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Abstract

The purpose of this paper is to establish several identities in-
volving g-harmonic numbers by the g-Chu-Vandermonde convolution
formula and obtain some g-analogues of several known identities.
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1 Introduction

Harmonic numbers play important roles in number theory, analysis algo-
rithms and special function. For & € N, the generalized harmonic numbers

are defined by

n
a 1
H((, )=0 and H® = E =t forneN,

i=1
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when a = 1, they reduce to the well known harmonic numbers

n
Ho =0 and H,,=Z%, for n € N.

=1

Many identities involve harmonic numbers(see [2, 5, 7]). In fact, the
harmonic numbers are generalized to many forms(see[l, 3, 8]). In this

paper, we will establish some identities involving ¢g-harmonic numbers.

For a € N, the generalized g-harmonic numbers can be defined by

n i a
HYg) =0 and Hf('a)(Q)=Z(1zqi) , forneN,
i=1

when a = 1, the g-harmonic numbers can be defined by
n q’
Ho(gq)=0 and Hn(g)=) g frneN.
i=1
It is easy to see that

lim (1 - q)*H{® (q) = H®, for n € N,.
q—1-

Recently, Wei, Gong and Wang[6] get some identities involving har-
monic numbers by two derivative operators. In this paper, we will apply
these derivative operators to g-Chu-Vandermonde convolution to get some
identities involving g-harmonic numbers which are g-analogues of several

known identities.

First we give some definitions and formulae which will be useful through-

out this paper.

For two differentiable functions f(z) and g(z, y), the derivative operator
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D, and D2, can be defined by

d 2 = __62
D:f(z) = o f(z) ) D2, 9(z,y) = axayg(x, ) v

The g-Gamma function is defined by

Ty(z) = ((7",%0 —g'r (0<q<1).

The g-binomial coefficients are defined by

[a:] _ To(x +1)
y]  Tly+ 1T (z—y+1)

It is easy to see

and

D"+ %] = 2] t#acmta) - Hut@) 0

The well known g-Chu-Vandermonde convolution is
r+y " [z ]
= (z—k)(n—k)
(2= e 8

2 Main results and their proofs

Theorem 2.1 For m,p,! € Ny, |g| < 1, there holds

" m+k][p+n—k
Z [m [p ; Hm+k(¢1)qk(p+l)
k=l k-1 p

_ [m+p+n+1

P I ntotnss(0) = Hmtpsss1(6) + Hsa @)+
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Proof. Takingz - —-m—-1—-z,y > —p—1—yin (1), we have

~[m+k+z)[p+n—k+y] rpri4y) _ [Mm+P+n+1+z+y
) q = - (2)
k n—k n

k=0
Applying the derivative operator D, to (2) and then letting y = 0, we have

2 [m+k +n-—-k
21| e

k=0
_ [m+p+n+1

Y iy a41(0) = Bty @+ o0 @)

Taking k - k—l,n - n—1,m — m +1 in (3), we complete the proof of

the theorem.

Theorem 2.1 can be written as

e T

k=l

_ [m+p+'n+1] [m+l]
B -1 !

X (Hpmtpins1(2) = Hmapri+1(9) + Hm(9))g' P, (4)

Taking m = 0 in (4), we can obtain the following result.

Corollary 2.2 For p,! € Ny, |g] < 1, there holds

S [P e

i

k=
n+1
[ ] (Hp4n+1(9) — Hpyi141(q) + Hi(q))g' ).

Taking p = { = 0 in Corollary 2.2, we can obtain the following result.

Corollary 2.3 For |g| < 1, there holds

1-— qn+1

3 e_l-g™t __q
kz:;Hk(Q)q = T1-¢ (Hn+l(Q) l—q)'
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Corollary 2.3 is a g-analogue of the following result[2, Equation(2.1)]:

zn: He = (n+1)(Hos1 — 1). (5)
k=0

Taking ! = 1 in (4), we have

Corollary 2.4 For m,p € Ny, |g| < 1, there holds

[m+k][p+n—k x kpr1) _ M P+ +1
,;[ & ” » ](1—q)Hm+k(Q)q = ne1

x(1 = g™ ) (Hmtp+n+1(9) — Hmip+2(9) + Hme1(9)7*

Taking ¢ — 1~ in Corollary 2.4, we have the following result [6, Equa-
tion(4)]:

Corollary 2.5 For m,p € Ny, |q| < 1, there holds
n
m+k +n-k
(e
k=1 p

1 )(Hm+p+n+l - Hm+p+2 + Hm+l)-

Taking m = p =0 in Corollary 2.4, we have

Corollary 2.6 For |g| < 1, there holds

n s ) _ gn+l 2
> (-t = LT (5,400 - 1)

Corollary 2.6 can be written as follows:

> (1 - ¢*)Hi(g)q*
k=1

g(1 = g™)(1 — g**1)
1-¢2 Hy,

31_ n—1 1—g"
@-T= =D
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which is a g-analogue of the following result[2, Equation(2.2)].

+1) (n—1)n
——H, .

ika - n(n

k=1

Taking m = p =0 in (4), we have

n

- "L )i ¢!
Z(qk-l-l L q)Hi(q)g* = g_l-tT;"?_ Hnyi(g) - 1— g+t q.

k=l
Letting
FO) =Y (¢ q)Hi(g)e",
k=l

and by
Y Hilg)d™ = £(0) - £(1),
k=0

we have

Corollary 2.7 For |g| < 1, there holds

;:Z:;)Hk(q)qzk - };1—_—5—]2—;2}[”4-1(0) _a= qn“()l(q_';f)‘i’: + qn+3).
For
kzn‘:(l ~ ¢’ Hul@)d" = (1= )f(1) +af(2),
we have i

Corollary 2.8 For |g| < 1, there holds

n

> (1 - ¢ He(g)g*

k=1
(1-¢")(1 -¢"*") (g +¢° —g™* — ¢"**)
1-¢(1+9)

Hn+1(‘])
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(=g =g +g* + % + g7 — g5 - 2¢7FE — g7HT)
(1-4%2%(1 +q)? '

Multiplying both sides of Corollary 2.8 by (1—¢)~! and takingg — 1,

we get

. (2n+1 1)(4n+5
Zszk=n(n+ 15( n+ )Hn+l_n(n+ gén+ )’

which is equivalent to the following result(2, Equation(2.3)].

n(n+1)(2n + 1) (n—1)n(4n + 1)
Z K, 6 Ha = 36

Applying the derivative operator D, to (2) and then letting z = 0,k —
k—lin—-n-1,m—m+1, we have

Theorem 2.9 For m,p,l € Ny, |q| < 1, there holds

“m+kl[p+n—k
3160 QS AU
k=l

_ [m+p+n+1

D | nranss(0) — Hinssssa(0) + Hyla) = 0.

Taking p = 0 in Theorem 2.9, we have

Corollary 2.10 For ! € Ny, |q| < 1, there holds

3 [’"*'“] (Haerla) - K)g*

k=l

m+n+1
] (Hmn+1(9) — Hmii41(g) — 1)d"

Taking m = p = 0 in Theorem 2.1 and Theorem 2.9, we can obtain

27



Corollary 2.11 For I € Ny, |g| < 1, there holds

= [k n+1

> [}] tuta) - Encstar + 00t = 1 ]t + e

k=l

Multiplying both sides of Corollary 2.11 by 1 — ¢q and taking ¢ — 17,

we have

Corollary 2.12 For [ € Ny, there holds

Z (’;) (Hx — Hn) = (7:11)Ht

n
k=l

Corollary 2.13 For |g| < 1, there holds

= _ —n - n+1
> Hi(g)g™* = ql _qun+1(Q) - %
k=0

Proof. Taking { =0 in Corollary 2.11, we have

Y Ha_r(g)e* =) _ Hilg)g* + > _ k",
k=0 k=0

k=0

n n
S Hok(@)d* =4 Helg)g™",
k=0 k=0

g(1 —g™*1)

H(@)d = 2L Ho (o) - ,
-q (1-gq)?

1

1 10

kgt = L= (p+ 1)g" + ng"]
k=0 (1 - q)2 ’

we get the corollary.

Taking ! = 1 in Corollary 2.11 and using the same method as Corollary

2.13, we can obtain the following corollary.



Corollary 2.14 For |g| < 1, there holds

n —2n 2 1-n 2—n 2 3 4
—2_ 9" —4q ¢ T"+¢* " +ng’—¢ —(nt+1)g
k§=0 Hy(g)q =2 e Hu1(9) 1- q2)2 :

It is easy to see that Corollaries 2.7, 2.13 and 2.14 are g-analogues of

(5), too.

Applying the derivative operator D,, to (2) and then taking k — &k —

I,bn—-n-—1,m— m+1, we have

Theorem 2.15 For m,p,l € Ny, |q| < 1, there holds

Z [TZ i. lk] [P + ; - k:l Hpn 1 (q)(Hpyn—k(q) — k)qk(p+1)
k=l

3 [m+p+n+1

P (mpnss@ = i@+ Hle) =)

X (Hmtptn+1(9) = Hmips1+1(9) + Hnri(q)) + Hr(r?-)l-p+l+l(q)

2
_Hf(n')f‘ﬂ-'-p-}'l(q) + Hm+p+l+1(Q) —_ Hm+n+p+1(Q)] ql(p+l).

Taking m = p = 0 in Theorem 2.15, we have

Corollary 2.16 For [ € Ny, |q| < 1, there holds
= [k
> [ ,] Hi(@)(Hn-r(g) — k)g"

= l[ l:_'ll] [(Hn+1(q)—Ht+1(9)—l) (Hn+1(¢1)— l_if’;zlﬁ)

+ (B ) - HEL (@) + (Hisr(a) = Hars ()] ¢

~ 3 1

Taking ! = 0 in Corollary 2.16, we have
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0¢

AO)E - By st = by — () (b)mz

g+ugl — 1

sp[oy 919y} ‘T > |b| 104 BT°g ArefroroD

arey am ‘gy'g Arefjoron £q pue

0=
“(1)6 — (006 = by — (D)1~ H)(®)*H

BurnoN

1=

':yb(’[ - (b):'—uH)(b)”H’(bi;—1+qb)z = (1)6

1T

(@) - @) (- + (O GE - 6) Jm)+
0=y
1

A1 — ()] 2L = by + 0y E)6) <

spioy a1ay3 ‘1 > |b| 104 81°g Arerjoio)

aAey am
0=y 0=y
b)”qu'*' by - (B)*m)(b)1H { =
ou=1
y—ub(t + (B)E) ()~ ~<
BumrioN

[(@vr - @) + (O H - (b>(z)m

(B)H — (B)1+417)] m;f = b1~ O H) ) z

spoy a1ay3 ‘1 > [b| 10q L1°Z A¥e[oi0)



+(H(9) - B () + (Hi(@) — Hat1(0))]

q(1 —q™)(1 — q**Y) [ H,.1(q) — Hi(q) q ]
1-g¢2 1+gq (1+49)(1-¢?

+

Using the same method as Corollary 2.18, we have

Corollary 2.20 For |g| < 1, there holds

n -2n _
> Hoos@)(Hela) + K™ = L [(Bss(a) - (@)

1
k=0
+(H(9) - HE1(@) + (0 = 1)(Harr(0)) - Hi(q)]

q(q~ -1)(Q‘"—q)[ Hny1(q) — Hi(g) (l—n)q—mf]
1- 1+gq (1+9)(1-¢%)}"

+

Multiplying both sides of Corollaries 2.17, 2.18, 2.19 or 2.20 by (1 —gq)?

and taking ¢ — 17, we obtain the same identity [6, Theorem 1]:

z HyH, )= (n+1) [(Hn+l -1+ (1= Hrﬁ?l)] .
k=0
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