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Abstract

Chemical indices are introduced to correlate chemical compounds’
physical properties with their structures. Among recently introduced
such indices, the eccentric connectivity index of a graph G is defined
8s £9(G) = ¥,y (o) deg(v)ec(v), where deg(v) is the degree of a
vertex v and ec(v) is its eccentricity. The extremal values of £€(G)
have been studied among graphs with various given parameters. In
this note we study trees with extremal values of the eccentric connec-
tivity index with a given degree sequence. The extremal structures
are identified, however they are not unique.
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1 Terminology and introduction

A tree T = (V,E) is a connected, acyclic graph. V(T') denotes the vertex
set of a tree T'. Leaves are vertices of degree 1. The unique path connecting
two vertices v,u in T will be denoted by Pr(v,u). The distance dr(v,u)
between them is the number of edges on the path (or shortest path for
general graphs) Pr(v,u).

The eccentricity ecg(v) of a vertex v in a graph G is the maximum
distance between v and any other vertex in G. The radius of G is the
minimum value of the eccentricities of the vertices in G. A central vertez
of G is a vertex with eccentricity equal to the radius. The center is the set
consisting of the central vertices.

For any vertex v € V(T'), deg(v) denote the degree of v. The degree
sequence of a tree is the sequence of the degrees (in descending order) of
the internal vertices.

We call a tree (T',r) rooted at the vertez v (or just T if it is clear what
the root is) by specifying a vertex r € V(T'). The height of a vertex v of a
rooted tree (T',7) is hp(v) = dr(r,v).

For any two different vertices u,v in a rooted tree (T',r), we say that
v is a descendant of u and u is an ancestor of v if Pr(r,u) C Pr(r,v).
Furthermore, if u and v are adjacent to each other and dr(r,u) = dp(r,v)—
1, we say that u is the parent of v and v is a child of u. For a vertex v in
a rooted tree (T, 7), we use T}, or T'(v) to denote the subtree induced by v
and all its descendants.

The structure of a chemical compound is usually modeled as a polygonal
shape, often called the molecular graph of this compound. Topological
indices have been used to correlate a compound’s molecular graph with
experimentally gathered data regarding the compound’s characteristics.

Through the past years, numerous indices have been introduced. Among
them the adjacency-sum-distance based eccentric connectivity index has
been considered in many literatures. Denoted by £°(G), the eccentric con-
nectivity index is defined as

£°(G) = Z deg(v)ec(v).

veV(G)

It was pointed out that “these topological models have been shown to give a
high degree of predictability of pharmaceutical properties, and may provide
leads for the development of safe and potent anti-HIV compounds”. Other
generalizations of this index have also been found useful.

Since ample applications of chemical indices deal with chemical com-
pounds that have acyclic organic molecules, whose molecular graphs are
trees, mathematical properties of various indices of trees have been exten-
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sively studied over past years, see, for example, [2, 4, 10] and the references
there.

The eccentric connectivity index was discussed in many chemical related
literatures (3, 5, 8, 11]. Since the degrees of vertices in a molecular graph
correspond to the valences of the atoms in a compound, tree structures
with various restrictions on their degrees have been of practical interests.
Most recently Ilic and Gutman [6] studied this index for chemical trees
(trees with maximum degree 4) and trees with bounded degrees in general.
Similar questions for other chemical indices (the Wiener index for instance)
among trees with bounded degrees or a given degree sequence are studied in
[4, 7, 10]. In this note, we aim to fill the gap by characterizing the extremal
trees with respect to the eccentric connectivity index among trees with a
given degree sequence.

We examine extremal trees with a given degree sequence in Sections
2.1 and 2.2; we identify the structure of such trees in Section 2.3, with
examples showing that they are not unique; in Section 2.4 we examine the
value of £€(T') of these extremal trees.

2 Trees with a given degree sequence

In this section we consider the extremal trees with respect to the eccentric
connectivity index for trees with a given degree sequence. For convenience,
we call an extremal tree T optimal (minimizing £¢(T) in section 2.1 and
maximizing £€(T) in section 2.2). First note the following known observa-
tion, see for instance [1].

Lemma 2.1. The center (containing one or two vertices) lies in the middle
of a diametral path.

To introduce our results, we define the greedy type trees (with a given
degree sequence) as a generalization of the greedy trees in [10]:

Definition 2.2. Suppose the degrees of the non-leaf vertices are given, a
greedy type tree is achieved by the following ‘greedy algorithm’:
i) Label the verter with the largest degree as v (the root);

it) Label the neighbors of v as vy, va,. .., assign the largest degrees avail-
able to them. In particular, vy gets the second largest degree in the degree
sequence;

i11) Label the neighbors of v; (except v} and let them take all the largest
degrees available, the children of v) takes the remaining largest degrees;

iv) Repeat (iii) for all the newly labeled vertices, with the largest avail-
able degrees assigned to the descendants of v;.
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Fig. 1 shows a greedy type tree with degree sequence {4, 4, 4, 3, 3, 3, 3,
3, 3, 3, 2, 2}, note that such trees are not necessarily unique with a given
degree sequence. Intuitively speaking, one just fill the levels (the root first,
then the vertices with height one, etc.) with largest degrees available. v,
and its descendants always get assigned the largest degrees in each level,
while the order of the other degrees in each level can be random.

Figure 1: A greedy type tree

Also, a caterpillar tree is a tree which has a path (the ‘backbone’ of the
caterpillar) and every vertex not on the path is adjacent to some vertex
on the backbone. The greedy type caterpillar is a tree T with given degree
sequence {d; > dy > ... > di > 2}, formed by attaching pendant edges to
a path v vy... v of length k — 1 such that

min{d(v1), d(vk)} > max{d(ve), d(vk-1)} = min{d(ve), d(vk-1)} > ...

e 2 max{d(vrg-l),d(vl-%_:] )} 2 mi"{d(vf"ﬂ)’d(vf%—'] )}
Note that s and U[epr] can be identical if & is odd.

Fig. 2 shows a greedy type caterpillar with degree sequence {6, 5, 5, 5,
5,5,4,3, 3}. Similar to the greedy type trees, the greedy type caterpillars
are not necessarily unique with a given degree sequence.

Figure 2: A greedy type caterpillar

2.1 Minimization

Take a central vertex v with eccentricity k¥ (lying on a diametral path of
length 2k or 2k — 1), partition the vertex set into Lg, Ly,..., L while L;
consists of vertices at distance ¢ from v. In particular, Ly = {v} and Ly
contains only leaves. Let v; € L; and v; € L;, ©# < j, then we have the
following lemma, which claims that larger degrees lie closer to the central
vertex in an optimal tree.
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Lemma 2.3. In an optimal tree T that minimizes £€(T), we can assume
deg(v;) > deg(vj).

Proof. Let a diametral path start from u, passing through v and end at w.

Suppose that deg(v;) = a < b = deg(v;), then b > 2 and j < k — 1 since
ec(v) =k. Also,v; uorwsincei <j—1<k—2.

Consider T as rooted at v, let B := {B;, Bs,...,Bp—1} denote the set
of components/branches (each considered as a rooted subtree) in Ty, /{v;}.

If a > 2, let T be the tree obtained from T by removing b—a branches in
B and reattaching them to v;. Obviously T/ has the same degree sequence.
Since b — (b — a) = a > 2, we can choose these branches such that u and
w are not contained in any of them. Note that in this process, deg(z)
stays the same for any vertex z other than v;,v; while ec(x) stays the
same or decreases. v; and v; switched degrees and the larger degree is
associated with the vertex with smaller or same eccentricity in 7. Thus
£9(T") < €°(T).

If a = 1, further assume that B does not contain u or w. Let T’ be the
tree obtained from T by removing all the branches in B and reattaching
them to v;. Note that after this operation the path Pr(u,w) is still a
diametral path. Similar to above, we have £€(T") < ¢€(T).

This leaves us with the case a = 1 and every diametral path has an
end in B. Construct TV as above, since the eccentricity of any vertex is
achieved between itself and one end of a diametral path, the eccentricity
of any vertex will only decrease (if not the same as before). In particular,
ec(v) decreases. Then again £C(T") < £€(T).

a

Remark: One can also display the proof in a straightforward manner
without the different cases.
Now we are ready to prove our first main result:

Theorem 2.4. Among trees of given degree sequence, the ‘greedy type trees’
minimize £°(T).
Proof. From Lemma 2.3, the structure of the optimal tree is already close
to the ‘greedy type trees’. Let the resulted optimal tree be of height k, the
eccentricity of the root (a central vertex) v. Then a vertex v; € L; is of
height 7 in this tree.

Note that the eccentricity of v; is:
(i) 7 + k if there is a vertex v; € Lx whose only common ancestor with v;
is the root v;
(ii) ¢+ k — 1 if every v shares some common ancestor (other than the root
v) with v;.

In order to minimize £€(T), case (ii) is desired, which applies only when
all vertices of height k are descendants of the same child of v (otherwise
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one always end up with case (i)). In this situation, it is obviously our
interest to get as many vertices as possible to be the descendants of v; and
consequently as large degrees as possible for these vertices. It is easy to
see that the greedy type trees, with the restriction of having v; and its
descendants taking the largest degrees in each level, achieve this goal. O

Remark: By no means do we claim that the optimal tree has to be a
greedy type tree. As discussed in the proof, in the situations when case (i)
always holds, one do not need the restriction of associating largest degrees
with the descendants of v; in each level. This will be further explained in
section 2.3.

2.2 Maximization

In this case, we first present the following simple observation similar to the
case for the Wiener index [9)].

Lemma 2.5. The optimal tree has to be a caterpillar tree.

Proof. Let T be an optimal tree that maximizes the eccentric connectivity
index with a given degree sequence. Consider a diametral path vjvs... v,
with v; and v, being leaves.

Suppose for contradiction that there exists some non leaf vertex not on
this path. Let z be such a vertex which is also a neighbor of v;, we must
have 3 < i < m—2 since vjvs... vy, is a diametral path. Let T, denote the
subtree rooted at z, resulted from the component containing z in T/{v;z}.

Now consider a tree T” obtained from T by removing T, from z and
reattaching to v;. T’ shares the same degree sequence as T. After this
operation, the eccentricity of the vertices in T increased while the ec-
centricities for other vertices either increase or stay the same. Therefore
£C(T') > €°(T), contradicting to the optimality of T

Thus every vertex not on the diametral path has to be a leaf, conse-
quently T is a caterpillar tree. a

With this lemma, the next result immediately follows.

Theorem 2.6. Among trees of given degree sequence, the ‘greedy type
caterpillars’ mazimizes €€ (T).

Proof. Since the optimal tree has to be a caterpillar tree, it is only a matter
of arranging the degrees for the internal vertices on the diametral path
(backbone) of this caterpillar. Indeed, we want the largest degrees to be
assigned to the vertices as far from the middle as possible (so that these
degrees are associated with large eccentricities) and the smallest degrees to
be assigned to the vertices in the middle.

From this we get a greedy type caterpillar. (]
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2.3 The extremal trees

Here we discuss the possible extremal trees. With a given degree sequence,
one can always construct a greedy type tree according to Definition 2.2
(Fig. 1). Such trees minimize £°(T') as shown in section 2.1. However they
are not unique, as one can permute the degrees within the descendants of
v, and within the other vertices at each level. For instance Fig. 3 shows
another greedy type tree with the same degree sequence, the degrees of voo
and vg; are switched compared to Fig. 1.

Figure 3: Another greedy type tree

Further more, if there exists some vertex that is not a descendant of v,
and is of the greatest height (as is the case with the trees in Fig. 1 and
Fig. 3). Case (i) in the proof of Theorem 2.4 will always occur and it is
not necessary to follow the ‘descendants of v, taking largest degrees in each
level’ restriction. In this case, the degrees of the vertices at each level can
be randomly permuted. As a result, Fig. 4 shows an optimal tree with the
same degree sequence that is not a greedy type tree. Here the degrees of
v13 and va3 are switched compared to Fig. 3, for the vertices of height 2, it
is no longer the case that the descendants of v; take the largest degrees.

Figure 4: An optimal tree that is not ‘greedy’

The reason for Definition 2.2 can be illustrated in the next example.
With the degree sequence {4, 4, 3, 3,3, 3, 3,3}, the greedy type tree is shown
in Fig. 5, in this case all vertices of the greatest height are descendants of
v;. For all the descendants of v;, case (ii) in the proof of Theorem 2.4
applies and the greedy type trees (still not necessarily unique) maximize
the number of ‘cases (ii)’ (therefore minimize £€(T)).

As for the greedy type caterpillars, it is obvious that they are not nec-
essarily unique since one can exchange the degrees of any pair of vertices
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Figure 5: An optimal tree for which ‘greedy’ is necessary

(on the diametral path) at the same distance from the center.

2.4 Extremal values of (°(T)

Here we briefly discuss the values of £¢€(T) with T being the extremal
structures. As corollaries from the previous theorems, these rather simple
conclusions can shed some light on the influence of the degree sequence on
the possible extremal values of £€(T).

For a greedy type caterpillar T with degree sequence {d;,ds,...,dx},
we immediately get the following from the definition:

k k ,
STy =S di(k— | =1 _ _li=t
£(T) = ;d,(k [ 5 J)+i§(azz 2)(k+1 [ 5 J)+2(k+1) (1)
where the first sum comes from the contribution from the internal vertices
and the other terms correspond to the leaves.

From (1) it is easy to see that if & (the number of internal vertices) is
fixed, an ‘even’ distribution of the degrees will minimize the maximal value
of £°(T), and the maximal value of £€(T) is maximized when we have a
degree sequence of the form {d;,2,2,...,2}.

In the case of a greedy type tree T’ with degree sequence {d;,ds, ..., dx},
it is not as easy to get a ‘nice’ explicit formula as the caterpillar. However,
from the proof of optimality one can think of the construction as a simple
algorithm, starting with the largest degree and attach the degrees from
largest to smallest such that the larger degrees are associated with smaller
eccentricities.

From this argument we can come to a similar conclusion. When k is
fixed, an ‘even’ distribution of the degrees will maximize the minimal value
of £€(T), and the minimal value of £°(T) is minimized when we have a
degree sequence of the form {d;,2,2,...,2}.

3 Summary

To summarize, we found the extremal tree structures with a given degree
sequence, which maximize or minimize the eccentric connectivity index.

62



We point out that these extremal structures are not unique, in particular
partial restriction of ‘greedy’ is sometimes not necessary. We see in section
2.3 that this depends on the number of non leaf vertices of the greatest
height and the largest degrees at each level. With a given degree sequence,
one can easily see what is the case. A more straight forward description of
this phenomenon is desired.
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