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ABsTRACT. In this work, we consider the generalized Genoc-
chi numbers and polynomials. However, we introduce analytic
interpolating function for the generalized Genocchi numbers
attached to x at negative integers in complex plane and also
we define the Genocchi p-adic L-function. As a result, we de-
rive the value of the partial derivative of the Genocchi p-adic
I-function at s = 0.
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1. Preliminaries

The p-adic numbers were invented by German Mathematician Kurt Hensel
around the end of the nineteenth century. In spite of their being already one
hundred years old, these numbers are still today enveloped in an aura of mystery
within the scientific community. The p-adic integral was used in mathematical
physics, for instance, the functional equation of the g-zeta function, g-stirling
numbers and g-Mahler theory of integration with respect to the ring Z, together
with Iwasawa’s p-adic g-L functions. Furthermore, the p-adic interpolation func-
tions of the Bernoulli and Euler polynomials have been treated by Tsumura [33]
and Young [34]. T. Kim [7]-[23] also studied on p-adic interpolation functions of
these numbers and polynomials. In [35], Carlitz originally constructed g-Bernoulli
numbers and polynomials. These numbers and polynomials are studied by many
authors (see cf. [8]-[27)], [38]). In the last decade, a surprising number of papers
appeared proposing new generalizations of the Bernoulli, Euler and Genocchi
polynomials to real and complex variables (see [1-44]).

In [7]-[25), Kim studied some families of the Bernoulli, Euler and Genocchi
numbers and polynomials. By using the fermionic p-adic invariant integral on
Zy, he constructed p-adic Bernoulli, p-adic Euler and p-adic Genocchi numbers
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and polynomials of higher order. In this paper, by using Kim’s way, we de-
rive arithmetic properties for the generalized Genocchi numbers and polynomials
attached to x.

The famous Genocchi numbers are given in the complex plane by the following
exponential generating function:

(1) E(t)—-%——iaﬂ | <
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It follows from the definition that Go = 0, G; = 1, Gy = -1, G3 = 0,
Gy4=1,G5=0,---,and Gog41 =0for k=1,2,3,---.
The Genocchi polynomials are also introduced by the rule:
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with the usual convention of replacing G™ () := Gn (z) (see (8], [9] and [11]).

For f € N with f = 1(mod 2), we assume that X is a primitive Dirichlet’s
charachter with conductor f. The Genocchi numbers associated with x, Gn y,
may be defined as follows:
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In this paper, we contemplate the definition of the generating functions of the
generalized Genocchi numbers attached to X in complex plane. From this defini-
tion, we introduce an analytic interpolating function for the multiple generalized
Genocchi numbers attached to . Finally, we investigate behaviour of analytic
function at s = 0.

2. ON AN ANALYTIC FUNCTION RELATED TO GENERALIZED
GENOCCHI NUMBERS

In this part, we consider equation (3):
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Because of (2) and (4), we readily see that
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For s € C, we have
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where I" () is Euler-Gamma function, which is defined by the rule
o0
T (s) =/ t*"le~tdt.
0

Via the (6), we give the Genocchi-zeta function as follows: for s € C and
x#oa_la_z»"' [}
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By (2) and (6), we derive
(g(—n,z) = E'L(xl for n € N.

n+1
By utilizing from complex integral and (4), we obtain the following equation:
for s € C,
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where X is the primitive Dirichlet’s character with conductor
feNand f =1(mod?2).

Thanks to (8), we give the definition Dirichlet’s type of the Genocchi L-
function in complex plane as follows:

©) Lis|x =2} XU
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Via the (4) and (9), we state the following
Gn+l
10 - = Gn+ix ,
(10) L(-n|x) — 1 forneN

Let s be a complex variable, and let @ and b be integer with 0 < a < F and
F =1 (mod 2).

Thus, we can consider the partial zeta function S (s;a | F') as follows:

(1)  S(salF)=2 Y (‘ni) =(—1)“F"(G(s,%).
m>0

m=a{mod I)

Then Dirichlet’s type of L-function can be expressed as the sum: for s € C

F
(12) L(s|x)=)_x(a)S(sa| F).

a=1

Substituting 8 = —n into (11), we readily derive the following: for n € N

(13) (n+1)S(1 -nja| F)=(-1)*F*1G, (%)
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By (2), it is easy to show the following

(14) Gn (z) = zn: (Z) "Gy = f: (:) TG
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Thanks to (11), (13) and (14), we discover the following

(15) —sS(s+1;a| F)=(-1)°*F g~ Z (—ks) (-Z—)k Gk

k>0
From (12), (13) and (15), we obtain

(16) —sL(s+1|x)=% Y x(a) (-1)°a—sz(‘ks) (%)kck.

1<a<F k>0

In the next section, we search a p-adic function that agrees L (s | x) at nega-
tive integers.

3. CONCLUSION

In this final section, we consider p-adic interpolation function of the generalized
Genocchi L-function, which interpolate Dirichlet’s type of Genocchi numbers
at negative integers. Firstly, Washington constructed p-adic [-function which
interpolates generalized classical Bernoulli numbers.

Here, we use some the following notations, which will be useful in reminder of
paper.

Let w denote the Teichmiiller character by the conductor f, = p. For an
arbitrary character x, we set x,, = xw™", n € Z, in the sense of product of
characters.

Let
a

w(a)’
So, we want to note that (a) = 1(mod pZ,). Let

(@) =w(a)a=

(=]
Aj (z) = Z an,jzn, an'j € Cp, j = 0, 1,2, .
n=0

be a sequence of power series, each convergent on a fixed subset
—2=
T={seCy|lsl, <p 5},

of C, such that
(1) ap,; — ano as j — oo for any n;
(2) for each s € T and € > 0, there exists an ng = ng (s, €) such that

Z Qn,;s"| < €for Vj.
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So,
jlim A;j(s)=Ap(s), forallseT.

This was firstly introduced by Washington [40] to indicate that each functions

w™*(a)a® and
oo i
() (%)=

where F is multiple of p and f and B, is the l-th Bernoulli numbers, is analytic
on T (for more information, see [40]).

We assume that X is a primitive Dirichlet’s character with conductor f € N
with f = 1(mod 2). Then we think the Genocchi p-adic L-function, Ly (s | x),
which interpolates the generalized Genocchi numbers attached to X at negative
integers.

For f € N with f = 1(mod2), let us assume that F is a positive integral
multiple of p and f = f,. We now give the definition of Genocchi p-adic L-
function as follows:

k
7) -sLG+1l0=5 ¥ x@0t0 T () (5) e
1<a<F k>0

With the help of (17), we want to note that L, (s + 1| x) is an analytic
functionon s € T
For n € N, we have

F
(18) Crx, = F" 3 (-1 % (@) G (7))

a=1

If x,, (p) # 0, then (p, fx,‘) =1, and so the ratio % is a multiple of fy .
Let

p={§|a§0(modp)forsomeaGZwithOSaSF}.

Therefore we can write the following
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By (19), we define the second generalized Genocchi numbers attached to x as
follows:

(20) Gim. = (£) S O, (75)

a=1
£€p

On accounct of (18), (19) and (20), we attain the following
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By the definition of the familiar Genocchi polynomials, we can state the fol-
lowing

(22) Gn (%) = Fngn f: (’;) (%)kc,,.

k=0
By (21) and (22), we have
(23) Gnx, =P X (P) Gr ..
F n k
1 n n\ (F
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By (17) and (23), we readily see that
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Therefore, we obtain the following theorem.
Theorem 3.1. The following identity holds true:
-5\ /F\*
—sL, 1 == 1 - = .
sLp(s+11%) = ;x(a (~1)" (o ;o(k) (£) @

Thus L, (s + 1| x) is an analytic function on T. Moreover, for any n € N,
we get the following:

Ly(1=n 1) = = (Gax, = 7" xa (7) i, )

Using Taylor expansion at s = 0, we have

(25) (_s) G




Differentiating on both sides in (17), with respect to s at s = 0, we derive the
following theorem which is an importan in p-adic analysis and Analytic numbers
theory.

Theorem 3.2. Let F be a positive integral multiple of p and f. Then we have

17}
gLP (s+1 l X) [s=0= Lp (11x)

F ) m k
+-;,— > x(a)(-1)* ((1 —log,a) + ) (_;) ({-) Gk)

a=1
{a,p)=1

where log, x is denoted by the p-adic logarithm.
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