ C E(G), we denote by G — F
the subgraph of G obtained by deleting the edges of E. If W = {v} and
E = {zy}, we write G — v and G — zy instead of G — {v} and G — {zy},
respectively. We denote by P,, Cy, K -1 the path, the cycle, the star on
n vertices, respectively. Let N(v) = {u|luv € E(G)}, N[v] = N(v) U {v}.

A fully loaded unicyclic graph [14] is a unicyclic graph with the property
that there is no vertex with degree less than 3 in its unique cycle. Let %!
be the set of fully loaded unicyclic graphs, and %! (I) be the subset of %}
in which every graph has a unique cycle of length . Let the vertices of
C, be ordered successively as u, u2, - - ,us, C&(k1, k2, , ki) be the graph
obtained from C; by attaching exactly k; pendent edges to the vertex u;
fori=1,2,---,l, where k; > 1 and E£=lk,~=n—l.

In this paper, we characterize graphs with the largest, second-largest,
and third-largest Merrifield-Simmons index in %}.

We list some results that will be used in this paper.

Lemma 1.1. [11] Let G = (V, E) be a graph.
(i) If wv € E(G), then i(G) = i(G — wv) — i{(G — {N[u]U N[v]});
(i) If v e V(G), then i(G) = (G — v) + ¢{(G — N[v]);
(iii) If G\,Ga,...,G: are the components of the graph G, then i(G) =
H;'=1 i(Gj)'
Lemma 1.2 ([15]). Let H be a connected graph and T; be a tree of order
14+ 1 with V(H)NT; = {v}. Then

i(HVT}) < i(HuKy ).

Lemma 1.3 ([16]). Let H, X,Y be three connected graphs disjoint in pair.
Suppose that u,v are two vertices of H, v' is a vertez of X, u’ is a verter
of Y. Let G be the graph obtained from H,X,Y by identifying v with v’
and u with v/, respectively. Let G} be the graph obtained from H,X,Y by
identifying vertices v,v’, v’ and G be the graph obtained from H,X,Y by
identifying vertices u,v',u’. Then

i(G7) > i(G) or iG] > i(G).



Denote by F;, the nth Fibonacci number. Recall that F,, = Fr,_y+Fy_»
with initial conditions Fo = 1 and F; = 1. Then i(P,) = F,41. For
convenience, we let F,, =0 for n < 0.

2. Graph in %! with largest Merrifield-Simmons
index

1 2 i U,
W W, W 11
Figure 1: Bz( 1-1)

Lemma 2.1. Let B;a‘_l) be graph in Figure 1, then i(CL(1,---,1,n—2l+
1)) = 20 2+4(Bn ) + 4i(Byd 5))-
Proof. In CL(1,-+- ,1,n—2141), let {v1,--- ,Un_2141} be the set of pendant
vertices adjacent to u;. By Lemma 1.1, we have
#(CL(1, -, 1,n =20 +1)
= §(CL(1,---,L,n =20+ 1) —u) +i(CL(1,---,1,n =20+ 1) = N[vy))
= {(CL(1,--,1,n—=21+1) —v)+i((n—-2)P, UBz(, 1)

= (CL(L,-- , l,n—2+1)—vy = — Vo) +

2"+ +2%i(Bygl )
= i(CL(l,'-' ,n—=2l4+1)—v) — - —vp_g1 —w) +
(CL(L, - L,n—214+1) —vy — -+ —Vp_gp1 — Nw]) +

(@2 4 ... +29)i( }3;(_11 )
= z(Bz(t y) Hi2PLU Bé?z a)) +(2°7 .. +20)z(B2(’ )
= 2n-2l+1z(B2(l 1))+4’(Bzf!3—3))'
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Lemma 2.2. i(CL(1,---,1,n—20+1)) <4(C1(1,--- ,1,n— 21 +3)) for
1>4.

Proof. By Lemma 1.1, we have

i(Bygly) = i(Byglyy —wi) +i(Byglyy — Niwi))

i(Byglyy — w1 —w) + (Bl ) —wi — N[wi)) + (B2 ,))
2i(By; 3) + 2i(By )

]

By Lemma 2.1, we have i(CL-1(1, .-+ ,1,n— 20 +3) = 2n—2t+3i(B§(‘,2_2)) +
47.(32(, 4))
W(CEY(L, - 1,n— 2+ 8) —i(CL(1, -+ ,1,n — 2 + 1))
= 2"THS(BLR ) +4i(Bigt ) — 2V RHN(BYL ) + 4i(ByR 5)))
= on2HHlg( Bé(IQ 2)) - 1(3501 1))] + 4[i(BéEli4)) - i(B;(_‘s‘3))]
_ 2n—21+1[4i(B;u2 2)) - (2;(Bé(13_3)) + 2?1(3262_2)))] +
4[1.(B£(,4_4)) z(Bz(z 3]
= o EHlgi(BL? ) - 2i(BLG ) + 4,[1,(B§(,4 o) —iUBys)]
= gy 35(12 )+ (2,(3;?, )+ 2i(B., 2 4))) 2z(Bé(, )l
+4[i(Bygt ) — (Bt )]
S 2n—21+1i(Bé_12 2) + 4[12(3;(,4_4)) (B;(z )l
> 2(Byt,) +4li(Bhgt ) — i(Bhgd )]
= 22i(Byt,) + 21(32(1 3)] +4li(Byty) - i(Bé(-ls_s))]
= 81(32(1 4)) >0

Hence i(CL(1,---,1,n—21+1)) < i(CH1(1,- - ,1,n=21+3)) forl > 4. O
By direct calculation, we have i(C3(1,1,n — 5)) = 2"~2 + 4,

Corollary 2.3. i(CL(1,--,1,n =2l +1)) <i(C3(1,1,n—5)) =272 44
forl>4.

Lemma 2.4. For any graph G € %,1(1), we have i(G) < i(C.(1,---,1,n—
2l +1)). The equality holds if and only if G = CL(1,--- ,1,n — 2 +1).
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Proof. For any graph G € %,}(l), by Lemma 1.2 repeatedly, we have i(G) <
i(CL(k1,- - ,ki)), where k; + 1 be order of the tree attaching at u;,i =
1,--- 1L

If kl =1, 7'(01‘1(,61’ c ,kl)) = 1‘(0:1(1) k?; k?n Tt ’kl));

If ky > 2, then kp > 2, let H = CL_, . o(1,1,ks--- k1), X
Ki k-1, Y = K1 k-1, by Lemma 1.3, we have

i(Ch (k- ki) <i(CL(L, k1 + ko — 1, ks, -, kr)).

Using this procedure repeatedly, we have i(G) < i(Ch(1,---,1,n—21+
1)). m

By Corollary 2.3 and Lemma 2.4, we have the following theorem.

Theorem 2.5. For any graph G € %!, we have i(G) < 2"~% + 4, the
equality holds if and only if G = C3(1,1,n - 5).

3. Graphs in %,! with second- and third-largest
Merrifield-Simmons index

Let C3 = ujugua be the unique triangle of C3(k;, k2, k3), without loss
of generality, let k; < k» < k3, and N(u1) = {ug,u3,v1,- - , Uk, }, N(u2) =
{ulvuSa wy, - ,wkz}’ N(u3) = {U1,u2,31, e 7zk3}'

Lemma 3.1. Letn > 8 and G € %,}(3) — C3(1,1,n — 5), then i(G) <
14.27~% + 8. The equality holds if and only if G = C3(1,2,n — 6).

Proof. By direct calculation, we have i(C3(1,2,n — 6)) = 14-2"6 4 8.

Case 1 If G = Cg(k1,k2,k3).

Since G 2 C3(1,1,n — 5), then (ky, k2, k3) # (1,1,n — 5).

Subcase 1.1 If k; = 1, then k3 > ky > 2. If ks = 2, we have
H(C3(1, k2, k3)) = i(C3(1,2,n — 6)); if ko > 3, let H = C3(1,ko,k3) —
{w3, cer yWhgy 23,00t ,zk:,}, X = Kl.k2—2 and Y = K],k_.,_z, by Lemma 1.3,
we have i(C3(1, k2, k3)) < i(C3(1,2, k2 + k3 — 2)) = i(C3(1,2,n — 6)).

Subcase 1.2 If kl _>_ 2, then kg _>_ k2 2 2. Let H = Cg(kl,kz,k;;) -
{va, -+ vk W, - Wik}, X = Kiky,-1 and Y = Kyk,-1, by Lemma
1.3, we have i(C3(k;, k2, k3)) < i(C3(1,k; + k3 — 1,k3)). According to
subcase 1.1, we have i(C3(1,k; + k2 — 1,k3)) < i(C3(1,2,n — 6)). Hence
W(C3(k1, k2, k3)) < 4(C3(1,2,n — 6)).

Case 2If G % Cg(khkg,ka).
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Subcase 2.1 C3(1,1,n — 5) can’t be obtained from G only by Lemma
1.2

Repeatedly using Lemma 1.2 on G, we finally obtain the graph C3(k;, k3,
kS) ((klak2’k3) 7(: (1’ 1vn - 5)) and ’L(G) < i(cg(kl’k%kS))’ by case 1, we
have i(G) < i(C3(1,2,n — 6)).

Subcase 2.2 C3(1,1,n — 5) can be obtained from G only by Lemma
1.2, repeatedly.

Since G 2 C3(1,1,n — 5), then G must have the form as indicated in
Figure 2, where T;,¢ = 1,2, 3 all are trees, denote G by G(T},T3,T3). Let
V(Ti)| =ti+1,t: € [0,n—T7](i = 1,2,3). Replace T; by K1, fori=1,2,3,
by Lemma 1.2, we have i(G(T1,T2,T3)) < i(G(K1,t,, K1,t5, K1,t5))-

Figure 2: (1) G(T1, T3, T3) and (2) G

If t3 > 1, let H = Kl,t2+21X = Cn—tg—ta—?(lal:tl):y = Kl,tga then
G(K1y, K14y, K14,) & XuzHusY, by Lemma 1.3, we have

(G(K1,tyy K15, K1,15)) < z(é),

where G show in Figure 2;
1ft3 =0, G(K1,t,, K15, K1,05) = G, hence {(G(K1t,, K15, K1,,)) =
i(G).
By Lemma 1.1, it is easy to obtain that
’l.(é) —=8.9n6 + on—4—t; + 2t2+3,



where ¢; € [0,n — 7]. Hence

f(t2) =i(G) —i(C3(1,2,n — 6)) = 2"~4—t2 4 gt2+3 _g .96 _ g

But
df(tZ) __ (ot2+3 __ on—4—t;
dy (2 2 )In 2,
then L2 > 0 if ¢, > [257]; L) <0 if ¢, < [257]. Hence f(t2) <
max{f(0), f(n—7)}. Since f(0) = f(n—7) = —2"5%,50i(G) < i(C3(1,2,n—
6)).
Hence, the results hold. |}

Theorem 3.2. Letn > 8, C3(1,2,n—6) has the second-largest Merrifield-
Simmons indexr among all graphs in %,}.

Proof. For any graph G € %,! — C3(1,1,n - 5), let C; be its unique cycle.
If 1 > 4, by Lemma 2.4, we have i(G) < i(C.(1,- - ,1,n—2l+1)). Further-
more, by Lemma 2.2, we have i(C4(1,--- ,1,n—2l+1)) <i(Ci(1,1,1,n—
7)=11-2""%+12 < 14.2""6 4+ 8 = {(C3(1,2,n—6)). Ifl = 3, by Lemma
3.1, we have i(G) < i(C3(1,2,n — 6)). Hence, we obtain the desirable
result. a

Now we consider the third largest upper bound of fully loaded graphs
with respect to the Merrifield-Simmons index in %_!. Let G be graph as
shown in Figure 3.

Lemma 3.3. Letn > 8 and G € %,}(3) - C3(1,1,n - 5) — C3(1,2,n —6),
then i(G) < 13-2"~6416. The equality holds if and only if G = C3(1,3,n—
7).

Proof. By Lemma 1.1, it is easy to obtain that i(C3(1,3,n — 7)) = 13-
276 1 16,i(G) = 13-2"~% 1 6.

Casel. G Cg(kl, ko, k3).

Since G % C3(1,1,n — 5),C3(1,2,n — 6), then (ki1, ko, k3) # (1,1,n —
5),(1,2,n — 6).

subcase 1.1. k; =1, then &3 > 3.

If ko = 3, then i(G) = i(C3(1,3,n — 7));

If ky > 4, let H = C%(1,3,3),X = K1 4,-3,Y = Ky xy3, then G =
XuaHugY, by Lemma 1.3, we have i(G) < i(C3(1,3,n - 7)).

subcase 1.2. k; = 2, then kp > 2.
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Figure 3: (1) G and (2) G

If k = 2, then G = C3(2,2,n—7), let H = C3_,(1,1,n-7),X =
Ky,,Y = K, then G = XujHusY, by Lemma 1.3, we have i(G) <
i(C3(1,3,n - 7).

Ifky > 3,then kg > 3,let H=C3_, (1,1,n—ky—5),X =K, ,,Y =
K} k,—1, then G = Xuy Hu,Y, by Lemma 1.3, we have i(G) < i(C3(1, kg, n—
ko —5)). By subcase 1.1, we obtain i(G) < i(C3(1,3,n — 7)).

Similarly, we can prove the case when &, > 3.

Case 2. G 2 Cﬁ(kl, ko, k3).

subcase 2.1. Neither C3(1,1,n—5) nor C3(1,2,n—6) can be obtained
from G only by Lemma 1.2. Repeatedly using Lemma 1.2 on G, we finally
obtain the graph C3(k, ko, k3), (k1, kg, k3) # (1,1,n —5),(1,2,n — 6), and
i(G) < i(C3(k1, k2, k3)), by case 1, we have i(G) < i(C3(1,3,n —7)).

subcase 2.2. C3(1,1,n — 5) can be obtained from G only by using
Lemma 1.2, repeatedly.

As the proof of subcase 2.2 of Lemma 3.1, we have i(G) < i(G).

g(t2) =i(G) —i(C3(1,3,n— 7)) = 2""47% 4. 28+3 _ 5. 9770 _16.
But

dg(t2) t2+3 n—4—ty
2] - 2
™ (2 2 )In2,



if t2 > [257], %%) > 0; if t2 < [257], %ﬁ’) < 0. Hence g(t2) <
max{g(0),g(n — 7)} < 0. Since g(0) = g(n —7) = —8 — 2"~® < 0, then

i(G) < i(C3(1,3,n — 7)), hence i(G) < i(C3(1,3,n —7)).

U

@)

Figure 4: (1) G(T},T4,T}) and (2) G(T)

subcase 2.8. C3(1,2,n — 6) can be obtained from G only by using
Lemma 1.2, repeatedly.

Then G = G(T},T4,T3), or G = G(T), as shown in Figure 4, where
T{(i=1,2,3) and T all are trees. Let [V(T})| =¢t.+1,|V(T)| =t +1, then
t;e[0,n-8(i=1,2,3),te[l,n—6].

(1) G = G(T).

By Lemma 1.2, we have i(G(T)) < i(G) < i(C3(1,3,n —7)).

(2) 6 = G(T{, T}, T3).

Ifn=8thenGxG G, then next we only consider n > 9.

By Lemma 1.2, we have i(G) < i(G(K1,, K145, K1,05))-

Iftg 21, let H=KppX = Cg-t;—tg—z(l’zvti)’y = K4, then
G(Klyzl‘,Kl'ta, K ,4) = XuzgHusY, by Lemma 1.3, we have

i(G(K, Ky gy K1 gy)) <i(G);

Ity =0, (K15, Kuey, K15) & G, hence (Gt K1y, K1,3)) =
i(@)



By direct calculation, we have
i(G) =14.2"7 4 14. 2781 | ofaHd,
Hence

h(ts) = i(G) — i(C3(1,3,n — 7)) = 14278t | 2ta+4 _g.9n=6 _ 1§,

But dhi!
) _ (944~ 14.275) no,
2
if ty > {n_m;ﬁ], d';(tzl’) > 0; if th < ["—12;%], d’;(t?) < 0. Hence

h(t2) < max{h(0), h(n — 8)}. Since h(0) = —5- 2"~ 7" < 0,h(n—8) = -2~
278 < 0, then i(G) < i(C3(1,3,n — 7)). Hence i(G) < i(C3(1,3,n —7)).
We thus complete the proof here. a

Theorem 3.4. Among all graphs in %} -C3(1,1,n-5)—-C3(1,2,n—6), we
have i(G) < 13-2"75 116, the equality holds if and only if G = C3(1,3,n—
7). That is, C3(1,3,n — 7) has the third-largest Merrifield-Simmons index
in %}

Proof. For any graph G € %,} — C3(1,1,n —5) —C3(1,2,n — 6), let C; be
its unique cycle. If ! > 4, by Lemma 2.4, we have i(G) < i(CL(1,--- ,1,n—
2{+1)). Furthermore, by Lemma 2.2, we have i(C4(1,--- ,1,n =2l +1)) <
i(CA(1,1,1,1,n—7)) = 11-2"64+12 < 13.2"6 4+ 16. If | = 3, by Lemma
2.7, i(G) < 13-2"6 1 16. Hence, we obtain the desirable result. O
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