On L(d, 1)-Labelings of the Cartesian Product of Two Cycles

Chun-Chun Lin and Jing-Ho Yan*
Department of Applied Mathematics
Aletheia University, Tamsui 251, Taiwan
Email: jhyan@email.au.edu.tw

Abstract

A k-L(d, 1)-labeling of a graph G is a function f from the vertex set V(G) to $\{0, 1, \cdots, k\}$ such that $|f(u) - f(v)| \ge 1$ if d(u, v) = 2 and $|f(u) - f(v)| \ge d$ if d(u, v) = 1. The L(d, 1)-labeling number $\lambda_d(G)$ of G is the smallest number k such that G has a k-L(d, 1)-labeling. In this paper, we show that $2d+2 \le \lambda_d(C_m \square C_n) \le 2d+4$ if either m or n is odd. Futhermore, the following cases are determined. (a) $\lambda_d(C_3 \square C_n)$ and $\lambda_d(C_4 \square C_n)$ for $d \ge 3$, (b) $\lambda_3(C_m \square C_n)$ for some m and n, (c) $\lambda_d(C_{2m} \square C_{2n})$ for $d \ge 5$ when m and n are even.

Key words: L(d, 1)-labeling, Cartesian product, cycle.

1 Introduction

Roberts [23] put forward a variation of the frequency assignment problem introduced by Hale [17] via a private communication with Griggs and then Griggs and Yeh [16] proposed the L(2,1)-labeling problem on graphs. Chang et al. [3] generalized the L(2,1)-labeling problem to the L(d,1)labeling problem. Given a positive integer d, an L(d,1)-labeling of a graph G is an assignment f of non-negative integers to the vertices of G such that

$$|f(u)-f(v)| \geq \left\{ \begin{array}{ll} d, & \text{if } d(u,v)=1; \\ 1, & \text{if } d(u,v)=2. \end{array} \right.$$

For a nonnegative integer k, a k-L(d,1)-labeling is an L(d,1)-labeling such that no label is greater than k. The L(d,1)-labeling number $\lambda_d(G)$ of G is

^{*}Supported in part by the National Science Council under grants NSC95-2115-M-156-002.

the smallest number k such that G has a k-L(d, 1)-labeling. We often use $\lambda(G)$ to represent the L(2, 1)-labeling number of G.

Griggs and Yeh [16] showed that the L(2,1)-labeling problem is NP-complete and conjectured that $\lambda(G) \leq \Delta^2(G)$ for any graph G with $\Delta(G) \geq 2$. Chang and Kuo [2] proved that $\lambda(G) \leq \Delta^2(G) + \Delta(G)$ and gave polynomial algorithms for the L(2,1)-labeling problem on cographs and trees. Chang et al. [3] proved that $\lambda_d(G) \leq \Delta^2(G) + (d-1)\Delta(G)$ when $\Delta(G) \geq 2$. Gonçalves [15] showed that $\lambda_d(G) \leq \Delta^2(G) + (d-1)\Delta(G) - 2$ when $\Delta(G) \geq 3$. Yeh [29] and Calamoneri [1] gave two good surveys on the L(2,1)-labeling and its generalizations, respectively. The purpose of this paper is to study the L(d,1)-labeling problem for the Cartesian product of two cycles. Given two graphs G and G, the Cartesian product of these two graphs, denoted by $G \square H$, is defined by $V(G \square H) = \{(u,v)|u \in V(G), v \in V(H)\}$ and $E(G \square H) = \{(u,x)(v,y)|(u=v,xy \in E(H)) \text{ or } (uv \in E(G),x=y)\}$. The L(d,1)-labeling number of Cartesian products of graphs was studied in [5, 12, 14, 18, 19, 20, 21, 25, 27]. We could find further studies on the L(d,1)-labelings in [3, 4, 6, 7, 8, 9, 11, 13, 22, 24, 28].

The L(2,1)-labeling of the Cartesian product of any two graphs were considered in [26] and the L(2,1)-labeling of the Cartesian product of two cycles were studied in [18, 21, 25].

Theorem 1 [18, 21, 25] If $n \ge m \ge 3$, then

$$\lambda(C_m \square C_n) = \begin{cases} 6, & \text{if } m, n \equiv 0 \pmod{7}; \\ 8, & \text{if } (m, n) \in A; \\ 7, & \text{otherwise,} \end{cases}$$

where $A = \{(3,i) \mid i \geq 3, i \text{ is odd or } i = 4,10\} \cup \{(5,i) \mid i = 5,6,9,10,13,17\} \cup \{(6,7),(6,11),(7,9),(9,10)\}.$

Jha, Klavzar, and Vesel [20] proposed $\lambda_d(C_m\square C_n)$ for d=3,4 and $4\leq m,n\leq 11$. Their results are summarized in the following **Table 1**.

m	n	$\lambda_3(C_m\square C_n)$	$\lambda_4(C_m\square C_n)$
4	n = 4,8	9	10
4	n = 5, 6, 7, 9, 10, 11	9	11
5	n = 5	10	12
5	n = 7	10	11
5	n = 6, 8, 9, 10, 11	9	11
6	n = 9	8	10
6	n = 6, 7, 8, 10, 11	9	11
7	7, 8, 9, 10, 11	9	11
8	8	9	10
9	9	8	10
10	10	9	11

Table 1.[20] $\lambda_d(C_m \square C_n)$, $10 \ge n \ge m \ge 4$, d = 3, 4

From now on, for convenience, we use $v_{i,j}$ to denote the vertices of $C_m \square C_n$, where $i \in Z_m$ and $j \in Z_n$.

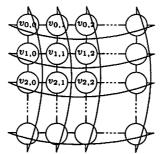


Figure 1. $C_m \square C_n$

2 Upper bound and Lower bound

In this section, we give the upper bounds and lower bounds for $\lambda_d(C_m \square C_n)$ under various parameters. Since $C_m \square P_n$ is a subgraph of $C_m \square C_n$, we have the following lemma from [5].

Lemma 2 Suppose $d \geq 3$. Then

- (a) $\lambda_d(C_m \square C_n) \ge d + 6$ if $d \ge 4$.
- (b) $\lambda_d(C_m \square C_n) \geq 2d + 2$ if either m or n is odd.
- (c) $\lambda_d(C_4\square C_n) \geq d+6$.
- (d) $\lambda_3(C_m\square C_n) \geq 8$.

By re-constructing and combining some labelings of smaller $C_m \square C_n$, we got the upper bound of $\lambda_d(C_m \square C_n)$.

Lemma 3 Suppose $d \geq 3$. Then

- (a) $\lambda_d(C_m \square C_n) \leq 2d + 4$.
- (b) $\lambda_d(C_{2m}\Box C_{2n}) \leq d+7 \text{ if } m, n \neq 2, 5.$
- (c) $\lambda_d(C_m \square C_{4n}) \leq 2d + 3$.
- (d) $\lambda_d(C_{4m}\square C_{4n}) \leq d+6$.

Proof. By combining (a), (b), (c), and (d) of Figure 2, we have a (2d+4)-L(d,1)-labeling of $C_m\square C_n$ if $m,n\neq 5$. By combining (a) and (b) of Figure 3, we have a (2d+4)-L(d,1)-labeling of $C_5\square C_n$ for $n\neq 5$. Figure 3(c) gives a (2d+4)-L(d,1)-labeling of $C_5\square C_5$ for $d\geq 3$. Similarly, Figure 4 gives $\lambda_d(C_{2m}\square C_{2n})\leq d+7$ for $m,n\neq 2,5$, and Figure 5 gives $\lambda_d(C_m\square C_{4n})\leq 2d+3$. Figure 6 gives $\lambda_d(C_{4m}\square C_{4n})\leq d+6$.

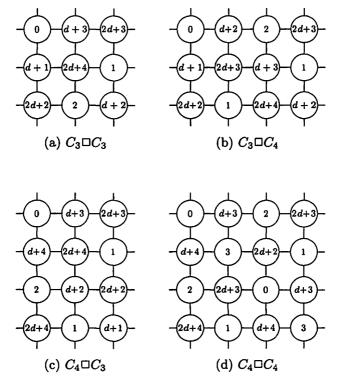


Figure 2. A (2d+4)-L(d,1)-labeling of $C_m \square C_n$ for $d \ge 3$ if $m, n \ne 5$.

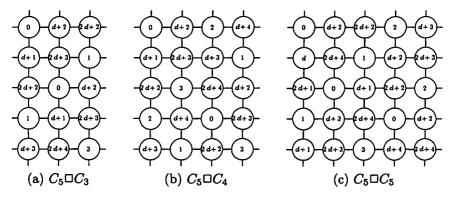
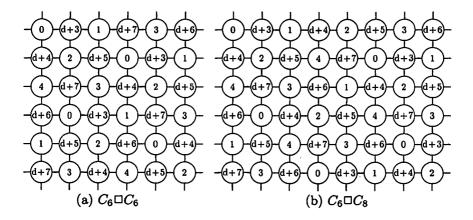


Figure 3. A (2d+4)-L(d,1)-labeling of $C_5 \square C_n$ for $d \ge 3$.



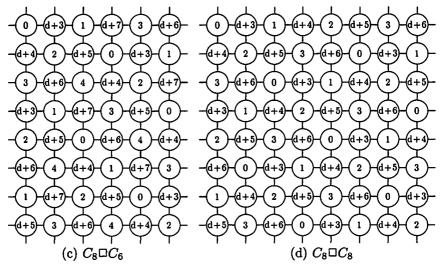


Figure 4. A (d+7)-L(d,1)-labeling of $C_{2m}\square C_{2n}$ for $d\geq 3$ and $m,n\neq 2,5$.

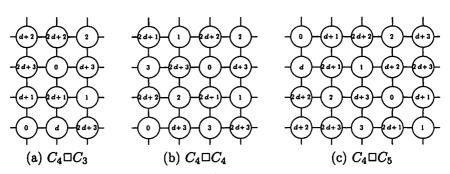


Figure 5. A (2d+3)-L(d,1)-labeling of $C_m \square C_{4n}$ for $d \ge 3$.

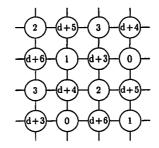


Figure 6. A (d+6)-L(d,1)-labeling of $C_{4m}\square C_{4n}$.

Lemma 4 [16] If f is a k-L(d,1)-labeling of a graph G, then the function $g:V(G) \to \{0,1,\cdots,k\}$ defined by g(v)=k-f(v) for each vertex v in G is a k-L(d,1)-labeling.

Lemma 5 Suppose $d \geq 3$ and f is a (2d+2)-L(d,1)-labeling of $C_m \square C_n$. If $f(v_{i,j}) = d+k$, for some k = 0, 1, 2, then
(a) either $\{f(v_{i+1,j}), f(v_{i-1,j})\} = \{k, 2d+k\}$ or $\{f(v_{i,j+1}), f(v_{i,j-1})\} = \{k, 2d+k\}$,
(b) $4 \notin \{m, n\}$.

Proof. (a) If $f(v_{i,j}) = d$, then $\{f(v_{i,j-1}), f(v_{i-1,j}), f(v_{i,j+1}), f(v_{i+1,j})\} = \{0, 2d, 2d+1, 2d+2\}$. Assume $f(v_{i,j-1}) = 0$ and $f(v_{i+1,j}) = 2d$. Then no labels can be assigned to $f(v_{i+1,j-1})$. So, either $\{f(v_{i+1,j}), f(v_{i-1,j})\} = \{0, 2d\}$ or $\{f(v_{i,j+1}), f(v_{i,j-1})\} = \{0, 2d\}$. It is similar to the cases for $f(v_{i,j}) = d+1$ and $f(v_{i,j}) = d+2$.

(b) Assume $f(v_{i,j}) = d+1$. By (a), let's assume $f(v_{i,j+1}) = 1$, $f(v_{i,j-1}) = 2d+1$, $f(v_{i-1,j}) = 0$, and $f(v_{i+1,j}) = 2d+2$. Then $f(v_{i+1,j+1}) = d+2$. By (a), we have $f(v_{i+1,j+2}) = 2$, $f(v_{i+2,j+1}) = 0$. This implies $m \neq 4$. If n = 4, then no labels can be assigned to $f(v_{i,j+2})$. Therefore, we have $n \neq 4$. It is similar to the cases for $f(v_{i,j}) = d$ and $f(v_{i,j}) = d+2$.

Lemma 6 (a) Suppose f is a (d+k+2)-L(d,1)-labeling of $C_m \square C_n$ and d > k. Then $f(v) \in \{0,1,\cdots,k-1,d+3,\cdots,d+k+2\}$ for each $v \in V(C_m \square C_n)$.

- (b) Suppose f is a (2d+k)-labeling of $C_3 \square C_n$ and d > k. Then $f(v) \in \{0, \dots, k, d, \dots, d+k, 2d, \dots, 2d+k\}$ for each $v \in V(C_3 \square C_n)$.
- **Proof.** (a) Assume f(v)=i for some $v\in V(C_m\square C_n)$ and $i\leq d$. Then $f(N(v))\subseteq\{d+i,\cdots,d+k+2\}$ if i< d and $f(N(v))\subseteq\{0,2d,\cdots,d+k+2\}$ if i=d. Since |f(N(v))|=|N(v)|=4, we have i< k. Thus, $f(v)\in\{0,1,\cdots,k-1\}$ if $f(v)\leq d$. Since d>k, we have $d+k+2\leq 2d+1$. By Lemma 4, we have $f(v)\in\{0,1,\cdots,k-1,d+3,\cdots,d+k+2\}$.
- (b) Assume $f(v_{i,j})=t$ for some $t\in\{0,1,\cdots,d-1\}$. Then $v_{i-1,j}$ or $v_{i+1,j}$ must be labeled by a number which is at least 2d+t. It implies $t\leq k$. Therefore, by Lemma 4, we have $f(v)\in\{0,1,\cdots,k,d,\cdots,d+k,2d,\cdots,2d+k\}$ for each $v\in V(C_3\square C_n)$.

3 The L(d,1)-labeling number of $C_3 \square C_n$ for d > 3

In this section, we determine $\lambda_d(C_3 \square C_n)$ for $d \geq 3$.

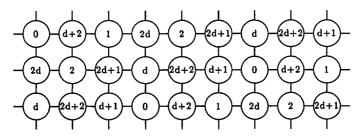


Figure 7. A (2d+2)-L(d,1)-labeling of $C_{3m}\square C_{9n}$ for $d \geq 3$.

Theorem 7 If $d \geq 3$ and one of m and n is odd, then $\lambda_d(C_{3m} \square C_{9n}) = 2d + 2$.

Proof. By Lemma 2(b) and Figure 7, we have $\lambda_d(C_{3m}\Box C_{9n})=2d+2$.

Theorem 8 If $d \geq 3$, then

$$\lambda_d(C_3 \square C_n) = \left\{ egin{array}{ll} 2d+2, & n \equiv 0 ({
m mod } \ 9); \ 2d+4, & n=3 \ or \ (n=7 \ and \ d=3); \ 2d+3, & otherwise. \end{array}
ight.$$

Proof. By Theorem 7, we have $\lambda_d(C_3 \square C_{9n}) = 2d + 2$.

Suppose f is a (2d+3)-L(d,1)-labeling of $C_3 \square C_3$. By Lemma 6(b), we have $f(v) \in \{0,1,2,3,d,d+1,d+2,d+3,2d,2d+1,2d+2,2d+3\}$ for each $v \in V(C_3 \square C_3)$.

Claim 1. $f(v) \neq d, d+3$ for each $v \in V(C_3 \square C_3)$.

Suppose $f(v_{i,j})=d$. Then $f(N(v_{i,j}))\subseteq\{0,2d,2d+1,2d+2,2d+3\}$. Without loss of generality, we assume $f(v_{i-1,j})=0$. Since $|f(v_{i,j-1})-f(v_{i,j+1})|\geq d\geq 3,\ v_{i,j-1}$ or $v_{i,j+1}$ must be labeled by 2d, say $v_{i,j-1}$. This implies $f(v_{i-1,j-1})=2d+3$, Then no labels can be assigned to $v_{i,j+1}$. It is a contradiction. Thus, $f(v_{i,j})\neq d$. By Lemma 4, we have $f(v)\neq d,d+3$ for each $v\in V(C_3\square C_3)$.

Claim 2. $f(v) \neq 3, 2d$ for each $v \in V(C_3 \square C_3)$.

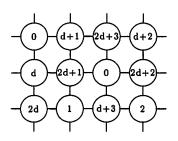
Assume $d \ge 4$ and $f(v_{i,j}) = 3$. By Lemma 6(b) and Claim 1, we have $f(N(v_{i,j})) \subseteq \{2d, 2d+1, 2d+2, 2d+3\}$. Then we can not assign $v_{i,j-1}$ and $v_{i,j+1}$ since $|f(v_{i,j-1}) - f(v_{i,j+1})| \ge d > 3$. It is a contradiction. Thus,

 $f(v) \neq 3$ for each $v \in V(C_3 \square C_3)$. By Lemma 4 and Claim 1, we have $f(v) \neq d, d+3$ for each $v \in V(C_3 \square C_3)$.

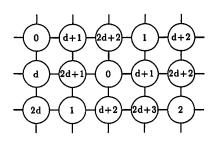
So, $f(v) \in \{0,1,2,d+1,d+2,2d+1,2d+2,2d+3\}$ for each $v \in V(C_3 \square C_3)$. It is a contradiction to $|f^{-1}(V(C_3 \square C_3))| = 9$. Thus, $\lambda_d(C_3 \square C_3) \geq 2d+4$ for $d \geq 3$. By Lemma 3(a), $\lambda_d(C_3 \square C_3) = 2d+4$ for $d \geq 3$. According to the aid of computer program implementation, we have $\lambda_3(C_3 \square C_7) = 10$.

Suppose f is a (2d+2)-L(d,1)-labeling of $C_3\square C_n$. By Lemma 6(b), $f(v)\in\{0,1,2,d,d+1,d+2,2d,2d+1,2d+2\}$ for each $v\in V(C_3\square C_n)$. Assume f(v)=2 for some $v\in V(C_3\square C_n)$. We may let $f(v_{1,1})=2$. Since $|f(v_{0,1})-f(v_{2,1})|\geq d$, we have $\{f(v_{0,1}),f(v_{2,1})\}=\{d+2,2d+2\}$. Without loss of generality, we assume $f(v_{2,1})=d+2$, $f(v_{0,1})=2d+2$, $f(v_{1,0})=2d$, and $f(v_{1,2})=2d+1$. Then $f(v_{0,0})=d$, $f(v_{2,0})=0$, $f(v_{0,2})=d+1$, and $f(v_{2,2})=1$. This implies $f(v_{0,3})=0$ and $f(v_{1,3})=d$. By Lemma 5(a), we have $f(v_{2,3})=2d$. By repeating the pattern mentioned above, we have $f(v_{1,2})=2$ if and only if $j\equiv 3i-2\pmod{9}$. This implies $n\equiv 0\pmod{9}$.

Suppose $n \not\equiv 0 \pmod 9$. Then, $f(v) \not= 2$ for each $v \in V(C_3 \square C_n)$. Assume f(v) = d+2 for some $v \in V(C_3 \square C_n)$. Then $4 = |f(N(v))| \le |\{0,1,2d+2\}| = 3$. It is a contradiction. Thus, $f(v) \not= d+2$ for each $v \in V(C_3 \square C_n)$. By Lemma 4, we have $f(v) \not= d$, 2d for each $v \in V(C_3 \square C_n)$. So, $f(v) \in \{0,1,d+1,2d+1,2d+2\}$ for each $v \in V(C_3 \square C_n)$. This implies $5 \ge |f(C_3 \square C_n)| \ge |f(C_3 \square P_2)| = 6$, a contradiction. So, $\lambda_d(C_3 \square C_n) \ge 2d+3$ for $n \not\equiv 0 \pmod 9$ and $d \ge 3$. By combining (a), (b), and (c) of Figure 8, we have a (2d+3)-L(d,1)-labeling of $C_3 \square C_n$ for $d \ge 3$ and $n \ne 3,7$. Figure 9 gives a (2d+3)-L(d,1)-labeling of $C_3 \square C_7$ for $d \ge 4$. Consequently, the proof is complete.



(a) $C_3\square C_4$



(b) $C_3 \square C_5$

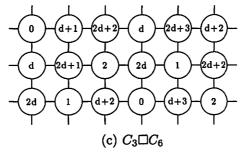


Figure 8. A (2d+3)-L(d,1)-labeling of $C_3 \square C_n$ for $d \ge 3$ for $n \ne 3, 7$.

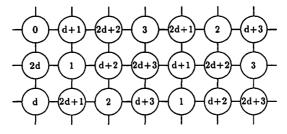


Figure 9. A (2d+3)-L(d,1)-labeling of $C_3 \square C_7$ for $d \ge 4$.

4 The L(d,1)-labeling number of $C_4 \square C_n$ for $d \ge 3$

In this section, we determine $\lambda_d(C_4 \square C_n)$ for $d \geq 3$.

Theorem 9 Suppose $d \ge 3$ and $n \ge 1$. Then

- (a) $\lambda_d(C_4 \square C_{2n+1}) = 2d + 3$.
- (b) $\lambda_d(C_4\square C_{4n})=d+6$.

Proof. Let f be a (2d+2)-L(d,1)-labeling of $C_4\square C_m$. By Lemma 5(b), we have $f(v_{i,j})\in A_1=\{0,1,2,\cdots,d-1\}$ or $f(v_{i,j})\in A_2=\{d+3,\cdots,2d+2\}$ for each $v_{i,j}\in V(C_4\square C_{2n+1})$. So $f(v_{i,j})\in A_1$ if and only if $f(v_{i',j'})\in A_2$ when $i+j\not\equiv i'+j'(\text{mod }2)$. This implies m is even. Hence $\lambda_d(C_4\square C_{2n+1})\geq 2d+3$. By Lemma 3(c), we have $\lambda_d(C_4\square C_{2n+1})=2d+3$. By Lemma 2(c) and Lemma 3(d), we have $\lambda_d(C_4\square C_{4n})=d+6$.

For the case of $C_4 \square C_{4n+2}$, the L(d, 1)-labeling number may be d+6, d+7, or d+8 when $d \geq 3$. In most cases, the number is d+7.

Lemma 10 Suppose $m \le n$ and $4 \nmid \gcd(m, n)$. Then $\lambda_d(C_m \square C_n) > d + 6$ if $d \ge 5$ or d = m = 4.

Proof. Suppose f is a (d+6)-L(d,1)-labeling of $C_m\square C_n$. By Lemma 5(b) and Lemma 6(a), we have $f(v)\in\{0,1,2,3,d+3,d+4,d+5,d+6\}$ for $v\in V(C_m\square C_n)$ with $d\geq 5$ or d=m=4. Without loss of generality, we assume $f(v_{0,0})\in\{0,1,2,3\}$. Then $f(v_{i,j})\in\{0,1,2,3\}$ if and only if i+j is even. Let $A=\{f(v_{i,i})|0\leq i\leq n-1\}$. It is trivial that $|A|\geq 2$. Suppose |A|=2. We may assume $A=\{0,1\}$. Then $f(v_{i,j})\in\{0,1\}$ if and only if $i-j\equiv 0 \pmod 4$ and $f(v_{i,j})\in\{2,3\}$ if and only if $i-j\equiv 2 \pmod 4$. This implies 4|m and 4|n. For the case of $|A|\geq 2$, we may assume $f(v_{i,i})=i$ for i=0,1,2. Then,

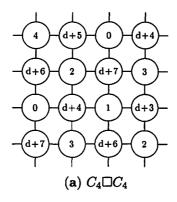
$$f(v_{i,j}) = \begin{cases} 0, & \text{if } i+j \equiv 0 (\bmod{m}) \text{ and } i \text{ is even.} \\ 0, & \text{if } i+j = 4 (\bmod{m}) \text{ and } i \text{ is odd.} \\ 1, & \text{if } i+j = 2 (\bmod{m}) \text{ and } i \text{ is odd.} \\ 2, & \text{if } i+j = 0 (\bmod{m}) \text{ and } i \text{ is odd.} \\ 2, & \text{if } i+j \equiv 4 (\bmod{m}) \text{ and } i \text{ is even.} \\ 3, & \text{if } i+j \equiv 2 (\bmod{m}) \text{ and } i \text{ is even.} \end{cases}$$

This implies $f(v_{i,j}) \in \{0,2\}$ if and only if $i + j \equiv 0 \pmod{4}$ and $f(v_{i,j}) \in \{1,3\}$ if and only if $i + j \equiv 2 \pmod{4}$. Thus, we have 4|m and 4|n.

For any case, we have 4|m and 4|n. It is a contradiction to $4 \nmid \gcd(m,n)$. So $\lambda_d(C_m \square C_n) > d+6$.

Theorem 11 $\lambda_d(C_{4m}\square C_{4n+2}) = d+7$ for $d \geq 5$ and $n \geq 3$.

Proof. By combining (a) and (b) of Figure 10, we have a (d+7)-L(d,1)-labeling of $C_{4m} \square C_{4n+2}$ for $d \ge 4$ and $n \ge 3$. By Lemma 10, we have $\lambda_d(C_{4m} \square C_{4n+10}) = d+7$ for $d \ge 5$ and $n \ge 3$.



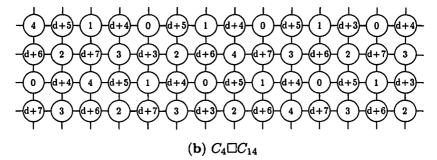


Figure 10. A (d+7)-L(d,1)-labeling of $C_{4m} \square C_{4n+2}$ for $d \ge 4$ and $n \ge 3$.

Theorem 12 $\lambda_d(C_4\square C_6) = d + 8$ for $d \geq 5$.

Proof. Suppose f is a (d+7)-L(d,1)-labeling of $C_4\square C_6$. For each $v \in V(C_4\square C_6)$, by Lemma 5(b) and Lemma 6(a), f(v) belong to $A_1 = \{0,1,2,3,4\}$ or $A_2 = \{d+3,d+4,d+5,d+6,d+7\}$. Then for each $uv \in E(C_4\square C_6)$, $f(u) \in A_1$ if and only if $f(v) \in A_2$. It is not hard to check that $|f^{-1}(i)| \leq 2$ for each $i \in A_1 \cup A_2$. Then $24 = |V(C_4\square C_6)| \leq 20$. It is a contradiction. Thus, $\lambda_d(C_4\square C_6) \geq d+8$. Figure 11 gives a (d+8)-L(d,1)-labeling of $C_4\square C_6$. Thus, $\lambda_d(C_4\square C_6) = d+8$.

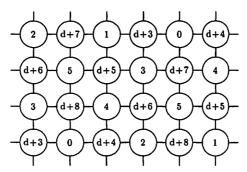


Figure 11. A (d+8)-L(d,1)-labeling of $C_4 \square C_6$.

Theorem 13 $\lambda_d(C_{2n}\square C_{10})=d+8$ for $d\geq 5$ and $n\leq 4$.

Proof. Suppose f is a (d+7)-L(d,1)-labeling of $C_{2n}\square C_{10}$. By Lemma 5(b) and Lemma 6(a), we have $f(v) \in A_1 = \{0,1,2,3,4\}$ or $f(v) \in A_2 = \{d+3,d+4,d+5,d+6,d+7\}$ for each $v \in V(C_{2n}\square C_{10})$. Without loss of generality, we assume $f(v_{i,j}) \in A_k$ for $i+j \equiv k \pmod{2}$. Let $R_i = \{v_{i,0},\cdots,v_{i,n-1}\}$ and $r_i^t = |f^{-1}(t) \cap R_i|$. The following rules are easy to check:

$$\mathbf{T}_1.r_i^t \leq 2.$$

 \mathbf{T}_{2} , $r_{i}^{t} + r_{i+1}^{t} + r_{i+2}^{t} \le 4$.

 $\mathbf{T}_{3.}$ If $r_{i}^{t} = 2$, then $r_{i-1}^{t} + r_{i}^{t} + r_{i+1}^{t} \leq 3$.

Claim 1. For each $t \in A_1 \cup A_2$, $|f^{-1}(t)| = 2n$ if $n \le 4$.

Proof of Claim 1. Suppose $|f^{-1}(t)| \ge 2n+1$. Then $r_i^t + r_{i+1}^t \ge 3$ for some *i*. By Rules \mathbf{T}_1 and \mathbf{T}_3 , we assume $r_1^t = 2$, $r_0^t = 0$, $r_2^t = 1$, and $f(v_{1,0}) = f(v_{1,4}) = f(v_{2,7}) = t$. This implies $r_3^t \le 4 - (r_1^t + r_2^t) = 1$.

Case 1. n = 2. Then $|f^{-1}(t)| = r_0^t + r_1^t + r_2^t + r_3^t \le 4$. It is a contradiction. Case 2. n = 3. By Rules T_2 , we have $r_3^t + r_4^t + r_5^t = 4$. Then $r_3^t = r_4^t = 1$ and $r_5^t = 2$. This implies $f(v_{3,2}) = t$. We have $f(v_{5,0}), f(v_{5,2}), f(v_{5,4}) \ne t$. Then $r_5^t \le 1$. It is a contradiction.

Case 3. n=4. We have $r_3^t+r_4^t+r_5^t+r_6^t+r_7^t\geq 9-3=6$. If $r_4^t=2$ (resp. $r_5^t=2$), then $r_3^t+r_4^t+r_5^t\leq 3$ (resp. $r_4^t+r_5^t+r_6^t\leq 3$). Thus, we have either $r_6^t=2$ or $r_7^t=2$. Then we have $(r_1,r_2,\cdots,r_8)=(0,2,1,1,2,0,1,2),(0,2,1,1,2,0,2,1),(0,2,1,0,2,1,1,2),(0,2,1,1,2,0,2),$ or (0,2,1,1,1,1,1,1,1,2). For any one case, we can check that it is impossible.

By Case 1, Case 2, and Case 3, we have $|f^{-1}(t)|=2n$ for $n\leq 4$ since they are 20n vertices and 10 labels. We complete the proof of Claim 1.

Noted that

- (1). $d+3 \notin f(N(v))$ if f(v) = 4.
- (2). $N(u) \cap N(v) = \emptyset$ if f(u) = f(v).
- (3). $f(v_{i,j}) \in A_k$ if and only if $i + j \equiv k \pmod{2}$.
- (4). The order of $C_{2n} \square C_{10}$ is 20n.

So we have the following claim.

Claim 2. Suppose $f(u) \in A_2$. Then f(u) = d+3 if and only if $4 \notin f(N(u))$. Without loss of generality, we assume $f(v_{2,3}) = 4$.

Suppose n=2. Then we have $f(v_{1,6})=4$ or $f(v_{0,5})=4$ since $v_{1,5}$ and $v_{0,4}$ can not be both labeled by d+3. And we have $f(v_{3,6})=4$ or $f(v_{0,5})=4$ since $v_{3,5}$ and $v_{0,4}$ can not be both labeled by d+3. Thus, $f(v_{0,5})=4$. Similarly, we have $f(v_{2,7})=f(v_{0,9})=f(v_{2,1})=4$. It is a contradiction to $f(v_{2,3})=4$. So, $\lambda_d(C_4\square C_{10})=d+8$.

When n=3. Since at most one of $v_{4,2}, v_{5,3}, v_{4,4}$ can be labeled by d+3 and $4 \notin \{f(v_{0,3}), f(v_{3,2}), f(v_{4,3}), f(v_{3,4})\}$. We have $v_{5,2}$ or $v_{5,4}$ must be labeled by 4 or $f(v_{4,1}) = f(v_{4,5}) = 4$. If $f(v_{4,1}) = f(v_{4,5}) = 4$, then $f(v_{0,2}) = f(v_{0,4}) = d+3$ by Claim 2. It is a contradiction to $f(v_{0,2}) \neq f(v_{0,4})$. So, $f(v_{5,2}) = 4$ or $f(v_{5,4}) = 4$. Without loss of generality, we assume $f(v_{5,4}) = 4$. Then $v_{3,6}$ or $v_{1,6}$ must be labeled by 4 since $v_{3,5}$ and $v_{1,5}$ can not be both labeled by d+3. If $f(v_{3,6}) = 4$, then $f(v_{1,5}) = d+3$ and $f(v_{0,6}) \neq d+3$. This implies $f(v_{0,7}) = 4$. Then $f(v_{2,9}) = 4$ or $f(v_{4,9}) = 4$ since $v_{2,8}$ and $v_{4,8}$ cannot be both labeled by d+3. If $f(v_{2,9}) = 4$, then $f(v_{4,8}) = d+3$, $f(v_{5,9}) \neq d+3$, and $f(v_{5,0}) = 4$. This implies $f(v_{1,1}) = f(v_{3,1}) = d+3$. It is a contradiction. Thus, $f(v_{4,9}) = 4$. This implies $f(v_{3,1}) = f(v_{4,2}) = d+3$. It is a contradiction to $f(v_{3,1}) \neq f(v_{4,2})$.

Thus, $f(v_{3,6}) \neq 4$ and $f(v_{1,6}) = 4$. But by similar argument, we have a contradiction. This implies $\lambda_d(C_6 \square C_{10}) > d + 7$. So, $\lambda_d(C_6 \square C_{10}) = d + 8$.

Assume n=4. Then one of $v_{3,6}, v_{4,5}, v_{5,4}$ must be labeled by 4 since $v_{3,5}$ and $v_{4,4}$ can not be both labeled by d+3 and $4 \notin \{f(v_{4,3}), f(v_{3,4}), f(v_{2,5})\}$.

Case 1. Let $f(v_{3,6}) = 4$. Then, either $v_{5,4}$ or $v_{6,5}$ must be labeled by 4 since $v_{5,5}$ and $v_{4,4}$ can not be both labeled by d+3.

Case 1.1. Let $f(v_{5,4}) = 4$. Then we have $f(v_{0,5}) = 4$ since $v_{0,4}$ and $v_{1,5}$ can not be both labeled by d+3. Then $f(v_{6,7}) = 4$ since at most one of $v_{5,7}, v_{6,6}, v_{7,7}$ can be labeled by d+3. Similarly, we have $f(v_{1,8}) = f(v_{4,9}) = 4$. This implies $f(v_{3,1}) = f(v_{2,0}) = d+3$ by Claim 2. It is a contradiction to $f(v_{3,1}) \neq f(v_{2,0})$.

Case 1.2. Let $f(v_{6,5}) = 4$. Then $f(v_{0,7}) = 4$ since at most one of $v_{7,7}, v_{0,6}, v_{1,7}$ can be labeled by d+3. Similarly, we have $f(v_{5,8}) = f(v_{2,9}) = f(v_{7,0}) = 4$. This implies $f(v_{1,1}) = f(v_{0,2}) = d+3$ by Claim 2. It is a contradiction to $f(v_{1,1}) \neq f(v_{0,2})$.

Case 2. Let $f(v_{5,4}) = 4$. Then $f(v_{0,5}) = 4$ since at most one of $v_{7,5}, v_{0,4}, v_{1,5}$ can be labeled by d+3. Similarly, we have $f(v_{3,6}) = 4$. It is similar to the Case 1.

Case 3. Let $f(v_{4,5}) = 4$. Then $f(v_{6,7}) = 4$. Otherwise, it is similar to the Case 1 and Case 2. Similarly, we have $f(v_{0,9}) = 4$ and $f(v_{2,1}) = 4$. It is a contradiction to $f(v_{2,3}) = 4$.

By Case 1, Case 2, and Case 3, we have $|f^{-1}(4)| = 0$. It is a contradiction to Claim 1. Thus, $\lambda_d(C_{2n}\square C_{10}) \geq d+8$ for $n \leq 4$. By combining Figure 6 and Figure 11, we have $\lambda_d(C_{2n}\square C_{10}) \leq d+8$ for n=2,4. The function $f:V(C_6\square C_{10}) \to \{0,1,\cdots,d+8\}$ defined by $f(v_{i,j})=((i+j) \mod 2)(d+4)+((i+3j) \mod 5)$ is a (d+8)-L(d,1)-labeling of $C_8\square C_{10}$. Hence, $\lambda_d(C_8\square C_{10})=d+8$.

Theorem 14 Suppose $n \ge 1$. Then

- (a) $\lambda_3(C_4\square C_{4n+2})=9$
- (b) $\lambda_4(C_4\square C_{4n+2}) = 11.$

Proof. By Lemma 3(c), we have $\lambda_3(C_4 \square C_{4n+2}) \leq 9$ and $\lambda_4(C_4 \square C_{4n+2}) \leq 11$. By Lemma 2(c), we have $\lambda_3(C_4 \square C_{4n+2}) = 9$. And by Lemma 10, we have $\lambda_4(C_4 \square C_{4n+2}) = 11$.

Summarize the results in this section, we have for $d \geq 3$

$$\lambda_d(C_4 \square C_n) = \begin{cases} 2d+3, & n \text{ is odd;} \\ d+6, & d=3 \text{ or } n \equiv 0 (\text{mod } 4); \\ d+8, & d \geq 5 \text{ and } (n=6 \text{ or } 10); \\ d+7, & \text{otherwise.} \end{cases}$$

5 The L(3,1)-labeling number of $C_m \square C_n$

Theorem 15 $\lambda_3(C_{3m}\square C_{9n})=8$

Proof. By Lemma 2(d) and Figure 7, we have $\lambda_3(C_{3m}\Box C_{9n})=8$.

Lemma 16 $\lambda_3(C_m \square C_n) \geq 9$ if $3 \nmid \gcd(m, n)$ or $27 \nmid mn$.

Suppose f is an 8-L(3, 1)-labeling of $C_m \square C_n$. Assume $f(v_{i,j}) =$ Proof. 4. By Lemma 5(a), we assume $f(v_{i,j-1}) = 1$, $f(v_{i,j+1}) = 7$, $f(v_{i-1,j}) = 0$, and $f(v_{i+1,j}) = 8$. Then $f(v_{i-1,j+1}) = 3$, $f(v_{i+1,j-1}) = 5$. By Lemma 5(a), we have $f(v_{i-1,j+2}) = 6$ and $f(v_{i+1,j-2}) = 2$. This implies $f(v_{i-2,j+1}) = 8$, $f(v_{i+2,j-1}) = 0$, $f(v_{i-2,j}) = 5$, and $f(v_{i+2,j}) = 3$. By Lemma 5(a), we have $f(v_{i-2,j-1}) = 2$ and $f(v_{i+2,j+1}) = 6$. Then $f(v_{i-1,j-1}), f(v_{i-2,j-2}),$ $f(v_{i,j-2}) \in \{6,7,8\}$. This implies $f(v_{i-1,j-2}) = 3$. By Lemma 5(a), we have $f(v_{i-1,j-1}) = 6$ and $f(v_{i-1,j-3}) = 0$. Then $f(v_{i,j-3}) = 4$ since $f(v_{i,j-2}) \in \{7,8\}$ and $f(v_{i+1,j-3}) \in \{6,7,8\}$. By Lemma 5(a), we have $f(v_{i,j-2}) = 7$. Then $f(v_{i-2,j-2}) = 8$, $f(v_{i-2,j-3}) = 5$, and $f(v_{i-3,j-1}) = 7$. By Lemma 5(a), we have $f(v_{i-2,j-4}) = 2$ and $f(v_{i-3,j-3}) = 1$. This implies $f(v_{i-3,j-2}) = 4$. Repeat the pattern, we have $f(v_{p,q}) = 4$ if and only if (p,q) = (i-3+9x, j-2+3y), (i+9x, j-3+3y), or (i+3+9x, j-1+3y)for some x, y. This implies 3|(m, n) and (9|m or 9|n). It is a contradiction. Thus, $f(v) \neq 4$ for each $v \in V(C_m \square C_n)$ if $3 \nmid \gcd(m, n)$ or $27 \nmid mn$. Similarly, $f(v) \neq 3, 5$. Then $f(v) \in \{0, 1, 2, 6, 7, 8\}$ for each $v \in V(C_m \square C_n)$. It is impossible to label $C_m \square C_n$. So, $\lambda_3(C_m \square C_n) \geq 9$.

Theorem 17 If $3 \nmid \gcd(m,n)$ or $27 \nmid mn$, then $(a)\lambda_3(C_m \square C_{4n}) = 9$ $(b)\lambda_3(C_m \square C_{3n}) = 9$ if $m \neq 7$ and $(m,n) \neq (3,1)$.

Proof. By Lemma 3(c) and Lemma 16, we have $\lambda_3(C_m \square C_{4n}) = 9$. If $m \neq 7$ and $(m,n) \neq (3,1)$, we have $\lambda_3(C_m \square C_{3n}) \leq 9$ by Theorem 8. From Lemma 16, (b) holds.

By Table 1 and our observation, we conjecture that

$$\lambda_3(C_m \square C_n) = \begin{cases} 8, & 3|\gcd(m,n) \text{ and } 27|mn; \\ 10, & \{m,n\} = \{3\}, \{5\}, \{3,7\}, \{5,7\}; \\ 9, & \text{otherwise.} \end{cases}$$

6 The L(d,1)-labeling number of $C_m \square C_n$ for $d \ge 5$ when m and n are even

In this section, we determine the $\lambda_d(C_m \square C_n)$ for $d \geq 5$ when m and n are even.

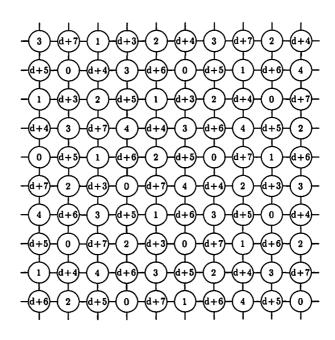
Lemma 18 $\lambda_d(C_{4m}\square C_{4n})=d+6$ for $d\geq 4$.

Proof. By Lemma 2(a) and Lemma 3(d), we have $\lambda_d(C_{4m}\Box C_{4n}) = d+6$ for $d \geq 4$.

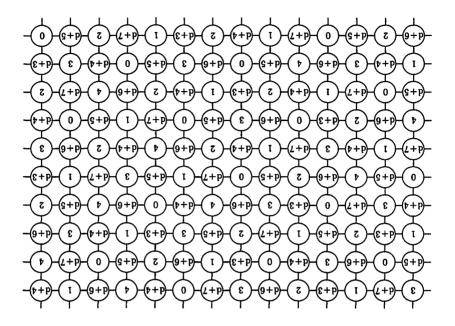
Theorem 19 If m and n are even and $d \ge 5$, then

$$\lambda_d(C_m \square C_n) = \begin{cases} d+6, & 4|m \text{ and } 4|n; \\ d+8, & \{m,n\} = \{4,6\}, \{4,10\}, \{6,10\}, \{8,10\}; \\ d+7, & otherwise. \end{cases}$$

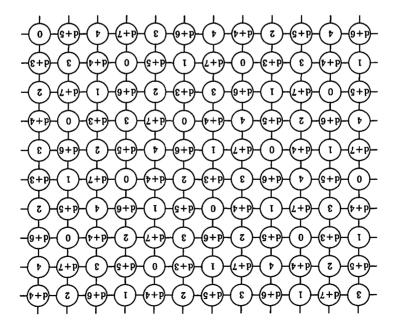
Proof. By Lemma 18, we have $\lambda_d(C_m \square C_n) = d+6$ for 4|m and 4|n. By Theorem 13, we have $\lambda_d(C_m \square C_{10}) = d+8$ for $m \in \{4,6,8\}$. By Theorem 12, we have $\lambda_d(C_4 \square C_6) = d+8$. By Lemma 3(b), we have $\lambda_d(C_{2h} \square C_{2k}) \le d+7$ for $h, k \ne 2, 5$. By Figure 13, Figure 14, and combining (a), (b), and (c) of Figure 12, we have a (d+7)-L(d,1)-labeling of $C_{10} \square C_{2k}$ for $k \ge 5$. These results together with Lemma 10 and Theorem 11 complete the proof.



(a) $C_{10}\Box C_{10}$



(p) C¹⁰□C¹⁵



(c) $C_{10}\Box C_{14}$

Figure 12. A (d+7)-L(d,1)-labeling of $C_{10}\square C_n$ for $n \geq 5$ and $n \neq 8, 9$.

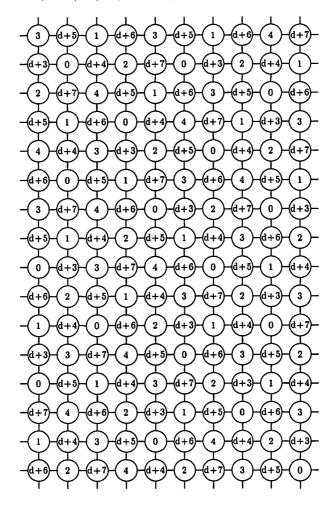


Figure 13. A (d+7)-L(d,1)-labeling of $C_{10}\square C_{16}$.

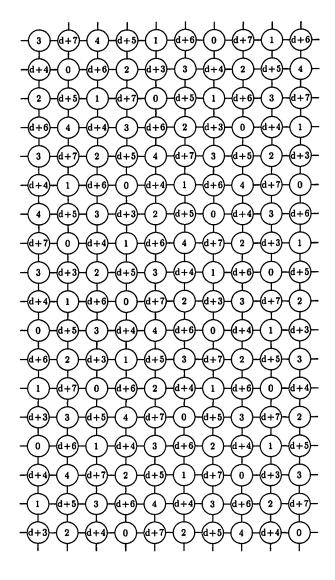


Figure 14. A (d+7)-L(d,1)-labeling of $C_{10}\square C_{18}$.

Acknowledgements. The authors would like to thank the referees for many constructive suggestions.

References

- [1] T. Calamoneri, The L(h, k)-labeling problem: A survey and annotated bibliography, The Computer Journal. 49 (2006), 585-608.
- [2] G. J. Chang and D. Kuo, The L(2, 1)-labeling on graphs, SIAM J. Discrete Math. 9 (1996), 309-316.
- [3] G. J. Chang, W.-T. Ke, D. Kuo, D. D.-F. Lin and R. K. Yeh, On L(d, 1)-labelings of graphs, *Discrete Math.* **220** (2000), 57-66.
- [4] G. J. Chang and C. Lu, Distance-two labeling of graphs, European J. Combin. 24 (2003),53-58.
- [5] S. H. Chiang and J. H. Yan, On L(d, 1)-labeling of Cartesian product of a cycle and a path, *Discrete Appl. Math.* 156 (2008), 2867-2881.
- [6] J. Fiala, T. Kloks and J. Kratochvil, Fixed-parameter complexity of λ-labelings, Discrete Appl. Math. 133 (2001), 59-72.
- [7] J. Georges and D. W. Mauro, On the criticality of graphs labelled with a condition at distance two, *Congr. Numer.* 101 (1994), 33-49.
- [8] J. Georges and D. W. Mauro, Generalized vertex labeling with a condition at distance two, Congr. Numer. 109(1995),141-159.
- [9] J. Georges and D. W. Mauro, On the size of graphs labeled with a condition at distance two, J. Graph Theory 22 (1996), 47-57.
- [10] J. Georges and D. W. Mauro, Some results on λ_k^j -numbers of the products of complete graphs, $Congr.\ Numer.\ 140\ (1999),\ 141-160.$
- [11] J. Georges and D. W. Mauro, On generalized Petersen graphs labeled with a condition at distance two, *Discrete Math.* 259 (2002), 311-318.
- [12] J. Georges and D. W. Mauro, On regular graphs optimally labeled with a condition at distance two, SIAM J. Discrete Math. 17 (2003), 320-331.
- [13] J. Georges, D. W. Mauro, and M. I. Stein, Labeling products of complete graphs with a condition at distance two, SIAM J.Discrete Math. 14 (2000), 28-35.
- [14] J. Georges, D. W. Mauro, and M. Whittlesey, Relating path covering to vertex labelings with a condition at distance two, *Discrete Math.* 135 (1994), 103-111.

- [15] D. Gonçalves, On the L(p, 1)-labelling of graphs, Proceedings of European conference on Combinatorics, *Discrete Math.* **308** (2008), 1405-1414.
- [16] J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discrete Math. 5 (1992), 586-595.
- [17] W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980), 1497-1514.
- [18] P. K. Jha, A. Narayanan, P. Sood, K. Sundaram, and V. Sunder, On L(2,1)-labeling of the Cartesian product of a cycle and path, Ars Combin. 55 (2000), 81-89.
- [19] P. K. Jha, Optimal L(2,1)-labeling of Cartesian products of cycles with an application to independent domination, *IEEE Trans. Circuits Systems I: Fundamental Theory and Appl.* 47 (2000), 1531-1534.
- [20] P. K. Jha, Sandi Klavzar and Aleksander Vesel Optimal L(d, 1)-labeling of Cartesian direct products of cycles and Cartesian products of cycles, *Discrete Appl. Math.* **152** (2005), 257-265.
- [21] D. Kuo, J. H. Yan, On L(2, 1)-labelings of Cartesian products of paths and cycles, Discerete Math. 283 (2004), 137-144.
- [22] D. D.-F. Liu and R. K. Yeh, On distance-two labelings of graphs, Ars Combin. 47 (1997), 13-22.
- [23] F. S. Roberts, Private communication through J, Griggs (1988).
- [24] D. Sakai, Labeling chordal graphs with a condition at distance two, SIAM J. Discrete Math. 7 (1994), 133-140.
- [25] C. Schwarz and D. S. Troxell, L(2,1)-labeling of products of two cycles, Discrete Appl. Math. 154 (2006), 1522 1540.
- [26] Z. Shao and R. K. Yeh, The L(2;1)-labeling and operations of graphs. IEEE Trans. Circuits Systems: I, 52, (2005), 668-671.
- [27] M. A. Whittlesey, J. P. Georges, and D. W. Mauro, On the λ -number of Q_n and related graphs, SIAM J. Discrete Math. 8 (1995), 499-506.
- [28] R. K. Yeh, The edge span of distance two labeling of graphs, Taiwanese J. Math. 4 (2000), 675-683.
- [29] R. K. Yeh, A Survey on Labeling Graphs with a Condition at Distance Two. Discrete Mathematics, 306, (2006), 1217-1231.