SOME PLETHYSTIC IDENTITES AND KOSTKA-FOULKES POLYNOMIALS.

MAHIR BILEN CAN

1. Introduction.

Symmetric functions $\{E_{n,k}(X)\}_{k=1}^n$, defined by the Newton interpolation

$$e_n[X\frac{1-z}{1-q}] = \sum_{k=1}^n (z;q)_k \frac{E_{n,k}(X)}{(q;q)_k}$$

plays an important role in the Garsia-Haglund proof of the q, t-Catalan conjecture, [2].

Let $\Lambda^n_{\mathbb{Q}(q,t)}$ be the space of symmetric functions of degree n, over the field of rational functions $\mathbb{Q}(q,t)$, and let $\nabla: \Lambda^n_{\mathbb{Q}(q,t)} \to \Lambda^n_{\mathbb{Q}(q,t)}$ be the Garsia-Bergeron operator.

By studying recursions, Garsia and Haglund show that the coefficient of the elementary symmetric function $e_n(X)$ in the image $\nabla(E_{n,k}(X))$ of $E_{n,k}(X)$ is equal to the following combinatorial summation

(1.1)
$$\langle \nabla(E_{n,k}(X)), e_n(X) \rangle = \sum_{\pi \in D_{n,k}} q^{area(\pi)} t^{bounce(\pi)},$$

where $D_{n,k}$ is the set of all Dyck paths with initial k North steps followed by an East step. Here $area(\pi)$ and $bounce(\pi)$ are two numbers associated with a Dyck path π . It is conjectured in [4], more generally, that the $\nabla E_{n,k}(X)$ are "Schur positive."

In [1], using (1.1), Can and Loehr prove the q, t-Square conjecture of the Loehr and Warrington [7].

The aim of this article is to understand the functions $\{E_{n,k}(X)\}_{k=1}^n$ better. We prove that the vector subspace generated by the set $\{E_{n,k}(X)\}_{k=1}^n$ of the space $\Lambda_{\mathbb{Q}(q)}^n$ of degree n symmetric functions over the field $\mathbb{Q}(q)$, is equal to the subspace generated by

$${s_{(k,1^{n-k})}[X/(1-q)]}_{k=1}^n,$$

Schur functions of hook shape, plethystically evaluated at X/(1-q).

In particular, we determine explicitly the transition matrix and its inverse from $\{E_{n,k}(X)\}_{k=1}^n$ to $\{s_{(k,1^{n-k})}[X/(1-q)]\}_{k=1}^n$. The entries of the matrix turns out to be cocharge Kostka-Foulkes polynomials.

We find the expansion of $E_{n,k}(X)$ into the Hall-Littlewood basis, and as a corollary we recover a closed formula for the cocharge Kostka-Foulkes polynomials $\widetilde{K}_{\lambda,\mu}(q)$ when λ is a hook shape;

$$\widetilde{K}_{(n-k,1^k)\mu}(q) = (-1)^k \sum_{i=0}^k (-1)^i q^{\binom{i}{2}} {r \brack i}.$$

Here, μ is a partition of n whose first column is of height r.

2. BACKGROUND.

2.0.1. Notation. A partition μ of $n \in \mathbb{Z}_{>0}$, denoted $\mu \vdash n$, is a nonincreasing sequence $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_k > 0$ of numbers such that $\sum \mu_i = n$. The conjugate partition $\mu' = \mu'_1 \geq \ldots \geq \mu'_s > 0$ is defined by setting $\mu'_i = |\{\mu_r : \mu_r \geq i\}|$.

Par(n,r) denotes the set of all partitions $\mu \vdash n$ whose biggest part is equal to $\mu_1 = r$.

We identify a partition μ with its Ferrers diagram, in French notation. Thus, if the parts of μ are $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_k > 0$, then the corresponding Ferrers diagram have μ_i lattice cells in the i^{th} row (counting from bottom to up).

Following Macdonald, [8] the arm, leg, coarm and coleg of a lattice square s are the parameters $a_{\mu}(s), l_{\mu}(s), a'_{\mu}(s)$ and $l'_{\mu}(s)$ giving the number of cells of μ that are respectively strictly EAST, NORTH, WEST and SOUTH of s in μ .

Given a partition $\mu = (\mu_1, \mu_2, \dots, \mu_k)$, we set

(2.1)
$$n(\mu) = \sum_{i=1}^{k} (i-1)\mu_i = \sum_{s \in \mu} l_{\mu}(s).$$

We also set

(2.2)

$$\widetilde{h}_{\mu}(q,t) = \prod_{s \in \mu} (q^{a_{\mu}(s)} - t^{l_{\mu}(s)+1}) \quad \text{and} \quad \widetilde{h'}_{\mu}(q,t) = \prod_{s \in \mu} (t^{l_{\mu}(s)} - q^{a_{\mu}(s)+1}).$$

Let \mathbb{F} be a field, and let $X = \{x_1, x_2, ...\}$ be an alphabet (a set of indeterminates). The algebra of symmetric functions over \mathbb{F} with the variable set X is denoted by $\Lambda_{\mathbb{F}}(X)$.

If $\mathbb{Q} \subseteq \mathbb{F}$, it is well known that $\Lambda_{\mathbb{F}}(X)$ is freely generated by the set of power-sum symmetric functions

$$\{p_r(X): r=1,2,... \text{ and, } p_r(X)=x_1^r+x_2^r+\cdots\}.$$

The algebra, $\Lambda_{\mathbb{F}}(X)$ has a natural grading (by degree).

$$\Lambda_{\mathbb{F}}(X) = \bigoplus_{n \geq 0} \Lambda_{\mathbb{F}}^n(X),$$

where $\Lambda^n_{\mathbf{F}}(X)$ is the space of homogenous symmetric functions of degree n.

A basis for the vector space $\Lambda_{\mathbf{F}}^n(X)$ is give by the set $\{p_{\mu}\}_{{\mu}\vdash n}$,

(2.3)
$$p_{\mu}(X) = \prod_{i=1}^{k} p_{\mu_i}(X), \text{ where } \mu = \sum_{i=1}^{k} \mu_i.$$

Another basis for $\Lambda_{\mathbb{F}}^n(X)$ is given by the Schur functions $\{s_{\mu}(X)\}_{\mu\vdash n}$, where $s_{\mu}(X)$ is defined as follows. Let

(2.4)
$$e_n(X) = \sum_{1 \le i_1 < \dots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n}$$

be the n'th elementary symmetric function. If $\mu = \sum_{i=1}^{k} \mu_i$, then

(2.5)
$$s_{\mu}(X) = \det(e_{\mu'_i - i + j}(X))_{1 \le i, j \le m},$$

where μ'_i is the *i*'th part of the conjugate partition $\mu' = (\mu'_1, ..., \mu'_l)$ and $m \ge l$.

2.0.2. Plethysm. For the purposes of this section, we represent an alphabet X = $\{x_1, x_2, ...\}$ as a formal sum $X = \sum x_i$. Thus, if $Y = \sum y_i$ is another alphabet, then

(2.6)
$$XY = (\sum x_i)(\sum y_i) = \sum_{i,j} x_i y_j = \{x_i y_j\}_{i,j \ge 1},$$

and

(2.7)
$$X + Y = (\sum_{i} x_{i}) + (\sum_{j} y_{j}) = \{x_{i}, y_{j}\}_{i,j \geq 1}.$$

The formal additive inverse, denoted -X, of an alphabet $X = \sum x_i$ is defined so that -X + X = 0.

In this vein, if $p_k(X) = \sum_{k>1} x_i^k$ is a power sum symmetric function, we define

$$(2.8) p_k[XY] = p_k[X]p_k[Y]$$

(2.8)
$$p_k[XY] = p_k[X]p_k[Y]$$

(2.9) $p_k[X+Y] = p_k[X] + p_k[Y]$

$$(2.10) p_k[-X] = -p_k[X].$$

This operation is called *plethysm*. Since $\Lambda_{\mathbb{F}}$ is freely generated by the power sums, the plethysm operator can be extended to the other symmetric functions. In fact, using plethysm, one defines the following bases for $\Lambda_{\mathbb{Q}(q)}^n$ and $\Lambda_{\mathbb{Q}(q,t)}^n$, respectively.

Theorem-Definition 1. (cocharge Hall-Littlewood polynomials)

There exists a basis $\{H_{\mu}(X;q)\}_{\mu\vdash n}$ for the vector space $\Lambda^n_{\mathbb{Q}(q)}$, which is uniquely characterized by the properties

- (1) $H_{\mu}(X;q) \in \mathbb{Z}[q]\{s_{\lambda} : \lambda \geq \mu\},$
- (2) $\widetilde{H}_{\mu}[(1-q)X;q] \in \mathbb{Z}[q]\{s_{\lambda}: \lambda \geq \mu'\},$
- (3) $\langle \widetilde{H}_{\mu}(X;q), s_{(n)} \rangle = 1.$

Theorem-Definition 2. (Modified Macdonald polynomials)

There exists a basis $\{\widetilde{H}_{\mu}(X;q,t)\}_{\mu\vdash n}$ for the vector space $\Lambda^n_{\mathbb{Q}(q,t)}$, which is uniquely characterized by the properties

- (1) $\widetilde{H}_{\mu}(X;q,t) \in \mathbb{Z}[q]\{s_{\lambda} : \lambda \geq \mu\},$
- (2) $\widetilde{H}_{\mu}[(1-q)X;q,t] \in \mathbb{Z}[q]\{s_{\lambda}: \lambda \geq \mu'\},$
- (3) $\langle \widetilde{H}_{\mu}[X(1-t);q,t], s_{(n)} \rangle = 1.$

It follows from these Theorem-Definitions that

$$(2.11) \widetilde{H}_{\mu}(X;0,t) = \widetilde{H}_{\mu}(X;t),$$

(2.12)
$$\widetilde{H}_{\mu}(X;q,t) = \widetilde{H}_{\mu'}(X;t,q).$$

2.0.3. Kostka-Foulkes and Kostka-Macdonald polynomials. Let

$$\widetilde{H}_{\mu}(X;q) = \sum_{\lambda} \widetilde{K}_{\lambda\mu}(q) s_{\lambda}, \text{ and } \widetilde{H}_{\mu}(X;q,t) = \sum_{\lambda} \widetilde{K}_{\lambda\mu}(q,t) s_{\lambda}$$

be, respectively, the Schur basis expansions of the Hall-Littlewood and Macdonald symmetric functions. The coefficients of the Schur functions are called, respectively, the cocharge Kostka-Foulkes polynomials, and the modified Kostka-Macdonald polynomials. It is known that $\widetilde{K}_{\lambda\mu}(q,t), \widetilde{K}_{\lambda\mu}(q) \in \mathbb{N}[q,t]$.

It follows from equation (2.11) and the Schur basis expansions that

(2.13)
$$\widetilde{K}_{\lambda\mu}(0,t) = \widetilde{K}_{\lambda\mu}(t).$$

2.0.4. Cauchy Identities. Let $X = \sum x_i$ be an alphabet, and let

$$\Omega[X] = \exp(\sum_{k=1}^{\infty} p_k(X)/k).$$

Then,

(2.14)
$$\Omega[X] = \prod_{i} \frac{1}{1 - x_i} = \sum_{n=0}^{\infty} s_n(X),$$

(2.15)
$$\Omega[X] = \prod_{i} (1 - x_i) = \sum_{n=0}^{\infty} s_{1^n}(X).$$

If $Y = \sum y_i$ is another alphabet, then

(2.16)
$$e_n[XY] = \sum_{\mu \vdash n} s_{\mu}[X] s_{\mu'}[Y],$$

(2.17)
$$e_n[XY] = \sum_{\mu \vdash n} \frac{\widetilde{H}_{\mu}[X;q,t]\widetilde{H}_{\mu}[Y;q,t]}{\widetilde{h}_{\mu}(q,t)\widetilde{h}'_{\mu}(q,t)},$$

where $\widetilde{h}_{\mu}(q,t)$ and $\widetilde{h'}_{\mu}(q,t)$ are as in (2.2).

(2.18)
$$s_{\mu}[1-z] = \begin{cases} (-z)^{k}(1-z) & \text{if } \mu = (n-k, 1^{k}), \\ 0 & \text{otherwise.} \end{cases}$$

2.0.5. Cauchy's q-binomial theorem. Let $(z;q)_k = (1-z)(1-qz)\cdots(1-q^{k-1}z)$, and let

$$\begin{bmatrix} k \\ r \end{bmatrix} = \frac{(q;q)_k}{(q;q)_r(q;q)_{k-r}}.$$

Then, the Cauchy q-binomial theorem states that

$$(2.19) (z;q)_k = \sum_{r=0}^k z^r (-1)^r e_r [1, q, ..., q^{k-1}] = \sum_{r=0}^k z^r q^{\binom{r}{2}} (-1)^r {k \brack r}.$$

3. Symmetric functions $E_{n,k}(X)$.

The family $\{E_{n,k}(X)\}_{k=1}^n$ of symmetric functions are defined by the plethystic identity

(3.1)
$$e_n[X\frac{1-z}{1-q}] = \sum_{k=1}^n \frac{(z;q)_k}{(q;q)_k} E_{n,k}(X).$$

Let 0 < k < r, and let

(3.2)
$$T_{k+1,r} = (-1)^k \sum_{i=0}^k (-1)^i q^{\binom{i}{2}} {r \brack i}.$$

Proposition 3.1. For k = 0, ..., n - 1,

$$(3.3) s_{(k+1,1^{n-k-1})}[X/(1-q)] = \sum_{r=k+1}^{n} T_{k+1,r} \frac{E_{n,r}(X)}{(q;q)_r}.$$

Proof. Using the Cauchy q-binomial theorem, we see that the coefficient of $(-z)^k$ on the right hand side of (3.1) is

(3.4)
$$q^{\binom{k}{2}} \sum_{i=0}^{n-k} {k+i \brack k} \frac{E_{n,k+i}}{(q;q)_{k+i}}.$$

On the other hand, by the identities (2.16) and (2.18),

$$e_{n}[X\frac{1-z}{1-q}] = \sum_{\lambda} s_{\lambda}[\frac{X}{1-q}]s_{\lambda'}[1-z]$$

$$= \sum_{\lambda'=(n-r,1^{r})} s_{\lambda}[\frac{X}{1-q}](-z)^{r}(1-z)$$

$$= \sum_{r=0}^{n-1} s_{(r+1,1^{n-r-1})}[\frac{X}{1-q}](-z)^{r}(1-z),$$

which is equal to

$$s_{1^n}\left[\frac{X}{1-q}\right] + (-z)(s_{1^n}\left[\frac{X}{1-q}\right] + s_{2,1^{n-2}}\left[\frac{X}{1-q}\right]) + \cdots + (-z)^n s_n\left[\frac{X}{1-q}\right].$$

Comparing the coefficient of $(-z)^k$ gives, for $k \ge 1$,

$$(3.5) q^{\binom{k}{2}} \sum_{i=0}^{n-k} {k+i \brack k}_q \frac{E_{n,k+i}}{(q;q)_{k+i}} = s_{k,1^{n-k}} \left[\frac{X}{1-q} \right] + s_{k+1,1^{n-k-1}} \left[\frac{X}{1-q} \right],$$

and

(3.6)
$$\sum_{i=1}^{n} \frac{E_{n,i}}{(q;q)_i} = s_{1^n} \left[\frac{X}{1-q} \right].$$

We take the alternating sums of the equations (3.5) and (3.6) to get

$$\begin{split} s_{k+1,1^{n-k-1}} [\frac{X}{(1-q)}] &= (-1)^k \left(\sum_{j=1}^n \frac{E_{n,j}}{(q;q)_j} \right) \\ &+ \sum_{i=1}^k (-1)^{k+i} \left(q^{\binom{i}{2}} \sum_{j=0}^{n-i} {i \choose j} \frac{E_{n,i+j}}{(q;q)_{i+j}} \right). \end{split}$$

By collecting $E_{n,k}(X)$'s, and using (2.19) we obtain

$$s_{(k+1,1^{n-k-1})}[X/(1-q)] = \sum_{r=k+1}^{n} T_{k+1,r} \frac{E_{n,r}(X)}{(q;q)_r}.$$

Let S and E be the matrices

$$S = \begin{pmatrix} s_{1^n}[X/(1-q)] \\ s_{2,1^{n-1}}[X/(1-q)] \\ \vdots \\ s_n[X/(1-q)] \end{pmatrix} \text{ and } E = \begin{pmatrix} \frac{E_{n,1}}{(q;q)_1} \\ \frac{E_{n,2}}{(q;q)_2} \\ \vdots \\ \frac{E_{n,n}}{(q;q)_n} \end{pmatrix},$$

respectively, and let T be the transition matrix from E to S, so that S = TE. Then, T is an upper triangular matrix with the k + 1, r'th entry

$$T_{k+1,r} = (-1)^k \sum_{i=0}^k (-1)^i q^{\binom{i}{2}} {r \brack i}.$$

For example, when n = 5,

$$T = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 & 1 \\ 0 & q & (q+1) \, q & \left(q^2+q+1\right) \, q & \left(q^3+q^2+q+1\right) \, q \\ 0 & 0 & q^3 & q^3 \left(q^2+q+1\right) & q^3 \left(q^4+q^3+2 \, q^2+q+1\right) \\ 0 & 0 & 0 & q^6 & q^6 \left(q^3+q^2+q+1\right) \\ 0 & 0 & 0 & 0 & q^{10} \end{array} \right).$$

Then,

$$T^{-1} = \begin{pmatrix} 1 & -q^{-1} & q^{-2} & -q^{-3} & q^{-4} \\ 0 & q^{-1} & -\frac{q+1}{q^3} & \frac{q^2+q+1}{q^5} & -\frac{q^3+q^2+q+1}{q^7} \\ 0 & 0 & q^{-3} & -\frac{q^2+q+1}{q^8} & \frac{q^4+q^3+2\cdot q^2+q+1}{q^9} \\ 0 & 0 & 0 & q^{-6} & -\frac{q^3+q^2+q+1}{q^{10}} \\ 0 & 0 & 0 & 0 & q^{-10} \end{pmatrix}.$$

Proposition 3.2. T^{-1} is (necessarily) upper triangular, and its k + 1, r'th entry is equal to

$$(3.7) (T^{-1})_{k+1,r} = (-1)^{r-k} q^{-r(k+1)} T_{k+1,r}.$$

Proof. Let L be the upper triangular matrix with the k+1, r'th entry

$$L_{k+1,r} = (-1)^{r-k} q^{-r(k+1)} T_{k+1,r}$$
 for $r > k$.

Clearly, TL is an upper triangular matrix, and the i+1,j'th entry of TL is

(3.8)
$$(TL)_{i+1,j} = \sum_{k=1}^{n} T_{i+1,k} L_{k,j}.$$

It is straightforward to check that $(TL)_{i+1,i+1} = 1$. We use induction on j to prove that for all i+1 < j, $(TL)_{i+1,j} = 0$. So, we assume that for all i+1 < j, $(TL)_{i+1,j} = 0$, and we are going prove that for all i+1 < j+1, $(TL)_{i+1,j+1} = 0$. First of all, using the q-binomial identity

(3.9)
$$\begin{bmatrix} r \\ m \end{bmatrix} = \begin{bmatrix} r-1 \\ m \end{bmatrix} + \begin{bmatrix} r-1 \\ m-1 \end{bmatrix} q^{r-m}, \text{ for } m \ge 0,$$

it is easy to show that

(3.10)
$$T_{i+1,k} = T_{i+1,k-1} + q^i T_{i,k-1}.$$

It follows that

(3.11)
$$L_{k+1,j+1} = -q^{-(k+1)}L_{k+1,j} + q^{-k}L_{k,j-1}.$$

Therefore,

$$\sum_{k=i+1}^{j+1} T_{i+1,k} L_{k,j+1} = \sum_{k=i+1}^{j+1} T_{i+1,k} (-q^{-(k+1)} L_{k,j} + q^{-k} L_{k-1,j-1})$$

$$= \sum_{k=i+1}^{j+1} -q^{-k} T_{i+1,k} L_{k,j} + \sum_{k=i+1}^{j+1} q^{-(k-1)} T_{i+1,k} L_{k-1,j}.$$

Using (3.10) in the last summation, we have

$$\sum_{k=i+1}^{j+1} T_{i+1,k} L_{k,j+1} = \sum_{k=i+1}^{j+1} -q^{-k} T_{i+1,k} L_{k,j} + \sum_{k=i+1}^{j+1} q^{-(k-1)} T_{i+1,k-1} L_{k-1,j} + \sum_{k=i+1}^{j+1} q T_{i+1,k-1} L_{k-1,j}.$$

After rearranging the indices, and using the induction hypotheses, the right hand side of the equation simplifies to 0. Therefore, the proof is complete.

П

Corollary 3.3. Let $A \subseteq \Lambda^n_{\mathbb{Q}(q)}(X)$ be the n-dimensional subspace generated by the set $\{E_{n,k}(X)\}_{k=1}^n$, and let $B \subseteq \Lambda^n_{\mathbb{Q}(q)}(X)$ be the n-dimensional subspace generated by $\{s_{k,1^{n-k}}[\frac{X}{1-q}]\}_{k=1}^n$. Then, A = B.

Proof. It is clear by Proposition 3.2 that A = B. The dimension claim follows from Proposition 4.1 below.

The expression $(-1)^n p_n = \sum_{k=0}^{n-1} (-1)^k s_{k+1,1^{n-k-1}}$ is the bridge between Schur functions of hook type with the power sum symmetric functions. By the linearity of plethysm we have

$$(-1)^n p_n[X]/(1-q^n) = (-1)^n p_n[X/(1-q)] = \sum_{k=0}^{n-1} (-1)^k s_{k+1,1^{n-k-1}}[X/(1-q)],$$

and therefore

$$(3.12) (-1)^n p_n = (1-q^n) \sum_{k=0}^{n-1} (-1)^k s_{k+1,1^{n-k-1}} [X/(1-q)].$$

Corollary 3.4. For all $n \geq 1$,

(3.13)
$$(-1)^n p_n = \sum_{i=1}^n \frac{1-q^n}{1-q^r} E_{n,r}.$$

Proof. By Proposition 3.1 and (3.12) we get

$$(3.14) (-1)^n p_n = (1 - q^n) \sum_{k=0}^{n-1} \sum_{r=k+1}^n (-1)^k T_{k+1,r} \frac{E_{n,r}(X)}{(q;q)_r}.$$

By rearranging the summations and using the Cauchy's q-binomial theorem once more, we finish the proof.

4. HALL-LITTLEWOOD EXPANSION.

Proposition 4.1. For k = 1, ..., n,

$$\begin{split} \frac{E_{n,k}(X)}{(q;q)_k} &= \sum_{\mu \in Par(n,k)} \frac{\tilde{H}_{\mu'}(X;q)}{\tilde{h}_{\mu}(q,0)\tilde{h'}_{\mu}(q,0)} \\ &= \sum_{\mu \in Par(n,k)} \frac{\tilde{H}_{\mu'}(X;q)}{(-q)^n q^{2n(\mu')} \prod_{s \in \mu, l_{\mu}(s) = 0} (1 - q^{-a_{\mu}(s) - 1})}. \end{split}$$

Proof. Let Y = (1 - t)(1 - z). Then, by the Cauchy identity (2.17), we have

(4.1)
$$\sum_{k=1}^{n} (z;q)_{k} \frac{E_{n,k}(X)}{(q;q)_{k}} = \sum_{\mu \vdash n} \frac{\widetilde{H}_{\mu}[X;q,t]\widetilde{H}_{\mu}[(1-t)(1-z);q,t]}{\widetilde{h}_{\mu}(q,t)\widetilde{h'}_{\mu}(q,t)}.$$

The left hand side of the equation (4.1) is independent of the variable t. Since $\widetilde{h}_{\mu}(q,0) \neq 0$, and since $\widetilde{h'}_{\mu}(q,0) \neq 0$, we are allowed to make the substitution t=0 on both sides of the equation.

Note that

$$\begin{split} \widetilde{h}_{\mu}(q,0)\widetilde{h'}_{\mu}(q,0) &= \prod_{s \in \mu} q^{a_{\mu}(s)} \prod_{s \in \mu, l_{\mu}(s) \neq 0} (-q^{a_{\mu}(s)+1}) \prod_{s \in \mu, l_{\mu}(s) = 0} (1 - q^{a_{\mu}(s)+1}) \\ &= (-q)^n \prod_{s \in \mu} q^{2a_{\mu}(s)} \prod_{s \in \mu, l_{\mu}(s) = 0} \frac{1 - q^{a_{\mu}(s)+1}}{-q^{a_{\mu}(s)+1}} \\ &= (-q)^n \prod_{s \in \mu} q^{2a_{\mu}(s)} \prod_{s \in \mu, l_{\mu}(s) = 0} (1 - q^{-a_{\mu}(s)-1}) \\ &= (-q)^n q^{2n(\mu')} \prod_{s \in \mu, l_{\mu}(s) = 0} (1 - q^{-a_{\mu}(s)-1}). \end{split}$$

$$(4.2)$$

The equality (4.2) follows from (2.1).

Using the Schur expansion $\tilde{H}_{\mu}(X;q,t)=\sum_{\lambda}\tilde{K}_{\lambda\mu}(q,t)s_{\lambda}$, we see that the plethystic substitution $X\to (1-z)$, followed by the evaluation at t=0 is the same as the evaluation $\tilde{H}_{\mu}(X,q,0)$ at t=0, followed by the plethystic substitution $X\to (1-z)$. Also, by Corollary 3.5.20 of [6], we know that

$$\widetilde{H}_{\mu}[1-z;q,t] = \Omega[-zB_{\mu}], \text{ where } B_{\mu} = \sum_{i>1} t^{i-1} \frac{1-q^{\mu_i}}{1-q}.$$

Therefore,

(4.3)
$$\widetilde{H}_{\mu}[1-z;q,0] = \Omega[-zB_{\mu}]|_{t=0}$$

$$(4.4) = \Omega[-z(1+q+\cdots+q^{\mu_1-1})]$$

$$= \prod_{i=0}^{\mu_1-1} (1-zq^i)$$

$$(4.6) = (z;q)_{\mu_1}.$$

It follows from (2.11) and (2.12) that

$$\tilde{H}_{\mu}(X;q,0) = \tilde{H}_{\mu'}(X;q).$$

By combining (4.1), (4.2), (4.6) and (4.7), we get

(4.8)

$$\sum_{k=1}^{n} (z;q)_k \frac{E_{n,k}(X)}{(q;q)_k} = \frac{1}{(-q)^n} \sum_{\mu \vdash n} (z;q)_{\mu_1} \frac{\widetilde{H}_{\mu'}(X;q)}{q^{2n(\mu')} \prod_{s \in \mu, l_{\mu}(s) = 0} (1 - q^{-a_{\mu}(s) - 1})}.$$

By comparing the coefficient of $(z;q)_k$ in (4.8), we find that

$$(4.9) \quad \frac{E_{n,k}(X)}{(q;q)_k} = \sum_{\mu \in Par(n,k)} \frac{\widetilde{H}_{\mu'}(X;q)}{(-q)^n q^{2n(\mu')} \prod_{s \in \mu, l_{\mu}(s) = 0} (1 - q^{-\alpha_{\mu}(s) - 1})}.$$

Hence, the proof is complete.

Lemma 4.2. Let $\lambda \vdash n$ be a partition of n. Then,

$$(4.10) s_{\lambda}\left[\frac{X}{(1-q)(1-t)}\right] = \sum_{\mu \vdash n} \frac{\widetilde{K}_{\lambda'\mu}(q,t)\widetilde{H}_{\mu}(X;q,t)}{\widetilde{h}_{\mu}(q,t)\widetilde{h}'_{\mu}(q,t)}.$$

Proof. This follows from Theorem 1.3 of [3].

Corollary 4.3. Let $\lambda \vdash n$ be a partition. Then,

$$(4.11) s_{\lambda}\left[\frac{X}{1-q}\right] = \sum_{\mu} \frac{\widetilde{K}_{\lambda'\mu'}(q)\widetilde{H}_{\mu'}(X;q)}{\widetilde{h}_{\mu}(q,0)\widetilde{h'}_{\mu}(q,0)}$$

$$= \sum_{\mu} \frac{\widetilde{K}_{\lambda'\mu'}(q)\widetilde{H}_{\mu'}(X;q)}{(-q)^{n}q^{2n(\mu')}\prod_{s\in\mu,l_{\mu}(s)=0}(1-q^{-a_{\mu}(s)-1})}.$$

Proof. It follows from (2.12) and (2.13) that $\widetilde{K}_{\lambda'\mu}(q,0) = \widetilde{K}_{\lambda'\mu'}(0,q) = \widetilde{K}_{\lambda'\mu'}(q)$. Since,

$$\widetilde{h}_{\mu}(q,0)\widetilde{h'}_{\mu}(q,0) = (-q)^n q^{2n(\mu')} \prod_{s \in \mu, l_{\mu}(s) = 0} (1 - q^{-a_{\mu}(s) - 1}),$$

and $\widetilde{H}_{\mu}(X;q,0)=\widetilde{H}_{\mu'}(X;q)$, the proof follows from Lemma 4.2.

Theorem 4.4. Let $1 \le k \le r \le n$, and let $\mu \in Par(n, r)$. Then,

$$T_{k,r} = \widetilde{K}_{(n-k+1,1^{k-1})\mu'}(q).$$

Proof. Recall that

$$s_{k+1,1^{n-k-1}}\left[\frac{X}{1-q}\right] = \sum_{r=k+1}^{n} T_{k+1,r} \frac{E_{n,r}(X)}{(q;q)_r},$$

where

$$T_{k+1,r} = (-1)^k \sum_{i=0}^k (-1)^i q^{\binom{i}{2}} {r \choose i}.$$

Therefore, by Corollary 4.3 and Proposition 4.1 we have

$$\begin{split} \sum_{\mu} \frac{\widetilde{K}_{(n-k+1,1^{k-1})\mu'}(q)\widetilde{H}_{\mu'}(X;q)}{\widetilde{h}_{\mu}(q,0)\widetilde{h'}_{\mu}(q,0)} &= s_{k,1^{n-k}} [\frac{X}{1-q}] \\ &= \sum_{r=k}^{n} T_{k,r} \sum_{\mu \in Par(n,r)} \frac{\widetilde{H}_{\mu'}(X;q)}{\widetilde{h}_{\mu}(q,0)\widetilde{h'}_{\mu}(q,0)} \\ &= \sum_{\mu \in \bigcup_{n=k}^{n} Par(n,r)} \frac{T_{k,r}\widetilde{H}_{\mu'}(X;q)}{\widetilde{h}_{\mu}(q,0)\widetilde{h'}_{\mu}(q,0)}. \end{split}$$

The theorem follows from comparison of the coefficients of $\widetilde{H}_{\mu'}(X;q)$.

REFERENCES

- M.B. Can, N. Loehr, A proof of the q,t-Square conjecture. J. Combin. Theory Ser. A. 113 (2006), no. 7, 1419–1434.
- [2] A.M. Garsia, J. Haglund, A proof of the q,t-Catalan positivity conjecture. Discrete Mathematics, 256 (2002), 677-717.
- [3] A.M. Garsia, M. Haiman, G. Tesler Explicit plethysic formulas for Macdonald q,t-Kostka coefficients.
 The Andrews Festschrift. Seminaire Lotharingien 42 (1999).
- [4] J. Haglund, The q, t-Catalan numbers and the space of diagonal harmonoics. AMS University Lecture Series (in press).
- [5] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126 (2005) no. 2, 195-232.
- [6] M. Haiman, Combinatorics, symmetric functions and Hilbert schemes. Current Developments in Mathematics 2002, no. 1 (2002), 39-111.
- [7] N. Loehr, G. Warrington, Square q, t-lattice paths and $\nabla(p_n)$. Trans. Amer. Math. Soc. 359 no. 2, (2007), 649-669.
- [8] I.G. Macdonald, Symmetric functions and Hall polynomials. Second Ed., Oxford University Press, New York, (1995).