Several identities involving q-harmonic numbers by q-Chu-Vandermonde convolution formula

Yunpeng Wang and Xinan Tong

Department of Mathematics and Physical, Luoyang Institute of Science and

Technology,

Luoyang 471023, P. R. China email:yangjizhen116@163.com

Abstract

The purpose of this paper is to establish several identities involving q-harmonic numbers by the q-Chu-Vandermonde convolution formula and obtain some q-analogues of several known identities.

AMS Subject Classification 33D05, 33C60, 34A25.

Keywords and phrases: q-Chu-Vandermonde convolution formula, q-harmonic numbers, q-analogues

1 Introduction

Harmonic numbers play important roles in number theory, analysis algorithms and special function. For $\alpha \in \mathbb{N}$, the generalized harmonic numbers are defined by

$$H_0^{(\alpha)} = 0$$
 and $H_n^{(\alpha)} = \sum_{i=1}^n \frac{1}{i^{\alpha}}$, for $n \in \mathbb{N}$,

ARS COMBINATORIA 122(2015), pp. 21-32

when $\alpha = 1$, they reduce to the well known harmonic numbers

$$H_0 = 0$$
 and $H_n = \sum_{i=1}^n \frac{1}{i}$, for $n \in \mathbb{N}$.

Many identities involve harmonic numbers (see [2, 5, 7]). In fact, the harmonic numbers are generalized to many forms (see [1, 3, 8]). In this paper, we will establish some identities involving q-harmonic numbers.

For $\alpha \in \mathbb{N}$, the generalized q-harmonic numbers can be defined by

$$H_0^{(\alpha)}(q) = 0$$
 and $H_n^{(\alpha)}(q) = \sum_{i=1}^n \left(\frac{q^i}{1-q^i}\right)^{\alpha}$, for $n \in \mathbb{N}$,

when $\alpha = 1$, the q-harmonic numbers can be defined by

$$H_0(q) = 0$$
 and $H_n(q) = \sum_{i=1}^n \frac{q^i}{1-q^i}$, for $n \in \mathbb{N}$.

It is easy to see that

$$\lim_{q \to 1^{-}} (1-q)^{\alpha} H_n^{(\alpha)}(q) = H_n^{(\alpha)}, \text{ for } n \in \mathbb{N}_0.$$

Recently, Wei, Gong and Wang[6] get some identities involving harmonic numbers by two derivative operators. In this paper, we will apply these derivative operators to q-Chu-Vandermonde convolution to get some identities involving q-harmonic numbers which are q-analogues of several known identities.

First we give some definitions and formulae which will be useful throughout this paper.

For two differentiable functions f(x) and g(x, y), the derivative operator

 \mathcal{D}_x and \mathcal{D}_{xy}^2 can be defined by

$$\mathcal{D}_x f(x) = \frac{d}{dx} f(x) \Big|_{x=0}, \quad \mathcal{D}^2_{xy} g(x,y) = \frac{\partial^2}{\partial x \partial y} g(x,y) \Big|_{x=y=0}.$$

The q-Gamma function is defined by

$$\Gamma_q(x) = \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x} \quad (0 < q < 1).$$

The q-binomial coefficients are defined by

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{\Gamma_q(x+1)}{\Gamma_q(y+1)\Gamma_q(x-y+1)}.$$

It is easy to see

$${n+x \brack m} = \frac{(q^{n-m+1+x}; q)_m}{(q; q)_m (1-q)^m}$$

and

$$\mathcal{D}_x \begin{bmatrix} n+x \\ m \end{bmatrix} = \begin{bmatrix} n \\ m \end{bmatrix} (H_{n-m}(q) - H_n(q)) \ln q.$$

The well known q-Chu-Vandermonde convolution is

$$\begin{bmatrix} x+y \\ n \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} x \\ k \end{bmatrix} \begin{bmatrix} y \\ n-k \end{bmatrix} q^{(x-k)(n-k)}.$$
 (1)

2 Main results and their proofs

Theorem 2.1 For $m, p, l \in \mathbb{N}_0, |q| < 1$, there holds

$$\begin{split} &\sum_{k=l}^{n} {m+k \brack k-l} {p+n-k \brack p} H_{m+k}(q) q^{k(p+1)} \\ &= {m+p+n+1 \brack n-l} (H_{m+p+n+1}(q)-H_{m+p+l+1}(q)+H_{m+l}(q)) q^{l(p+1)}. \end{split}$$

Proof. Taking $x \to -m-1-x, y \to -p-1-y$ in (1), we have

$$\sum_{k=0}^{n} {m+k+x \brack k} {p+n-k+y \brack n-k} q^{k(p+1+y)} = {m+p+n+1+x+y \brack n}. (2)$$

Applying the derivative operator \mathcal{D}_x to (2) and then letting y = 0, we have

$$\sum_{k=0}^{n} {m+k \brack k} {p+n-k \brack p} H_{m+k}(q) q^{k(p+1)}$$

$$= {m+p+n+1 \brack n} (H_{m+p+n+1}(q) - H_{m+p+1}(q) + H_m(q)). \quad (3)$$

Taking $k \to k - l, n \to n - l, m \to m + l$ in (3), we complete the proof of the theorem.

Theorem 2.1 can be written as

$$\sum_{k=l}^{n} {m+k \brack k} {p+n-k \brack l} {k \brack l} H_{m+k}(q) q^{k(p+1)}$$

$$= {m+p+n+1 \brack n-l} {m+l \brack l}$$

$$\times (H_{m+p+n+1}(q) - H_{m+p+l+1}(q) + H_{m+l}(q)) q^{l(p+1)}. \tag{4}$$

Taking m = 0 in (4), we can obtain the following result.

Corollary 2.2 For $p, l \in \mathbb{N}_0, |q| < 1$, there holds

$$\sum_{k=l}^{n} {p+n-k \brack p} {k \brack l} H_k(q) q^{k(p+1)}$$

$$= {p+n+1 \brack n-l} (H_{p+n+1}(q) - H_{p+l+1}(q) + H_l(q)) q^{l(p+1)}.$$

Taking p = l = 0 in Corollary 2.2, we can obtain the following result.

Corollary 2.3 For |q| < 1, there holds

$$\sum_{k=0}^{n} H_k(q) q^k = \frac{1 - q^{n+1}}{1 - q} \left(H_{n+1}(q) - \frac{q}{1 - q} \right).$$

Corollary 2.3 is a q-analogue of the following result[2, Equation(2.1)]:

$$\sum_{k=0}^{n} H_k = (n+1)(H_{n+1} - 1). \tag{5}$$

Taking l = 1 in (4), we have

Corollary 2.4 For $m, p \in \mathbb{N}_0, |q| < 1$, there holds

$$\begin{split} &\sum_{k=1}^{n} {m+k \brack k} {p+n-k \brack p} (1-q^k) H_{m+k}(q) q^{k(p+1)} = {m+p+n+1 \brack n-1} \\ &\times (1-q^{m+1}) (H_{m+p+n+1}(q) - H_{m+p+2}(q) + H_{m+1}(q)) q^{p+1}. \end{split}$$

Taking $q \to 1^-$ in Corollary 2.4, we have the following result [6, Equation(4)]:

Corollary 2.5 For $m, p \in \mathbb{N}_0, |q| < 1$, there holds

$$\sum_{k=1}^{n} {m+k \choose k} {p+n-k \choose p} k H_{m+k}$$

$$= (m+1) {m+p+n+1 \choose n-1} (H_{m+p+n+1} - H_{m+p+2} + H_{m+1}).$$

Taking m = p = 0 in Corollary 2.4, we have

Corollary 2.6 For |q| < 1, there holds

$$\sum_{k=1}^{n} (1-q^k) H_k(q) q^k = \frac{q(1-q^n)(1-q^{n+1})}{1-q^2} \left(H_{n+1}(q) - \frac{q^2}{1-q^2} \right).$$

Corollary 2.6 can be written as follows:

$$\sum_{k=1}^{n} (1 - q^{k}) H_{k}(q) q^{k}$$

$$= \frac{q(1 - q^{n})(1 - q^{n+1})}{1 - q^{2}} H_{n}(q) - \frac{q^{3}(1 - q^{n-1})(1 - q^{n})}{(1 - q^{2})^{2}}, \qquad (6)$$

which is a q-analogue of the following result[2, Equation(2.2)].

$$\sum_{k=1}^{n} k H_k = \frac{n(n+1)}{2} H_n - \frac{(n-1)n}{4}.$$

Taking m = p = 0 in (4), we have

$$\sum_{k=l}^{n} (q^{k+1-l};q)_{l} H_{k}(q) q^{k} = \frac{(q^{n+1-l};q)_{l+1}}{1-q^{l+1}} \left(H_{n+1}(q) - \frac{q^{l+1}}{1-q^{l+1}} \right) q^{l}.$$

Letting

$$f(l) = \sum_{k=l}^{n} (q^{k+1-l}; q)_{l} H_{k}(q) q^{k},$$

and by

$$\sum_{k=0}^{n} H_k(q)q^{2k} = f(0) - f(1),$$

we have

Corollary 2.7 For |q| < 1, there holds

$$\sum_{k=0}^{n} H_k(q) q^{2k} = \frac{1 - q^{2n+2}}{1 - q^2} H_{n+1}(q) - \frac{(1 - q^{n+1})(q + 2q^2 + q^{n+3})}{(1 - q^2)^2}.$$

For

$$\sum_{k=1}^{n} (1 - q^{k})^{2} H_{k}(q) q^{k} = (1 - q) f(1) + q f(2),$$

we have

Corollary 2.8 For |q| < 1, there holds

$$\sum_{k=1}^{n} (1 - q^{k})^{2} H_{k}(q) q^{k}$$

$$= \frac{(1 - q^{n})(1 - q^{n+1})(q + q^{3} - q^{n+2} - q^{n+3})}{(1 - q^{3})(1 + q)} H_{n+1}(q)$$

$$-\frac{(1-q^n)(1-q^{n+1})(q^3+q^4+q^5+q^7-q^{n+5}-2q^{n+6}-q^{n+7})}{(1-q^3)^2(1+q)^2}.$$

Multiplying both sides of Corollary 2.8 by $(1-q)^{-1}$ and taking $q \to 1^-$, we get

$$\sum_{k=1}^{n} k^{2} H_{k} = \frac{n(n+1)(2n+1)}{6} H_{n+1} - \frac{n(n+1)(4n+5)}{36},$$

which is equivalent to the following result[2, Equation(2.3)].

$$\sum_{k=1}^{n} k^2 H_k = \frac{n(n+1)(2n+1)}{6} H_n - \frac{(n-1)n(4n+1)}{36}.$$

Applying the derivative operator \mathcal{D}_y to (2) and then letting $x=0,k\to k-l, n\to n-l, m\to m+l$, we have

Theorem 2.9 For $m, p, l \in \mathbb{N}_0, |q| < 1$, there holds

$$\begin{split} & \sum_{k=l}^{n} {m+k \brack k-l} {p+n-k \brack p} (H_{p+n-k}(q)-k) q^{k(p+1)} \\ & = & {m+p+n+1 \brack n-l} (H_{m+p+n+1}(q)-H_{m+p+l+1}(q)+H_{p}(q)-l) q^{l(p+1)}. \end{split}$$

Taking p = 0 in Theorem 2.9, we have

Corollary 2.10 For $l \in \mathbb{N}_0, |q| < 1$, there holds

$$\sum_{k=l}^{n} {m+k \choose k-l} (H_{n-k}(q)-k)q^{k}$$

$$= {m+n+1 \choose n-l} (H_{m+n+1}(q)-H_{m+l+1}(q)-l)q^{l}.$$

Taking m = p = 0 in Theorem 2.1 and Theorem 2.9, we can obtain

Corollary 2.11 For $l \in \mathbb{N}_0$, |q| < 1, there holds

$$\sum_{k=l}^{n} {k \brack l} (H_k(q) - H_{n-k}(q) + k) q^k = {n+1 \brack l+1} (H_l(q) + l) q^l.$$

Multiplying both sides of Corollary 2.11 by 1-q and taking $q \to 1^-$, we have

Corollary 2.12 For $l \in \mathbb{N}_0$, there holds

$$\sum_{k=l}^{n} \binom{k}{l} (H_k - H_{n-k}) = \binom{n+1}{l+1} H_l.$$

Corollary 2.13 For |q| < 1, there holds

$$\sum_{k=0}^{n} H_k(q) q^{-k} = \frac{q^{-n} - q}{1 - q} H_{n+1}(q) - \frac{(n+1)q}{1 - q}.$$

Proof. Taking l = 0 in Corollary 2.11, we have

$$\sum_{k=0}^{n} H_{n-k}(q)q^{k} = \sum_{k=0}^{n} H_{k}(q)q^{k} + \sum_{k=0}^{n} kq^{k}.$$

By

$$\sum_{k=0}^{n} H_{n-k}(q)q^{k} = q^{n} \sum_{k=0}^{n} H_{k}(q)q^{-k},$$

$$\sum_{k=0}^{n} H_{k}(q)q^{k} = \frac{1 - q^{n+1}}{1 - q} H_{n+1}(q) - \frac{q(1 - q^{n+1})}{(1 - q)^{2}},$$

$$\sum_{k=0}^{n} kq^{k} = \frac{q[1 - (n+1)q^{n} + nq^{n+1}]}{(1 - q)^{2}},$$

we get the corollary.

Taking l = 1 in Corollary 2.11 and using the same method as Corollary 2.13, we can obtain the following corollary.

Corollary 2.14 For |q| < 1, there holds

$$\sum_{k=0}^{n} H_k(q) q^{-2k} = \frac{q^{-2n} - q^2}{1 - q^2} H_{n+1}(q) - \frac{q^{1-n} + q^{2-n} + nq^2 - q^3 - (n+1)q^4}{(1 - q^2)^2}.$$

It is easy to see that Corollaries 2.7, 2.13 and 2.14 are q-analogues of (5), too.

Applying the derivative operator \mathcal{D}_{xy} to (2) and then taking $k \to k - l, n \to n - l, m \to m + l$, we have

Theorem 2.15 For $m, p, l \in \mathbb{N}_0, |q| < 1$, there holds

$$\sum_{k=l}^{n} {m+k \brack k-l} {p+n-k \brack p} H_{m+k}(q) (H_{p+n-k}(q)-k) q^{k(p+1)}$$

$$= {m+p+n+1 \brack n-l} [(H_{m+p+n+1}(q)-H_{m+p+l+1}(q)+H_{p}(q)-l) \times (H_{m+p+n+1}(q)-H_{m+p+l+1}(q)+H_{m+l}(q)) + H_{m+p+l+1}^{(2)}(q) - H_{m+n+p+1}^{(2)}(q) + H_{m+p+l+1}(q) - H_{m+n+p+1}^{(2)}(q) - H_{m+n+p+1}^{(2)}(q) + H_{m+p+l+1}(q) - H_{m+n+p+1}(q)] q^{l(p+1)}.$$

Taking m = p = 0 in Theorem 2.15, we have

Corollary 2.16 For $l \in \mathbb{N}_0, |q| < 1$, there holds

$$\sum_{k=l}^{n} {k \brack l} H_k(q) (H_{n-k}(q) - k) q^k$$

$$= {n+1 \brack l+1} \left[(H_{n+1}(q) - H_{l+1}(q) - l) \left(H_{n+1}(q) - \frac{q^{l+1}}{1-q^{l+1}} \right) + \left(H_{l+1}^{(2)}(q) - H_{n+1}^{(2)}(q) \right) + (H_{l+1}(q) - H_{n+1}(q)) \right] q^l.$$

Taking l = 0 in Corollary 2.16, we have

Corollary 2.17 For |q| < 1, there holds

$$\sum_{k=0}^{n} H_{k}(q)(H_{n-k}(q) - k)q^{k} = \frac{1-q^{n+1}}{1-q} \left[(H_{n+1}(q) - H_{1}(q))^{2} + (H_{1}(q) - H_{n+1}(q))^{2} \right].$$

$$+(H_1^{(2)}(q)-H_{n+1}^{(2)}(q))+(H_1(q)-H_{n+1}(q))\Big].$$

$$^{\lambda-n}p(\lambda+(p))^{\lambda}H \sum_{0=\lambda}^{n} n + ^{\lambda}p(\lambda+(p))^{\lambda-n}H \sum_{0=\lambda}^{n} H_{k}(q) + ^{\lambda}p(\lambda+(p))^{\lambda-n}H \sum_{0=\lambda}^{n$$

Corollary 2.18 For |q| < 1, there holds

$$\sum_{0=a}^{a} ((p)_{1}H - (p)_{1+n}H) \Big] \frac{p - n - p}{p - 1} = {}^{A - p}(A + (p)_{A}H)(p)_{A-n}H \sum_{0=a}^{n} \Big[((p)_{1}H - (p)_{1+n}H)(1 - n) + ((p)_{1+n}H)(1 - n) + ((p)_{1+$$

ret

ме раче

$$g(\ell) = \sum_{k=l}^{n} (q^{k+1-l};q)_l H_k(q) (H_{n-k}(q) - k) q^k.$$

Noticing

$$\sum_{b=0}^{h} H_{b}(q)(H_{n-b}(q) - b)q^{2b} = g(0) - g(1),$$

and by Corollary 2.16, we have

Corollary 2.19 For |q| < 1, there holds

$$\sum_{k=0}^{n} H_{k}(q) (H_{n-k}(q) - k) q^{2k} = \frac{1 - q^{2n+2}}{1 - q^{2}} \left[(H_{n+1}(q) - H_{1}(q))^{2} \right]$$

$$+(H_1^{(2)}(q) - H_{n+1}^{(2)}(q)) + (H_1(q) - H_{n+1}(q)) \Big]$$

$$+ \frac{q(1-q^n)(1-q^{n+1})}{1-q^2} \left[\frac{H_{n+1}(q) - H_1(q)}{1+q} + \frac{q}{(1+q)(1-q^2)} \right].$$

Using the same method as Corollary 2.18, we have

Corollary 2.20 For |q| < 1, there holds

$$\begin{split} &\sum_{k=0}^{n} H_{n-k}(q) (H_k(q) + k) q^{-2k} = \frac{q^{-2n} - q^2}{1 - q^2} \left[(H_{n+1}(q) - H_1(q))^2 \right. \\ &+ (H_1^{(2)}(q) - H_{n+1}^{(2)}(q)) + (n-1)(H_{n+1}(q)) - H_1(q) \right] \\ &+ \frac{q(q^{-n} - 1)(q^{-n} - q)}{1 - q^2} \left[\frac{H_{n+1}(q) - H_1(q)}{1 + q} + \frac{(1 - n)q - nq^2}{(1 + q)(1 - q^2)} \right]. \end{split}$$

Multiplying both sides of Corollaries 2.17, 2.18, 2.19 or 2.20 by $(1-q)^2$ and taking $q \to 1^-$, we obtain the same identity [6, Theorem 1]:

$$\sum_{k=0}^{n} H_k H_{n-k} = (n+1) \left[(H_{n+1} - 1)^2 + (1 - H_{n+1}^{(2)}) \right].$$

References

- V. S. Adamick, On Stirling numbers and Euler sums, J.Compute Appl. Math., 79(1997):119-130.
- Y. Chen, Q. Hou and H. Jin, The Able-Zeilberger algorithm, Electron. J. Comb, 18(2011), p.17.
- [3] W. Chu, Harmonic number identities and Hermite-Padé approximations to the logarithm function, J. Appox. Theory, 137(2005):413-425.
- [4] G. Gasper, M. Rahman, Basic Hypergeometric Series, second ed., Cambridge University Press, Cambridge, 2004.

- [5] A. Sofo, Some more identities involving rational sums, Appl. Anal. Discr. Math, 2(2008):56-66.
- [6] C. Wei, D. Gong and Q. Wang, Chu-Vandermonde convolution and harmonic number identities, Integral Tranforms and Special Function, 24(2013):324-330.
- [7] D. Zheng. Further summation formular related to generalized harmonic numbers. J. Math. Anal. Appl, 335(2007):692-706.
- [8] F. Zhao, Wuyungaowa, Some results on a class of generalized harmonic numbers, Utilitas Mathematica, 87(2012):65-78.