SOME PLETHYSTIC IDENTITES AND KOSTKA-FOULKES
POLYNOMIALS.

MAHIR BILEN CAN

1. INTRODUCTION.
Symmetric functions { E, (X)}%.,, defined by the Newton interpolation

Enx(X)
enlX 12 —1= 3 (aighe Enk
0T g )
plays an important role in the Garsia-Haglund proof of the g, {-Catalan conjecture,
[2].

Let A(’i( a.t) be the space of symmetric functions of degree n, over the field of
rational functions Q(g,t), and let V : Aa(q,t) — Aa( @) be the Garsia-Bergeron
operator.

By studying recursions, Garsia and Haglund show that the coefficient of the
elementary symmetric function e,(X) in the image V(E, x(X)) of En x(X) is
equal to the following combinatorial summation

(1 . l) (v(Eﬂ,k(X)), en(X)) = Z qarca(ﬂ’)tbounce(ﬂ),

TE€Dn i

where D,, i is the set of all Dyck paths with initial £ North steps followed by an
East step. Here area(w) and bounce(7) are two numbers associated with a Dyck
path 7. It is conjectured in [4], more generally, that the VE,, (X) are “Schur
positive.”

In [1], using (1.1), Can and Loehr prove the g, t-Square conjecture of the Loehr
and Warrington [7].

The aim of this article is to understand the functions {E, (X )}, better.
We prove that the vector subspace generated by the set {E, x(X)}2=; of the
space Ag ) of degree n symmetric functions over the field Q(q), is equal to the
subspace generated by

{8,125 [X/ (1 — D)} ez1s

Schur functions of hook shape, plethystically evaluated at X/(1 — q).

In particular, we determine explicitly the transition matrix and its inverse from
{En k(X)}icy to {Sk,1n-%)[X/ (1 — @)]} =1 The entries of the matrix turns out
to be cocharge Kostka-Foulkes polynomials.
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We find the expansion of E, x(X) into the Hall-Littlewood basis, and as a
corollap' we recover a closed formula for the cocharge Kostka-Foulkes polyno-
mials K ,(g) when X is a hook shape;

Bnk1%)u(@) = (-1) Z( 1y'q® H

i=0
Here, 1 is a partition of n whose first column is of height 7.

2. BACKGROUND.

2.0.1. Notation. A partition u of n € Zq, denoted i - n, is a nonincreasing
sequence py > po2 > ... > pp > 0 of numbers such that 3 u; = n. The
conjugate partition p' = pj > ... > u; > 0 is defined by setting u; = [{, :
pr 23}

Par(n,r) denotes the set of all partitions . - n whose biggest part is equal to
H1 =T

We identify a partition p with its Ferrers diagram, in French notation. Thus,
if the parts of p are 1y > pg 2 -+ 2> pg > 0, then the corresponding Ferrers
diagram have p; lattice cells in the i** row (counting from bottom to up).

Following Macdonald, [8] the arm, leg, coarm and coleg of a lattice square s
are the parameters a,(s),1(s), a,(s) and [, (s) giving the number of cells of u
that are respectively strictly EAST, NORTH, WEST and SOUTH of s in u.

Given a partition & = (11, g2, - - - , ik ), We set

2.1) n(p) = Z(z—l)p,, > Lu(s).

s€p
We also set
(3.2)
hu(g,t) = [J(g@ — ¢u¥1)  and K ,u(q,t) = [J (¢ — g2(+1),
sep s€Ep

Let IF be a field, and let X = {z,,z2,...} be an alphabet (a set of indeter-
minates). The algebra of symmetric functions over F with the variable set X is
denoted by Ap(X).

If Q C T, it is well known that Ap(X) is freely generated by the set of power-
sum symmetric functions

{pr(X): r=1,2,...and, p(X) =2z] +z5+--- }.
The algebra, Ap(X) has a natural grading (by degree).
Ap(X) = P AR(X),

n20

where AR (X) is the space of homogenous symmetric functions of degree n.
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A basis for the vector space Af(X) is give by the set {p, },rn,

k k
2.3) Pu(X) = [] pus(X), where p = > .
=1

i=1

Another basis for Ag(X) is given by the Schur functions {s,(X)}.rn, where
s,(X) is defined as follows. Let
(24) en(X) = Z T3, iy 0 T4,

1<iy <+ <in

be the n’th elementary symmetric function. If p = Zf=1 i, then
@2.5) su(X) = det(ey;—it;(X))1<iigm,
where ] is the 7’th part of the conjugate partition ' = (uf, ..., ;) and m > L.
2.0.2. Plethysm. For the purposes of this section, we represent an alphabet X =

{z1,%2,...} as a formal sum X = ) z;. Thus, if Y = 3 y; is another alphabet,
then

(2.6) XY= z)Q w) = inw = {za;}ii21s

and

@7 X+Y =0 z)+Q y) = {=ivs}iser
i j

The formal additive inverse, denoted — X, of an alphabet X = ) z; is defined
sothat =X + X = 0.

In this vein, if px(X) = 3,5, z¥ is a power sum symmetric function, we
define B

(2.8) pk[XY] = pe[X]pk[Y]
(2.9) X +Y] = pp[X]+pilY]
(2.10) (=Xl = —pe[X].

This operation is called plethysm. Since Af is freely generated by the power
sums, the plethysm operator can be extended to the other symmetric functions.
In fact, using plethysm, one defines the following bases for Aa(q) and Aa(q,t),

respectively.
Theorem-Definition 1. (cocharge Hall-Littlewood polynomials)
There exists a basis {qu(X i @) }urn for the vector space Agy,), which is uniquely
characterized by the properties
(1) Hu(X;q) € Zlgl{sr: A > p},
() Hu[(1-9)X;q) € Z[g){sx: A 2 p'},
3 (Hp(XW)as(n)) = 1.
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Theorem-Definition 2. (Modified Macdonald polynomials)
There exists a basis {H,(X;q,t)}un for the vector space Ag, ,, which is
uniquely characterized by the properties

(1) Hu(X;q,t) € Zlgl{sr: A 2 p},
@) Hyl(1-9)X;q,] € Zlgl{sr: 2 2 p'},
3) <H,,[X(1 - t);q, t],S(n)) =1.

It follows from these Theorem-Definitions that

.11 H,(X;0,8) = Hy(X;1),
(2.12) H (X;qt) = Hu(X;tq).

2.0.3. Kostka-Foulkes and Kostka-Macdonald polynomials. Let
FI#(X; q) = Z I?A#(Q)s:\» and Ep(x; q, t) = Z I?Ap(q, t)sA
A A

be, respectively, the Schur basis expansions of the Hall-Littlewood and Macdon-
ald symmetric functions. The coefficients of the Schur functions are called, re-
spectively, the cocharge Kostka-Foulkes polynomials, and the modified Kostka-
Macdonald polynomials. It is known that K .(q,t), K.(q) € Nig, t].

It follows from equation (2.11) and the Schur basis expansions that

(2.13) K»u(0,8) = Kxu(t).
2.0.4. Cauchy Identities. Let X = Y z; be an alphabet, and let

QX] = exp(Y_ pi(X)/k).

k=1
Then,
@.14) ax) = I] l_;x - nf%s,,(X),
(2.15) ox] = [[a-=z)= i s1n(X).
IfY =3 y; is another alphabe:t. then .
(2.16) ea[XY] =D sulX]sw[Y],

pn

HuX:q.08,(Y:q,1]
(2.17) eq[XY]= = =
; hu(g, )W (g, 1)

where ~Ii,‘(q, t) and f?“(q, t) are as in (2.2).

’
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(2.18) sull—2] = otherwise.

{ (~2)¥(1—2) ifp=(n—k1¥),
0
2.0.5. Cauchy’s q-binomial theorem. Let (z;q); = (1 — 2)(1 — g2)---(1 —
g*~12), and let
[k] ___ (sak
I BN CH ()
Then, the Cauchy g-binomial theorem states that

k k . k
@219 (@Qe=Y " (~erll g = 3 27g) (-1)" H
r=0 r=0

3. SYMMETRIC FUNCTIONS E,, +(X).

The family {E, «(X)}r_, of symmetric functions are defined by the plethys-
tic identity

(Z,Q)k
3.1 n X =
G-D enl ] Z (g q)
Let0 < k < r,and let
k
_ k i (|7
(3.2) Tig1,r = (-1) ;(—1) q(’) [z]
Proposition 3.1. Fork =0,...,n -1,
= En. (X

3.3) 3(k+1'1n—k—1)[X/(1 - q)] = Z Tk+1,r '. ( )

r=k+1 (q, q)r

Proof. Using the Cauchy g-binomial theorem, we see that the coefficient of (—z)*
on the right hand side of (3.1) is

3.4 q(k) Z [k + z] Lnkyi

i=0 (Q: Q)k+1
On the other hand, by the identities (2.16) and (2.18),

1- X
enlX :] = Yal= Jlsxl1-2]
A
= Z "1-2)
)\'=(n—r,1")
'i‘ X
= S(ra1,1n-r-1)[—](=2)"(1 — 2),
r=0 1- q
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which is equal to

sinl ]+ (D)o [T+ el o) 4+ (=)l

Comparing the coefficient of (—z)* gives, for k > 1,

k i X X
3.5) (2) Z [ +1,] G—;:; sk,lﬂ—kll — q] +3k+1,1n-k-1[1Tq]a

and

X
2.6) Z (a; 9)1 selygh

i=1

We take the alternating sums of the equations (3.5) and (3.6) to get

Sk41,1n—k- ‘[(1 ] =(-1 (Z (q’Q)J)

i=1
k n—ir.
: : + 7| Enjivj
+ —1)k+i [ o(2) [z i ] )
,.;( ) (q ,go i (g 9)iaj
By collecting E, x(X)’s, and using (2.19) we obtain
- E,.(X)
Sk+11m-2-[X/ (L= @] = D Teyrs ("’r 3,
r=k+1 T
O
Let S and E be the matrices
En
SIn[XfY(l -9)) ( ‘415:1
89 {n- 1- ( .nj
S: 2,1 1[ ./( q)] andE= q,?z ,
n X .1 - Er: n

respectively, and let T be the transition matrix from E to S, so that S = TE.
Then, T is an upper triangular matrix with the & + 1, r’th entry

k s (YT
Therr = (-1)* Y _(=1)gld L]

=0
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For example, when n = 5,

1 1 1 1 1
0 ¢ (g+1)g (F#F+q+1)g (P+P+q+1)q
T=]100 ¢& ¢(P+g+1) F(*+P+2¢%+q+1)
00 0 q° E(P++q+1)
0 0 0 0 qm
Then,
1 —q-l q_2 —q"3 q—4
-1 +1  g*+g+1 3+g%+g+1
0 q -’gsr r -1 rid
-1 _ -3 _@+g+l  ¢*+*+2¢%+g+1
T-*'=]10 0 q g—qﬂ— 9—9—99—9—(1
-6 3+q%+q+1
0 0 0 q _9.__%m_‘1_

0 o0 0 0 g~1°
Proposition 3.2. T is (necessarily) upper triangular, and its k + 1,7’th entry
is equal to
G (T kg1, = (-1)Fq 7Ty
Proof. Let L be the upper triangular matrix with the & + 1, r’th entry
Lis1,r = (—1)""kg=r:+DT L o forr > k.
Clearly, T'L is an upper triangular matrix, and the ¢ + 1, j’th entry of T'L is
n
(3.8) (TL)it1r,; = ZTiﬂ,kLk.j .
k=1
It is straightforward to check that (TL);41,i+1 = 1. We use induction on j to
prove that for all i + 1 < 7, (TL);4+1,; = 0. So, we assume that forall i + 1 < j,

(TL)i41,; =0, and we are going prove that forall i+1 < j+1, (TL)i41,5+41 = 0.
First of all, using the g-binomial identity

(39) ['] = [""1] + ['"l]q’-"‘, form > 0,

m m m-—1
it is easy to show that

(3.10) Tiv1k = Tiv1,6-1 + ¢ T 1.
It follows that

3.11) Liyrjer = —q_(k+l)Lk+1,j + q-kLk,J'—l'
Therefore,
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j+1 j+1

Y Tirreleger = Y Torne(=a D Lij + a7 Leor,1)
k=i+1 k=i+1
j+1 j+1
= > =g *Tpkle;+ Y ¢ * VT kL.
k=i+1 k=t+1

Using (3.10) in the last summation, we have

j+1 i+l j+1
-k ~(k-1
> Tpligar = D, —¢ *Tpaplui+ Y, ¢ ¢ DTpap-1Liy
k=i+1 k=i+1 k=i+1
j+1
+ Y qTpre-1le-1.
k=i+1

After rearranging the indices, and using the induction hypotheses, the right
hand side of the equation simplifies to 0. Therefore, the proof is complete.
g

Corollary 3.3. Let A C Ay, (X) be the n-dimensional subspace generated by
the set {Ep x(X)}}.,. and Iet B C A{y)(X) be the n-dimensional subspace
generated by {Sk,ln-—kll-q]}k:l. Then, A = B.

Proof. 1t is clear by Proposition 3.2 that A = B. The dimension claim follows
from Proposition 4.1 below. a

The expression (—1)"p, = Zk_o( 1)*s541,1n-x-1 is the bridge between
Schur functions of hook type with the power sum symmetric functions. By the
linearity of plethysm we have

(—1)"pa[X]/(1-¢") = (=1)"Pn[X/(1—q)] = ’f(—l)ksk+1,1n—k—l[X/(l—Q)L
and therefore -

(3.12) (=1)"pn =(1-¢") §(—1)ksk+l.1“-“-l[x/(1 -q)).
Corollary 34. Foralln > 1, -

(3.13) (=1)"pn =}njli: -
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Proof. By Proposition 3.1 and (3.12) we get

(3.14) (=1)"pn=(1~ ")Z E( -1) T"*” (g; (E)X)

k=0 r=k+1

By rearranging the summations and using the Cauchy’s g-binomial theorem
once more, we finish the proof. a

4, HALL-LITTLEWOOD EXPANSION.

Proposition4.1. Fork =1,...,n,
EuilX) g~ __HplXi0)
(GDs oty Pl 07 (g, 0)
Hy(X;q)
peFartngy T Mgy, =0l — g~ 71)
Proof. LetY = (1 — t)(1 — z). Then, by the Cauchy identity (2.17), we have
S a2 5 B, (X;0, 07,1 )01 = 2)i,1]

po Gk hu(g, O (1)

_ The left hand side of tlle equation (4.1) is independent of the variable ¢. Since
hu(g,0) # 0O, and since h’,(g,0) # 0, we are allowed to make the substitution
t = 0 on both sides of the equation.

4.1)

Note that
Z“(q, O)I?“(q, 0) = H qap(.B) H (_qa,.(s)+1) I‘[ (1- qau(8)+1)
s€p s€p,l,(s)#0 s€u,1,(8)=0
n 2a,(s) 1- qa,.(s)+1
—_ ) H g H _qa“(s)-{-]
s€p 8€p,l.(s)=0
= (—q)n H qz“u(-") H (1 - q—a,(s)—l)
s€p s€u,l,(8)=0
“4.2) = (- I (@-g @)
SE#J‘.(S):O

The equality (4.2) follows from (2.1).

Using the Schur expansion fi’,,(X;q, t) =3, I?,\“(q, t)s, we see that the
plethystic substitution X — (1 — z), followed by the evaluation at ¢t = 0 is the
same as the evaluation H (X, q,0) att = 0, followed by the plethystic substitu-
tion X — (1 — z). Also, by Corollary 3.5.20 of {6], we know that

~ i— 1_qm
Hy[l -~ 25q, t] = Q[‘ZBP], where B# = Zt I-T:.

i>1
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Therefore,

(4.3) H,[1-24,0] = Q-2zB,]lo
4.4 = Q-z(1+g+---+¢"7")
H1=1
4.5) = JIa-24"
i=0
4.6 = (Z; Q)l-n'
It follows from (2.11) and (2.12) that
@.7) Hu(X;4,0) = Hu(X; q)-
By combining (4.1), (4.2), (4.6) and (4.7), we get
(4 8) -
Enk X) Hy(X;q)
Z( D = 25D GG ]~ = Ty

By comparing the coefficient of (2; q)x in (4.8), we find that
Enp(X) _ )3 Hy(X;9)

4.9) - — —.
@G e pertam COE) Tagp, =0l = g72(71)
Hence, the proof is complete.
a
Lemma 4.2. Let A - n be a partition of n. Then,
(410) S,\[ - Xl - ] = Z KA"';,(Q, t){'{#(x;% t).
( - q)( - ) ukn hp(Qa t)h' l-t(q’ t)
Proof. This follows from Theorem 1.3 of [3]. O

Corollary 4.3. Let A - n be a partition. Then,
X )= Z KA'# (9)H (X3 q)
-9 #(‘1; O)h u(q, 0)
= Z KA',/ (Q)ﬁu’ (X;9) .
(—q)ng?" ) Hse”,z”(5)=o(1 — g~as(s)-1)

Proof. It follows from (2.12) and (2.13) that Kx,.(¢,0) = K (0,9) = K ().
Since,

@1y slg

hu(q, 00 u(q,0) = (=g)"¢**®) [ @@ -q 2@,

s€p,l,(s)=0

and I?,.(X ;1q,0) = H w (X ), the proof follows from Lemma 4.2. a
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Theorem 4.4. Let1 < k < r < n, and let p € Par(n,r). Then,
Ty = K’(n-k+1,1k-1)w (9)-
Proof. Recall that

X - E. (X
Sk41,1m-k-1( |= Z Tk+1,r—'—(—)

1-¢ = (%:9)r
where .
= (=1 Y (=1)i¢@|"
Tewsr = (01401
Therefore, by Corollary 4.3 and Proposition 4.1 we have
k(n-k+1,l"")p'(‘])ﬁ#'(x;Q) _ X
Y = skaner[y=]
= hu(g, 0)R (g,0) q
e H.(X;
= ZT’W Z z_“(h_,i
r=k  pePar(nr) (g,0)7 (9, 0)
_ Ti, B (X39)
peUny Par(n,r) 1u(9 0)h(,0)
The theorem follows from comparison of the coefficients of H w(X;q). |
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