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Abstract

Let G be a graph of order n and let 12 be an eigenvalue of multiplicity
m. A star complement for x in G is an induced subgraph of G of order
n —m with no eigenvalue p. Some general observations concerning graphs
with the complete tripartite graph Kr,s,¢ as a star complement. We study
the maximal regular graphs which have K, » . as a star complement for
eigenvalue p. The results include a complete analysis of the regular graphs
which have Kn nn as a star complement for 1. It turns out that some
well known strongly regular graphs are uniquely determined by such a
star complement.
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1 Introduction

Let G be a finite graph of order n with an eigenvalue p of multiplicity m. (Thus
the corresponding eigenspace of a (0, 1)-adjacency matrix of G has dimension
m. For more details on graph spectra, see [1, 5]) If u is an eigenvalue of G of
multiplicity m, then a star set for p in G is a set X of m vertices taken from G
such that x is not an eigenvalue of G — X. The graph H = G — X is then called
a star complement for p in G. Star sets and star complements exist for any
eigenvalue in a graph and they are not necessarily unique. For the background
and results on star sets and star complements, one may consult [2, 7, 8, 9, 10,
11, 12).

The graphs (not necessarily regular) with the complete bipartite graph K,
(r + s > 2) as a star complement were discussed in [9]. Here we discuss graphs
with the complete tripartite graph K, ;. as a star complement. We give a gen-
eral description of the regular graphs which have K, , » as a star complement
for p. The results include a complete analysis of the case r = s =t = n and
1 = 1. This enables us to characterize the Kneser graph KG(9, 2) as the unique
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maximal graph G having K333 as a star complement corresponding to eigen-
value 1. Here the value —1 is the sole exception because 0 is an eigenvalue of
Kose (r+s+t>3).

We now fix some notation and terminology. We write H + v = H(a,b,¢)
for a generic graph obtained from H by introducing a new vertex u and joining
it to a vertices of R, b vertices of S and c vertices of T, then we say that u
is of type (a,b,c). Next we consider a graph H + u + v, obtained from H by
adding vertices u, v of type (a,b,¢), (o, 3,7), respectively. If y is an eigenvalue
of H + u + v of multiplicity 2, but not an eigenvalue of H, by [6, Theorems
7.4.1 and 7.4.4], the matrix [by, |b.,] determines whether or not there is an edge
between u and v: we write ay, = 1 if u ~ v, a,, = 0 otherwise.

In Section 2, we discuss the addition of vertices to K, . to obtain p as
a eigenvalue. In Section 3 we discuss special case K, .; in particular, we
investigate conditions under which two vertices can be added to K, , , to obtain
a regular graph with a double eigenvalue p and in Section 4 we analyze the case
r=s=t=n,u=1.

2 The general case

Here we suppose that H is the complete tripartite graph with three part R, S
and T, where |R| =7, |S] =sand |T| =t,r < s <t. We take

0 ers ert
C= Joxr 0 Joxt
thr tha 0

where C is the adjacency matrix of H and J.x, denotes the all-1 matrix of
size r x s. Note that C has characteristic polynomial z"+5+t=3(z3 — (rs 4 st +
rt)x — 2rst) and that if x is not an eigenvalue of C, by proposition 0.2 of (7], if
r=s=t=n then

pp —np—2m®)(pl - C) ' =C?*+ (u—n)C+ (¥ —np—23)  (21)
else
p(U® = (rs + st + rt)u — 2rst)(ul — C)~' = (u® — (rs + st + rt)p — 2rst)]
+ (1% = (rs + st + rt))C + uC?
+C3.
(2.2)
Consider a graph H + u + v, obtained from H by adding vertices u, v of type
(a,b,¢), (a, B,7), respectively. We denote by p the number of vertices in H

which are common neighbours of « and v. On equating entries in Reconstruction
Theorem [6, Theorems 7.4.1 and 7.4.4], with B = [b,|b,], we find that this matrix
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equation is equivalent to the three simultaneous polynomial equations that if
r = s =t then fi(u) = f2(u) = fs(p) = 0, otherwise g; (1) = g2(p) = ga(p) =
0. Where

fi(z) = (#2 = (a+b+c))(z® —nz - 2n2) —2n(a®+ b +c2) — 2(ab+be+ac)z (2.3)

f2(z) = (2 = (a + B+ 7))(z® — nz — 2n%) — 2(afz + By + av)z — 2na’

— 2n8% — 2ny?
(2.4)
f3(z) = (auu + p)(z% — nz — 2n%) + 2n(ac + bB + cy) + a(b + ¢)z + faz
+ Bez + v(a + b)z
(2.5)

and
91(z) = (2% — (a + b+ ¢))(z® — (rs + st + rt)z — 2rst) — a®(2ts + (¢t + s)z)
— b2(2tr + (t + 7)z) — P(2rs + (r + s)z) — 2abz(z +t)
— 2acz(x + 8) — 2cbz(z + 1)
(2.6)
g2(z) = (22 — a — B —y)(z® — (rs + st + rt)z — 2rst) — o2(2ts + (t + 5)z)
— B2(2tr + (t + 1)) — Y2 (2rs + (r + 8)z) — 2aBx(z + t)
—2ayz(z + s) — 2yBz(z + 1)
2.7
93(Z) = (@ + p)(z® — (s + st + rt)z — 2rst) + aa(2ts + (t + s)z) + 2bBtr
+bB(t + )z + cy(2rs + (r + 8)x) + (af + ab)x(z + t)
+ (a7 + ac)z(z + s) + (by + Be)z(z + 1)
(2.8)

In [9], it is shown that if H is a complete bipartite graph and u and v are of the
same type (a,b), then u? + a,,p = a+b— p. We also show that, in the following
lemmas, if H is a complete tripartite graph and « and v are of the same type
(a,b,c), then p? +aypu=a+b+c—p.

Lemma 2.1 Suppose that u and v are of the same type (a,b,c) and that u is
not adjacent to v. Then p>2 =a+b+c—p.

Proof. Taking (a,b,c) = (a,,7) in equations (2.5) and (2.8), we find that
f1() + f3(z) = (22 —nz — 2n?)g(z) and g1 (z) + g3(z) = (3 — (rs + st +rt)r —
2rst)g(z), where g(z) = 22+ p — (a + b+ ¢). Hence g(p) =0. O

Lemma 2.2 Suppose that u, v are of the same type {(a, b, c) and that v adjacent
tov. Thenp? +p=a+b+c—p.

Proof. Here we have f(z) + fa(z) = (22 — nz — 2n2?)g(z) and g,(z) + g3(z) =
(x3 = (rs + st + rt)x — 2rst)g(z), where g(z) =22 +z + p— (a + b+ ¢). Hence
g(p)=0.0
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We now suppose that G is a r-regular extension of H with star set X, where

His K; 50

3 The case H >~ Ku,pnn

Here we suppose that H is the complete tripartite graph with three part R,
S and T, where |R| = |S| = |T| = n. Note that adjacency matrix of H has
minimal polynomial z(z — 2n)(z + n). Suppose that G is a r-regular extension
of H with star set X. Let v € X. Then it is well known that (b,,j} = —1.
Therefore by (2.1) we have

A=2n—p C=202-p3—pln—yun (3.1)

where A = a+b+c and C = a? + b2 + 2. Since A and C are positive number,
so —n < p < n. With no loss of generality we assume that a < b < ¢, if we find

a solution such that a > b, b > c or a > ¢, we should interchange the roles of a,
b and c.

Proposition 3.1 If u is an eigenvalue of H + u, but not an eigenvalue of H,
then __3_@2_; <p< i‘z"'@_

Proof. We know from [6, Theorems 7.4.1 and 7.4.4] that
p2(p? — np — 2n0%) = b1 (C? + (1 —n)C + (4? — np — 2n%) )b,

Now suppose that u, v are of type (a,b,c) and (e, 8,7), respectively. We know
that fi(x) + f2(u) + fa(u) =0, so

(26® + awwp +p— (@ +b+c) — (@ + B+7))(k — 2n)(1 +n) = 2n(aa + bB + cv)
+2n((a—a)’ +(B-0)2+(y-c)®)—(ab+c)+Bla+c)+y(a+b)u+
+ (2ab + 2ac + 2be + 2va + 2By + 2Pa)p (3.2)
By inserting b+c=2n—p~a,a+c=2n—-p—b,a+b=2n—pin (3.2),we
have
2126 +ayupt +p - (@+b+c)— (@+B+7)) (- 2n) (g +n) =
(4n = p)((@ —a)? + (B —b)% + (v — ¢)®) + (2ab + 2ac + 2bc)u
+ dn(aa + b8 + cy) + (2va + 287 + 2Ba)u (3.3)
Since —n < p < n, the right hand side of (3.3) is nonnegative. Thus 2u2 +

Guopp+p—(a+b+c)—(a+pB+7) <0. Notethat a+b+c=a+8+v=2n—p,
so we have

_(au.,+2)—1/(GZ.,+2)3—8p+32n <u< —(am,+2)+\/(¢4.“,+2)3-—8p+32n

Moreover a,, € {1,0} and 0 < p < 2n — p. So i@ <p< ﬁzl’*@
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Proposition 3.2 Suppose that u is of type (a, b, c) wherea = b = c, thena = p?

2
andn=§"7+ﬁ.

Proof. Taking a = b = c in equations (3.1)2, we have A = 3a = 2n — p. Since
302 =2n? — p(u+ 1)n — p3, we have n = 23 So o =2 O

Proposition 3.3 Suppose that u is of type (a,b,¢) wherea = b < ¢ (ora <
2 2
b=c), then 2E < n < 2u% +p and a < 252, Purthermore if n = 2% + p,
2_ 2 2,0
then (a,a,c) = (12, 42,20 + p) and (a,¢,c) = (2“3 £, 2% ;22’ = ;;E)

Proof. Taking a = b in (3.1), then we have

2a+c=2n—-u
202 + 2 =2n% -y - pPn—pun

s0 a = g"’"—'é)éﬂ and c = 2"—"‘§L‘/K, where A = 4(n + p)(n — Q%E). Since

A > 0 and ¢ < n, we have §#ﬁ < n < 2u2 + u. Therefore 3a < 442 + p, the
result follows. O

4 H~Kpppnand p=1

Suppose that H = K, ,, . is a star complement for eigenvalue x = 1 in G. Note
that G has 1 as the second largest eigenvalue (by Interlacing Theorem [5, p.
19]). If 4 = 1, then by Reconstruction Theorem (6, Theorems 7.4.1 and 7.4.4],
we have

20A-1)n® +(4B-242+A-1)n-A-2B+1=0 (4.1)

where A=a+ b4 c and B = ab+ bc + ac.

Theorem 4.1 If Ky » be a star complement for Ay = 1 with regular eztension,
thenn =2,3.

Proof. Suppose that G is a regular extension of K, »,,. Then by (3.1) we have
A=2n-1. Thus

a2+ b +c?—2b—2ac—2bc+3=0

so ¢ = b+a=t+/4ab—3. Note that a > 0, because if a = 0 we have (b—c)2+3 =
0, this is a contradiction. First suppose that ¢ = b + a + v/4ab— 3. Since
vVdab—3>1thenc>n= ﬁ'—”{,i*—‘, but we know thatc < nsoc=n. Ifc=n
wehavea=b=1and n=3.

Now suppose that ¢ = b+a — v4ab—3,sincea <b<c=b+a— vdab— 3 we
have

402 — 3 < 4ab—3 < a2

so we find @ = 1, which gives the solutiona=b=c=1and n=2. O
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Theorem 4.2 There is a unique regular extension with star complement K3 33
for o =1.

Proof. Due to Theorem 4.1, here we have 27 vertices of (a, b, ¢)-type. Denote
them by Uy, Us,...,Us7, and the corresponding vertices by uj,us,...,us7, re-
spectively. By Lemmas 2.1 and 2.2, we find that all vertices which have same
type are in star set. We have exactly one case for the intersection of any pair
of U;,Uj,1 < i < j <27, where u; and u; don’t have same type; |U; NU;| =3,
u; and u; are in star set if they are non-adjacent.

Therefore, each pair of U;,U;,1 < i < j < 27 correspond to two vertices which
are in star set. This leads us to the unique maximal graphs whose star set
contains each of 27 vertices u;,uy, ..., u27. The proof is complete..]

Remark 4.3 The mazimal graph from the previous Theorem is Kneser graph
KG(9,2). Its spectrum is [—6%,1%7,211]. (see [3,4])

Theorem 4.4 There are exactly two isomorphic mazimal graphs with star com-
plement K322 for Ay =1.

Proof. Due to Theorem 4.1, we have 8 vertices of (1, 1, 1)-type can have between
zero, one and two vertices in common, and by inspecting these situations we
find that they are in one star set in two cases: if they have precisely two vertices
in common (then the vertices in the star set are non-adjacent), and if they have
precisely one vertices in common (then the corresponding vertices are adjacent).
Therefore we have two star sets which have 4 vertices of (1,1, 1)-types, and two
obtained maximal graphs are isomorphism. [

Remark 4.5 The maximal graph from the previous theorem is complement of
Petersen graph. Its spectrum is [-25,14,6!]. (see [3,4])

Using the SCL - star complement library, one can compute the maximal ex-
tensions for this family of star complements. So Theorems 4.2 and 4.6 can be
obtaind by using the facilities of SCL(For more details, see [12]). We summarize
the above in the following theorem.

Theorem 4.6 K, ., is a star complement for Ay = 1 with strongly regular
extension if and only if n = 2,3.
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