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Abstract

A k-L(d, 1)-labeling of a graph G is a function f from the vertex
set V(G) to {0,1,--- ,k} such that |f(u) — f(v)] 2 1 if d(u,v) = 2
and |f(u) — f(v)] 2> d if d(u,v) = 1. The L(d,1)-labeling number
Aa(G) of G is the smallest number k such that G has a k-L(d, 1)-
labeling. In this paper, we show that 2d+2 < A\4(Cr»n0Cy) < 2d+4if
either m or n is odd. Futhermore, the following cases are determined.
(2) Aa(C30C) and Mg(CsOC,) for d 2 3, (b) A3(CmOC,) for some
m and n, (c) A¢(C2mOC2,) for d > 5 when m and n are even.
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1 Introduction

Roberts [23] put forward a variation of the frequency assignment prob-
lem introduced by Hale [17] via a private communication with Griggs and
then Griggs and Yeh [16] proposed the L(2, 1)-labeling problem on graphs.
Chang et al. [3] generalized the L(2,1)-labeling problem to the L(d,1)-
labeling problem. Given a positive integer d, an L(d, 1)-labeling of a graph
G is an assignment f of non-negative integers to the vertices of G such that

IRV OTER RS b

For a nonnegative integer &, a k-L(d, 1)-labeling is an L(d, 1)-labeling such
that no label is greater than k. The L(d, 1)-labeling number A¢(G) of G is
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the smallest number & such that G has a k-L(d, 1)-labeling. We often use
A(G) to represent the L(2,1)-labeling number of G.

Griggs and Yeh [16] showed that the L(2,1)-labeling problem is
N P-complete and conjectured that A(G) < A%(G) for any graph G with
A(G) > 2. Chang and Kuo [2] proved that A(G) < A%(G) + A(G) and
gave polynomial algorithms for the L(2,1)-labeling problem on cographs
and trees. Chang et al. [3] proved that A\4(G) < A%(G)+(d—1)A(G) when
A(G) > 2. Gongalves [15] showed that A4(G) < A%(G) + (d — 1)A(G) — 2
when A(G) > 3. Yeh [29] and Calamoneri [1] gave two good surveys on
the L(2,1)-labeling and its generalizations, respectively. The purpose of
this paper is to study the L(d, 1)-labeling problem for the Cartesian prod-
uct of two cycles. Given two graphs G and H, the Cartesian product of
these two graphs, denoted by GOH, is defined by V(GOH) = {(u,v)|u €
V(G),v € V(H)} and E(GOH) = {(v,z)(v,y)|(v = v,zy € E(H)) or
(uv € E(G),z = y)}. The L(d, 1)-labeling number of Cartesian products
of graphs was studied in [5, 12, 14, 18, 19, 20, 21, 25, 27]. We could find
further studies on the L(d, 1)-labelings in (3, 4, 6, 7, 8, 9, 11, 13, 22, 24, 28].

The L(2, 1)-labeling of the Cartesian product of any two graphs were
considered in [26] and the L(2, 1)-labeling of the Cartesian product of two
cycles were studied in [18, 21, 25].

Theorem 1 [18, 21, 25] If n > m > 3, then
6, ifm,n=0(mod 7);
MCnOC,) =< 8, if(m,n) € A;

7, otherwise,

where A = {(3,7) | i > 3,4 is odd ori = 4,10}U{(5,4) | i = 5,6,9, 10, 13,17}
u{(6,7), (6,11),(7,9), (9, 10)}.

Jha, Klavzar, and Vesel [20] proposed A\4(C[3C,,) for d = 3,4 and
4 < m,n < 11. Their results are summarized in the following Table 1.
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m|n A3(Cr,OCy) | M(CrOCy)
4 [n=4,8 9 10
4 | n=5,6,7,9,10,11 ]9 11
5 |n=5 10 12
5 |n=7 10 11
5 | n=6,8,9,10,11 9 11
6 [n=9 8 10
6 | n=6,78,10,11 9 11
7 178,910,11 9 11
8 {8 9 10
9 |9 8 10
10 | 10 9 11

Table 1.[20] A4(C,0C,),102n>m > 4,d = 3,4

From now on, for convenience, we use v;; to denote the vertices of
CnOC,, where i € Z,,, and j € Z,.

Y

Figure 1. C,,0C,

2 Upper bound and Lower bound

In this section, we give the upper bounds and lower bounds for A\;(C,,OC)
under various parameters. Since Cp,OP, is a subgraph of C,,,(0C,,, we have
the following lemma from [5].

Lemma 2 Suppose d > 3. Then

(a) 2a(Cr0Cr) 2 d+6 ifd > 4.

(b) 2a(CrOC}) > 2d + 2 if either m or n is odd.
(c) Xa(C4OC,) > d + 6.

(d) )‘3(CmDCn) > 8.
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By re-constructing and combining some labelings of smaller C,,00C,,,
we got the upper bound of A\4(C,,OCy).

Lemma 3 Suppose d > 3. Then

(a) Xa(Cr,OC,) € 2d + 4.

(b) Aa(CamOCay) < d + 7 if m,n # 2,5.
(¢) 2a(CnOCyp) < 2d + 3.

(d) A\a(C4mOCyp) < d + 6.

Proof. By combining (a), (b), (c), and (d) of Figure 2, we have a
(2d + 4)-L(d,1)-labeling of C,,0C, if m,n # 5. By combining (a) and
(b) of Figure 3, we have a (2d + 4)-L(d, 1)-labeling of Cs0C,, for n # 5.
Figure 3(c) gives a (2d + 4)-L(d, 1)-labeling of Cs00C5 for d > 3. Similarly,
Figure 4 gives A\4(C2,,0C2,) < d+ 7 for m,n # 2,5, and Figure 5 gives
Ai(CmDOCyqyr) < 2d + 3. Figure 6 gives Aj(Cy0C4n) <d+6. B

(c) C4OC3 (d) C48C;
Figure 2. A (2d + 4)-L(d, 1)-labeling of C,,00C,, for d > 3 if m,n # 5.
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(b) Cs0C, (c) Cs0OCs
2
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(c) Cs0Cs (d) CsDCs
Figure 4. A (d+7)-L(d, 1)-labeling of Co,00Csy, for d > 3 and m,n # 2,5.

(a) C4DC3 (b) C4DC4 (C) C4|:|C5
Figure 5. A (2d + 3)-L(d, 1)-labeling of Cr,00C}, for d > 3.

Figure 6. A (d + 6)-L(d, 1)-labeling of CynOC4n.
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Lemma 4 [16] If f is a k-L(d, 1)-labeling of a graph G, then the function
9:V(G)— {0,1,--- ,k} defined by g(v) =k — f(v) for each vertezv in G
is a k-L(d, 1)-labeling.

Lemma 5 Suppose d > 3 and f is a (2d + 2)-L(d, 1)-labeling of Cr,OC,.
If f(vij) = d+ k, for some k =0,1,2, then

() either {f(vit1,5), f(vim1,3)} = {k,2d + k} or {f(vij+1), f(vi,j-1)} =
{k,2d + k},

(b) 4 ¢ {m,n}.

Proof. (a)If f(vi;) = d, then {f(vi,j—1), f (vi-1,5), f(vij+1), f(Vi41,5)} =
{0,2d,2d + 1,2d + 2}. Assume f(v;;—1) = 0 and f(v;41,;) = 2d. Then no
labels can be assigned to f(vig1,j-1)- So, either {f(vit1,;), f(vi-15)} =
{0,2d} or {f(vij41), f(vij—1)} = {0,2d}. It is similar to the cases for
f(v,-,j) =d+1 and f(vi,j) =d+2.

(b) Assume f(v;;) = d+ 1. By (a), let’s assume f(v;j41) =
1, f('ui,,-..l) = 2d+1, f('u,-_l,j) = 0, and f(v,-+1,j) = 2d + 2. Then
f(vit1,41) = d+2. By (a), we have f(viy1,+2) = 2, f(vit2,41) = 0.
This implies m # 4. If n = 4, then no labels can be assigned to f(v;j42).
Therefore, we have n # 4. It is similar to the cases for f(v;;) = d and
fluij)=d+2. H

Lemma 6 (a) Suppose f is a (d + k + 2)-L(d, 1)-labeling of Cr,OOC,, and
d > k. Then f(v) € {0,1,--- ,k—1,d+3,---,d+ k + 2} for each v €
V(CrOCh).

(b) Suppose f is a (2d + k)-labeling of C30C,, and d > k. Then f(v) €
{0,--- k,d,--- ,d+k, 2d,--- ,2d + k} for each v € V(C30C,).

Proof. (a) Assume f(v) = ¢ for some v € V(C,,,0C,) and i < d. Then
f(N()) C {d+4,--- ,d+k+2} ifi <dand f(N(v)) C {0,2d,-- ,d+k+2}
if i« = d. Since |f(N(v))] = |N(v)| = 4, we have i < k. Thus, f(v) €
{0,1,--- ,k -1} if f(v) < d. Sinced > k, we have d + k+2 < 2d + 1. By
Lemma 4, we have f(v) € {0,1,--: ,k—1,d+3,--- ,d+ k + 2}.

(b) Assume f(v;;) =t for some ¢t € {0,1,--- ,d — 1}. Then v;_; ;
or v;41,; must be labeled by a number which is at least 2d + ¢. It implies
t < k. Therefore, by Lemma 4, we have f(v) € {0,1,--- ,k,d,---,d +
k,2d,--- ,2d + k} for each v € V(C50C,). B
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3 The L(d,1)-labeling number of C3;0C, for
d>3

In this section, we determine \g(C30Cy) for d > 3.

Figure 7. A (2d + 2)-L(d, 1)-labeling of C3,,[0Cyy, for d > 3.

Theorem 7 If d > 3 and one of m and n is odd, then A\g(C3m0OCopn) =
2d+2.

Proof. By Lemma 2(b) and Figure 7, we have Ay(C3,0Co,) = 2d + 2.
[ |

Theorem 8 Ifd > 3, then

2d+2, n=0(mod 9);
M(C30C,) =< 2d+4, n=3or(n=7andd=3);
2d + 3, otherwise.

Proof. By Theorem 7, we have A\g(C30Cy,) = 2d + 2.

Suppose f is a (2d + 3)-L(d, 1)-labeling of C50C3. By Lemma 6(b),
we have f(v) € {0,1,2,3,d,d +1,d +2,d + 3,2d,2d + 1,2d + 2,2d + 3} for
each v € V(C30C3).

Claim 1. f(v) # d,d + 3 for each v € V(C50Cs3).

Suppose f(’v,',j) =d. Then f(N(’Ui'j)) c {0,2d,2d+1,2d+2,2d+3}. With-
out loss of generality, we assume f(v;_1,;) = 0. Since | f(vi j—1) — f(vi,j41)I
> d 2> 3, v;j—1 or v;j41 must be labeled by 2d, say v;;~;. This implies
f(vi-1,j—1) = 2d + 3, Then no labels can be assigned to v;;+1. It is a
contradiction. Thus, f(v; ;) # d. By Lemma 4, we have f(v) # d,d + 3 for
each v € V(C30C3).

Claim 2. f(v) # 3,2d for each v € V(C30C3).

Assume d > 4 and f(v;;) = 3. By Lemma 6(b) and Claim 1, we have
f(N(v;;)) € {2d,2d+1,2d+2,2d + 3}. Then we can not assign v;,;~1 and
i j+1 since |f(vij—1) — f(vi,j41)] = d > 3. It is a contradiction. Thus,



f(v) # 3 for each v € V(C30C3). By Lemma 4 and Claim 1, we have
f(v) #d,d + 3 for each v € V(C30C3).

So, f(v) € {0,1,2,d + 1,d + 2,2d + 1,2d + 2,2d + 3} for each
v € V(C30C3). It is a contradiction to |f~}(V(Cs0Cs))| = 9. Thus,
A4(C50C3) > 2d + 4 for d > 3. By Lemma 3(a), A\g(C30C3) = 2d + 4 for
d > 3. According to the aid of computer program implementation, we have
A3(C30C;) = 10.

Suppose f is a (2d + 2)-L(d, 1)-labeling of C30C,,. By Lemma 6(b),
f(v) € {0,1,2,d,d + 1,d + 2,2d,2d + 1,2d + 2} for each v € V(C50C,).
Assume f(v) = 2 for some v € V(C30C,). We may let f(v1,1) = 2. Since
|f(’l)o,1) - f(vg,1)| > d, we have {f(‘vo,l), f('l)z'l)} = {d+2, 2d+2}. Without
loss of generality, we assume f(ve,1) = d+2, f(vo,1) = 2d+2, f(v1,0) = 2d,
and f(v1,2) = 2d+ 1. Then f(vo,0) = d, f(v20) =0, f(vo,2) =d+1, and
f(va,2) = 1. This implies f(vp,3) = 0 and f(v1,3) = d. By Lemma 5(a),
we have f(vq,3) = 2d. By repeating the pattern mentioned above, we have
f(vi ;) =2 if and only if j = 3i — 2(mod 9). This implies n = 0(mod 9).

Suppose n #Z 0(mod 9). Then, f(v) # 2 for each v € V(C30C,).
Assume f(v) = d + 2 for some v € V(C30C,). Then 4 = |f(N(v))| <
|{0,1,2d + 2}| = 3. It is a contradiction. Thus, f(v) # d + 2 for each v €
V(C30C,). By Lemma 4, we have f(v) # d, 2d for each v € V(C30Ch).
So, f(v) € {0,1,d+1,2d +1,2d + 2} for each v € V(C30C,). This implies
5 > |f(C50C,)| = |f(C30OP)| = 6, a contradiction. So, A¢(C30C,) >
2d + 3 for n # O(mod 9) and d > 3. By combining (a), (b), and (c)
of Figure 8, we have a (2d + 3)-L(d, 1)-labeling of C50C, for d > 3 and
n # 3,7. Figure 9 gives a (2d + 3)-L(d, 1)-labeling of C30C7 for d > 4.
Consequently, the proof is complete. W
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(c) C300Cs

Figure 9. A (2d + 3)-L(d, 1)-labeling of C30C% for d > 4.

4 The L(d,1)-labeling number of C,00C, for
d>3

In this section, we determine Ag(C40C,) for d > 3.

Theorem 9 Suppose d > 3 andn > 1. Then
(a) 2a(C40C2n41) = 2d + 3.
(b) z\d(C‘;DC‘m) =d+6.

Proof. Let f be a (2d + 2)-L(d, 1)-labeling of C;0C,,. By Lemma
5(b), we have f(v;;) € Ay = {0,1,2,--- ,d—1} or f(v;;) € A2 = {d +
3,--+,2d + 2} for each v;,; € V(C40OC2n+1). So f(v;,;) € A, if and only if
f(vy y) € A2 when i+ j # i + j (mod 2). This implies m is even. Hence
Aa(C30C2n41) > 2d+3. By Lemma 3(c), we have A\3(C40C52n 1) = 2d+ 3.
By Lemma 2(c) and Lemma 3(d), we have A\4(Cs0Cy,) =d+6. B

For the case of C40Cn 42, the L(d, 1)-labeling number may be d+6,
d+7,or d+ 8 when d > 3. In most cases, the number is d + 7.

Lemma 10 Suppose m < n and 4t ged(m,n). Then Ag(Crn3Cr) > d+6
ifd>5o0ord=m=4.
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Proof. Suppose f is a (d + 6)-L(d, 1)-labeling of C,,0C,. By Lemma
5(b) and Lemma 6(a), we have f(v) € {0,1,2,3,d+3,d+4,d+5,d+6} for
v € V(Cr,OC,) with d > 5 or d = m = 4. Without loss of generality, we
assume f(vo,0) € {0,1,2,3}. Then f(v;;) € {0,1,2,3} if and only if i + j
is even. Let A = {f(v;;)|0 < i < n—1}. It is trivial that |A] > 2. Suppose
|A| = 2. We may assume A = {0,1}. Then f(v;;) € {0,1} if and only if
i—j = 0(mod 4) and f(v; ;) € {2,3} if and only if  — j = 2(mod 4). This
implies 4/m and 4|n. For the case of |A| > 2, we may assume f(v;;) = ¢
for i =0,1,2. Then,

if ¢ + 7 = 0(modm) and ¢ is even.
if i + 7 = 4(modm) and ¢ is odd.
if i + 7 = 2(modm) and i is odd.
if i + j = 0(mod m) and 1 is odd.
if i+ j = 4(modm) and i is even.
, ifi+4 j=2(modm) and i is even.

-

-

-

flvijg) =

-

WV~ OO

This implies f(v;;) € {0,2} if and only if 2 + j = O(mod 4) and f(v;;) €
{1,3} if and only if ¢ + j = 2(mod 4). Thus, we have 4|m and 4|n.

For any case, we have 4|m and 4|n. It is a contradiction to 4 {
ged(m,n). So \(Cr,OC,) >d+6. A

Theorem 11 M\ g(CymOCypi2) =d+ 7 ford>5 and n > 3.
Proof. By combining (a) and (b) of Figure 10, we have a (d+ 7)-L(d, 1)-

labeling of Cy0OC4p+2 for d > 4 and n > 3. By Lemma 10, we have
Ad(C4mOCany10) =d+T7ford>5andn>3. N
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(b) C40OCh4
Figure 10. A (d+7)-L(d, 1)-labeling of C4OCyn+2 for d > 4 and n > 3.

Theorem 12 )4(C400Cs) =d + 8 ford > 5.

Proof. Suppose f is a (d + 7)-L(d, 1)-labeling of C400Cs. For each
v € V(C40Cs), by Lemma 5(b) and Lemma 6(a), f(v) belong to A; =
{0,1,2,3,4} or A, = {d +3,d+4,d+5,d+6,d+ 7}. Then for each
wv € E(C40Cs), f(u) € A, if and only if f(v) € As. It is not hard to check
that |f~1(3)| < 2 for each i € A, U Ap. Then 24 = [V(C,0Cs)| < 20. It
is a contradiction. Thus, Ag(C40Cs) > d + 8. Figure 11 gives a (d + 8)-
L(d, 1)-labeling of C400Cs. Thus, \g(C40OCs) =d+8. W

Figure 11. A (d + 8)-L(d, 1)-labeling of C400Cs.
Theorem 13 Ay(C2,0C10) =d +8 ford 25 andn < 4.

Proof. Suppose f is a (d + 7)-L(d, 1)-labeling of C5,0C;9. By Lemma
5(b) and Lemma 6(a), we have f(v) € A; = {0,1,2,3,4} or f(v) € A2 =
{d+3,d+4,d+5,d+6,d+ 7} for each v € V(C2,0C10). Without loss
of generality, we assume f(v;;) € Ay for i + j = k(mod 2). Let R; =
{vi,05°*+ yVin—1} and ¢ = |f~1(t) N R;]. The following rules are easy to
check:

T1.7'2 S 2.



To ri+7h, +1H, < 4

Ts Ifri =2, thenr!_, +ri+rf,, <3
Claim 1. Foreach t € AU Ay, |f~}(t)| =2nifn < 4.

Proof of Claim 1. Suppose |f~1(t)| = 2n + 1. Then rf + 7, > 3 for
some i. By Rules T; and T3, we assume r§ = 2, 7§ = 0, rf = 1, and
f(v10) = f(v1,4) = f(v2,7) =t. This implies r§ <4 — (v} +7) = 1.

Case 1. n = 2. Then |f~1(t)| = r§+ri +7r5+7} < 4. It is a contradiction.
Case 2. n =3. By Rules T, we have v +rf + 7t =4. Thenrf =rf =1
and r{ = 2. This implies f(v32) = t. We have f(vs,0), f(vs,2), f(vs,4) # t.
Then r{ < 1. It is a contradiction.

Case 3. n=4. We have r§ + 75 +rf +rf+rf > 9—-3=6. If r§ = 2(resp.
rt = 2), then 7§ + r§ + rf < 3(resp. 7§+ rf{ + r§{ < 3). Thus, we have
either r§{ = 2 or r§ = 2. Then we have (r1,72,--- ,73) = (0,2,1,1,2,0,1,2),
(0,2,1,1,2,0,2,1), (0,2,1,0,2,1,1,2), (0,2,1,1,1,2,0,2), or (0,2,1,1,1,1,
1,2). For any one case, we can check that it is impossible.

By Case 1, Case 2, and Case 3, we have |f~1(t)| = 2n for n < 4
since they are 20n vertices and 10 labels. We complete the proof of Claim
1.

Noted that

(1). d+3 & f(N(v)) if f(v) =4.

(2). N(u) N N(v) = @ if f(u) = f(v).

(3). f(vi;) € Ax if and only if i + j = k(mod 2).

(4). The order of C3,0C) is 20n.

So we have the following claim.
Claim 2. Suppose f(u) € Az. Then f(u) = d+3if and only if 4 & f(N(u)).

Without loss of generality, we assume f(vg3) = 4.

Suppose n = 2. Then we have f(v1,6) =4 or f(vo,s) = 4 since v1 5
and vg4 can not be both labeled by d + 3. And we have f(vs¢) = 4 or
f(vo,5) = 4 since v35 and vp 4 can not be both labeled by d + 3. Thus,
f(vo,5) = 4. Similarly, we have f(vo,7) = f(voe) = f(ve,1) = 4. Itis a
contradiction to f(ve,3) = 4. So, Ag(C40C10) = d + 8.

When n = 3. Since at most one of v42,v5,3,v44 can be labeled by
d+3 and 4 ¢ {f(vo,3), f(v3,2), f(v4,3), f(v3,4)}. We have vs2 or vs 4 must
be labeled by 4 or f(vs,1) = f(vs,s) = 4. If f(va, 1) = f(va,5) = 4, then
f(vo,2) = f(vo,4) = d + 3 by Claim 2. It is a contradiction to f(vpz2) #
f(vo,4). So, f(use) = 4 or f(uvs4) = 4. Without loss of generality, we
assume f(vs4) = 4. Then vz g or vy ¢ must be labeled by 4 since vz s and
v1,5 can not be both labeled by d+3. If f(vs6) = 4, then f(v,5) = d+3 and
f(vo,6) # d + 3. This implies f(vg,7) = 4. Then f(ve) = 4 or f(vayp) =4
since v2,g and vs g cannot be both labeled by d + 3. If f(vz,9) = 4, then
f(va8) = d+3, f(vsg) # d+ 3, and f(vs0) = 4. This implies f(v1,1) =
f(vs1) = d+ 3. It is a contradiction. Thus, f(vse) = 4. This implies
fvs1)) = f(uva2) = d+ 3. It is a contradiction to f(vs1) # f(va,2).
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Thus, f(vse) # 4 and f(v1,6) = 4. But by similar argument, we have a

contradiction. This implies A3(Cs0C10) > d + 7. So, Aa(Ce0OC10) = d + 8.
Assume n = 4. Then one of v3,v4,5, V5,4 must be labeled by 4 since

v35 and v44 can not be both labeled by d + 3 and 4 ¢ {f(vs,3), f(v3,4),

flva,5)}-

Case 1. Let f(vsg) = 4. Then, either vs 4 or vgs must be labeled by 4

since vs 5 and v4 4 can not be both labeled by d + 3.

Case 1.1. Let f(vs4) = 4. Then we have f(vg,5) = 4 since vy 4 and
1,5 can not be both labeled by d+3. Then f(vg,7) = 4 since at most one of
vs,7, V6,6, V7,7 can be labeled by d+3. Similarly, we have f(v1,8) = f(v4,9) =
4. This implies f(v3,1) = f(v2,0) = d + 3 by Claim 2. It is a contradiction
to f(vs,1) # f(va,0)-

Case 1.2. Let f(vgs) = 4. Then f(vg,7) = 4 since at most one of
v7,7,Vp,6, V1,7 can be labeled by d+ 3. Similarly, we have f(vsg) = f(v2,0) =
f(v7,0) = 4. This implies f(v1,1) = f(vo2) = d + 3 by Claim 2. It is a con-
tradiction to f(v1,1) # f(vo,2)-

Case 2. Let f(vs,4) = 4. Then f(vp,5) = 4 since at most one of v7,5, v 4, V1,5
can be labeled by d + 3. Similarly, we have f(vsg) = 4. It is similar to the
Case 1.

Case 3. Let f(v4,5) = 4. Then f(ve7) = 4. Otherwise, it is similar to the
Case 1 and Case 2. Similarly, we have f(vp9) =4 and f(v2,;) =4. It isa
contradiction to f(ve3) = 4.

By Case 1, Case 2, and Case 3, we have [f~1(4)] = 0. It is a
contradiction to Claim 1. Thus, Ag(C2,0C0) = d + 8 for n < 4. By
combining Figure 6 and Figure 11, we have \4(C2,0Cy0) < d + 8 for
n = 2,4. The function f : V(CeOCyo) — {0,1,---,d + 8} defined by
f(vij) = ((+j) mod 2)(d+4) + ((i+3j) mod 5) is a (d+8)-L(d, 1)-labeling
of Cs0C)o. Hence, \y(Cs0Ci9) =d+8. B

Theorem 14 Suppose n > 1. Then
(a) 23(C40C4n42) =9
(6) A(C4OCqn+2) = 11.

Proof. By Lemma 3(c), we have A\3(C40C4n+2) < 9 and Ay(C40Cypn42) <
11. By Lemma 2(c), we have A\3(C40Cyn+2) = 9. And by Lemma 10, we
have /\4(C4DC4,;+2) =11. A

Summarize the results in this section, we have for d > 3

2d+3, nisodd;

d+6, d=3orn=0(mod 4);
d+8, d2>5and(n=06or10);
d+7, otherwise.

Ad(Cs0OC,) =



5 The L(3,1)-labeling number of C,,00C,

Theorem 15 /\3(C3mDCQ") =8
Proof. By Lemma 2(d) and Figure 7, we have A\3(C5,,0Cy,) =8. M
Lemma 16 X3(C,,0C,) > 9 if 3{ged(m,n) or 27t mn.

Proof. Suppose f is an 8-L(3, 1)-labeling of C,,00C,. Assume f(v; ;) =
4. By Lemma 5(a), we assume f(v; j-1) = 1, f(vij41) = 7, f(vi-1,5) =0,
and f(viy1,;) = 8. Then f(vi-1,j+1) = 3, f(vi41,j-1) = 5. By Lemma 5(a),
we have f(v;—1,j42) = 6 and f(viy1,j-2) = 2. This implies f(vi—2,j4+1) =8,
fWiy2,5-1) = 0, f(vi—2;) = 5, and f(vit2;) = 3. By Lemma 5(a), we
have f(vi—2,j-1) = 2 and f(vi42,j+1) = 6. Then f(vi—1;-1), f(vi-2,j-2),
f(‘vi,j_z) S {6, 7,8}. This implies f(vi_l.,-_g) = 3. By Lemma 5(8,), we
have f(vi-1,j-1) = 6 and f(vi_1j-3) = 0. Then f(v;;-3) = 4 since
f(vij-2) € {7,8} and f(vi41,j-3) € {6,7,8}. By Lemma 5(a), we have
f(vi,j—2) = 7. Then f(vi—2,j-2) =8, f(vi-2,j—3) = 5, and f(vi-3,j-1) = T.
By Lemma 5(a), we have f(vi—2;j-4) = 2 and f(vi—3 j—3) = 1. This implies
f(vi—3j—2) = 4. Repeat the pattern, we have f(v,,) = 4 if and only if
(pq) =(i—3+9z,5—2+3y), (i +92,5 - 3+3y), or (+3+9z,5 —1+3y)
for some z,y. This implies 3|(m,n) and (9|m or 9|n). It is a contradiction.
Thus, f(v) # 4 for each v € V(C,OC4) if 31 ged(m,n) or 27t mn. Simi-
larly, f(v) # 3,5. Then f(v) € {0,1,2,6,7,8} for each v € V(C,OC). It
is impossible to label C,,00C,. So, A3(C,0C,) >9. R

Theorem 17 If 3{gcd(m,n) or 27{ mn, then
(a)A3(Cn0C4n) =9
(b)A3(CrnOC3s) =9 if m # 7 and (m,n) # (3,1).

Proof. By Lemma 3(c) and Lemma 16, we have A\3(Cn0C4,) = 9. If
m # 7 and (m,n) # (3,1), we have A3(Cr, 0C3,,) < 9 by Theorem 8. From
Lemma 16, (b) holds. M
By Table 1 and our observation, we conjecture that
8, 3|ged(m,n) and 27|mn;
A(Cr0Cr) =4 10, {m,n}={3},{5},{3,7},{5,7}

9, otherwise.

6 The L(d,1)-labeling number of C,,[1C, for
d > 5 when m and n are even

In this section, we determine the A¢(Cr,0OC,,) for d > 5 when m and n are
even.
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Lemma 18 A\g(Cy4,0Cy4n) =d +6 ford > 4.

Proof. By Lemma 2(a) and Lemma 3(d), we have A\¢(C4 0Can) = d+6
ford>4. B

Theorem 19 Ifm and n are even and d > 5, then

d+6, 4|m and 4|n;
A(CrOCr) =< d+8, {m,n}={4,6},{4,10},{6,10},{8,10};
d+ 7, otherwise.

Proof. By Lemma 18, we have A\4(C,0C,) = d + 6 for 4]m and 4|n. By
Theorem 13, we have A¢(C,00C)0) = d + 8 for m € {4,6,8}. By Theorem
12, we have A\4(C40Cs) = d+8. By Lemma 3(b), we have Ag(C2,0C2) <
d+7 for h,k # 2,5. By Figure 13, Figure 14, and combining (a), (b), and
(c) of Figure 12, we have a (d + 7)-L(d, 1)-labeling of C1o0C3 for k& > 5.
These results together with Lemma 10 and Theorem 11 complete the proof.
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(C) CmDClq
Figure 12. A (d + 7)-L(d, 1)-labeling of C;o00C,, for n > 5 and n # 8,9.

Figure 13. A (d + 7)-L(d, 1)-labeling of C100C6.
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Figure 14. A (d + 7)-L(d, 1)-labeling of C10,00C)s.
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