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Abstract

In this paper we investigate the existence of perfect state transfer
in integral circulant graphs between non-antipodal vertices-vertices
that are not at the diameter of a graph. Perfect state transfer is con-
sidered on circulant quantum spin networks with nearest-neighbor
couplings. The network is described by a circulant graph G, which
is characterized by its circulant adjacency matrix A. Formally, we
say that there exists perfect state transfer (PST) between vertices
a,b € V(G) if |F(7)as| = 1, for some positive real number 7, where
F(t) = exp(1At). Saxena, Severini and Shparlinski (International
Journal of Quantum Information 5 (2007), 417-430) proved that
|F(T)aa| = 1 for some a € V(G) and 7 € R* if and only if all the
eigenvalues of G are integer (that is, the graph is integral). The inte-
gral circulant graph ICG,, (D) has the vertex set Z, = {0,1,2,...,n—
1} and vertices a and b are adjacent if ged(a — b,n) € D, where
D C{d:d|n, 1 <d<n}. We characterize completely the class of
integral circulant graphs having PST between non-antipodal vertices
for | D| = 2. We have thus answered the question posed by Godsil on
the existence of classes of graphs with PST between non-antipodal
vertices. Moreover, for all values of n such that ICG,(D) has PST
{n € 4N), several classes of graphs ICG,(D) are constructed such
that PST exists between non-antipodal vertices.
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1 Introduction

The transfer of a quantum state from one location to another is a crucial
ingredient for many quantum information processing protocols. There are
various physical systems that can serve as quantum channels, one of them
being a quantum spin network. These networks consist of n qubits where
some pairs of qubits are coupled via XY-interaction. The perfect transfer
of quantum states from one qubit to another in such networks was first
considered in [9]. There are two special qubits A and B representing the
input and output qubit, respectively. The transfer is implemented by set-
ting the qubit A in a prescribed quantum state and by retrieving the state
from the output qubit B after some time. The transfer is called perfect
state transfer (transfer with unit fidelity) if the initial state of the qubit A
and the final state of the qubit B are equal up to a local phase rotation.

Every quantum spin network with fixed nearest-neighbor couplings is
uniquely described by an undirected graph G on a vertex set V(G) =
{1,2,...,n}. The edges of the graph G specify which qubits are coupled.
In other words, there is an edge between vertices i and j if i-th and j-th
qubit are coupled.

In [9] a simple XY coupling is considered such that the Hamiltonian of
the system has the form

He = 1 Z ofof +aio].

(:.9)EE(G)

and 07,0 and o7 are Pauli matrices acting on i-th qubit. The standard
basis chosen for an individual qubit is {|0},|1)} and it is assumed that
all spins initially point down (|0)) along the prescribed z axis. In other
words, the initial state of the network is |0) = [040...00g). This is an
eigenstate of Hamiltonian Hg corresponding to zero energy. The Hilbert
space H¢ associated with a network is spanned by the vectors [ejez. .. e,)
where e; € {0,1} and, therefore, its dimension is 2™.

The process of transmitting a quantum state from A to B begins with
the creation of the initial state a|040...00g) + 3|140...00p) of the net-
work. Since |0) is a zero-energy eigenstate of Hg, the coefficient a will
not change in time. Since the operator of total z component of the spin
0%y =Y iy 0F commutes with Hg, state |140...00p) must evolve into a
superposition of the states [¢) = [0...01,0,...,0) for ¢ = 1,...,n. Denote
by S¢ the subspace of H¢ spanned by the vectors |i), i = 1,...,n. Hence,
the initial state of network evolves in time ¢ into the state

n
al0) + > Bi(t)li) € Se.
i=1
The previous equation shows that system dynamics is completely deter-
mined by the evolution in n-dimensional space Sg. The restriction of the

Hamiltonian Hg to the subspace Sg is an n x n matrix identical to the
adjacency matrix Ag of the graph G.
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Thus, the time evolution operator can be written in the form F(t) =
exp(1Agt). The matrix exponential exp(M) is defined as usual

+00 1
exp(M) =) _ M.

n=0

Perfect state transfer (PST) between different vertices (qubits) a and b
(1 £ a,b £ n) is obtained in time 7, if (a|F(t)|b) = |[F(T)a| = 1. The
graph (network) is periodic at a if |F'(T)ae| = 1 for some 7. A graph is
periodic if it is periodic at each vertex a.

The existence of PST for some network topologies has already been
considered in the literature. For example, PST occurs in paths of length
one and two between their end-vertices and also in Cartesian powers of
these graphs between vertices at maximal distance [10]. In the recent pa-
per [13], Godsil constructed a class of distance-regular graphs of diameter
three, with PST. Furthermore, some properties of quantum dynamics on
circulant graphs were studied in (1]. In the recent papers (2, 21, 23|, PST on
circulant networks were examined and the main result is that there exists
an integral circulant graph with n vertices having PST if and only if 4 | n.
Several classes of integral circulant graphs having PST were found as well
and several others in [7]. In all known classes of graphs having PST per-
Ject quantum communication distances (i.e. the distances between vertices
where PST occurs) are considerably small compared to the order of the
graph. One idea for the distance enlargement, is to consider networks with
fixed but different couplings between qubits. These networks correspond
to graphs with weighted adjacency matrices. For example, in [9, 10] the
authors showed that PST can be achieved over arbitrarily long distances
in a weighted linear paths. Many recent papers have proposed such an
approach (7, 8, 19).

Studying PST in integral circulant graphs can also be interpreted as a
contribution to the spectral theory of integral graphs. These graphs are
highly symmetric and have some remarkable properties connecting graph
theory and number theory. Integral circulant graphs found important ap-
plications in molecular chemistry [16, 18, 22]. The term ’integral circulant
graph’ first appears in the work of So [25], where a nice characterization of
these graphs in terms of their symbol set is given. Various other properties
of unitary Cayley graphs were recently investigated, such as the diame-
ter, the size of the longest cycle, clique, chromatic number, bipartiteness
(2, 6, 17, 20, 23]).

In this paper we proceed with the study of circulant networks supporting
PST initiated in (3, 4, 7, 13, 21, 23, 24]. Having in mind applications to
PST, it is useful to study certain parameters of graphs that allow periodic
dynamics. Specifically, it would be interesting to know how far information
can potentially be transferred between sites of the system modelled by the
graph. So, it is important to know the diameter of the graph and the
perfect quantum communication distance. Especially, it is interesting to
know if the perfect quantum communication distance is always equal to the
diameter of a graph. In other words, are the involved vertices of a graph
where PST exists, always antipodal? This question was posed by Godsil
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in [13] and we give negative answer to the question by characterizing all
inte%ra.l circulant graphs with a two element set of divisors having PST.

he plan of the paper is as follows. In Sections 2 and 3 we give for-
mal mathematical definitions of integral circulant graphs and perfect state
transfer. We also restate some results concerning the study of perfect state
transfer in integral circulant graphs. In Section 4, the diameter of integral
circulant graphs with one divisor is determined. This result is essential
in calculatin% the diameter of integral circulant graphs with two divisors,
which is performed in Section 5. We have also characterized all integral
circulant graphs with a two element set of divisors having PST , and we
have found two classes of graphs where PST occurs between non-antipodal
vertices. These classes of integral circulant graphs are of the order divisi-
ble by eight. Furthermore, we have also found a class of integral circulant
graphs with order in the set 8N +4. This way we prove that for any n € 4N
there is an integral circulant graph of order n such that PST occurs be-
tween non-antipodal vertices. Notice that PST exists in integral circulant
graphs if the order of a graph is divisible by four. A class of integral circu-
lant graphs of order n € 8N + 4 such that PST occurs between antipodal
vertices is also found.

2 Integral circulant graphs

The circulant graph G(n;S) is a graph on vertices Z,, = {0,1,...,n — 1}
such that each vertex ¢ is adjacent to vertices i +, s for all s € S. The
set S C Z, is called the symbol set of the graph G(n;S) and +, denotes
addition modulo n. Note that the degree of G(n;S) is #S. A graph
is integral if all its eigenvalues are integers. Wasin So has characterized
integral circulant graphs [25] by the following theorem:

Theorem 1 [25] A circulant graph G(n; S) is integral if and only if

§= ] Ga(a),

deD

for some set of divisors D C D,. Here Gn(d) = {k : ged(k,n)=d, 1 <
k <n -1}, and D, is the set of all divisors of n, different from n.

Therefore an integral circulant graph G(n;S) is defined by its order n
and the set of divisors D. Such graphs are also known as gcd-graphs (see for
example [20]). An integral circulant graph with n vertices, defined by the
set of divisors D C D,, will be denoted by ICG, (D). Here, for the symbol
set S of ICG,,(D) we use the notation from Theorem 1 and denote it by
Gn(D). From Theorem 1 we have that the degree of an integral circulant
graph is degICG, (D) = ) cp p(n/d). Here p(n) denotes the Euler-phi
totient function [14].

The eigenvalues and eigenvectors of ICG, (D) are given in [23] and can
be expressed in terms of the Ramanujan function (see (14, p. 55] and [20],
Theorem 16).



The integral circulant graph ICG, (D) is connected if and only if
ged(n, dy, ..., die) =1,

where D = {dy,...,di} [15]. In the rest of the paper we will only consider
connected integral circulant graphs.

3 Perfect state transfer

Let G be an undirected graph and denote by Ag its adjacency matrix. Let
F(t) = exp(iAct). There is a perfect state transfer (PST) in graph G if
there are distinct vertices a and b and a positive real number ¢ such that
|F(t)as] =1 [9, 13, 23].

Let Ao, A2,...,An—1 be the eigenvalues (not necessarily distinct) of Ag
and ug, uy,...,un—1 be the corresponding normalized eigenvectors. We use
spectral decomposition of the real symmetric matrix A¢ (see for example
[12] (Theorem 5.5.1) for more details). The matrix function F(t) can be

represented as
n—1

F(t)=)_ exp(\\t)uru;. (1)
k=0
Now let G = ICG, (D) be an integral circulant graph. By simple cal-
culation and using the formula of eigenvalues, we see that ||vk|| = v/ and
hence uy = v //n. Expression (1) now becomes

n—-1

1
F(t) =~ ) exp(ihet)vivy.
k=0

In particular, from the last expression and the formula of eigenvectors it
directly follows

1 n—1 _
F(t)ap = - ,;) exp(t\xt)wke—8),
This expression is given in [23] (Proposition 1). Finally, our goal is to check
whether there exist distinct integers a,b € Z,, and a positive real number ¢
such that |F(t)es) =1, i.e.

n—1

=3 explnetjubed| = 1. (2)
k=0

Since the left-hand side of (2) depends on a and b only as a function of
a — b we can, without any loss of generality, assume that b = 0. There-
fore, throughout the paper we consider the existence of PST only between

vertices a and 0. .
We restate some results proved in [4]. These results establish necessary

and sufficient conditions for (2).
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Theorem 2 [4] There is no PST in ICG,(D) if n/d is odd for every
d € D. For n even, if there exists PST in ICG, (D) between vertices a and
0, then a = n/2.

According to Theorem 2, PST may exist in ICG, (D) only between
vertices n/2 and 0 (i.e., between b and n/2+ b as mentioned in [23]). Hence

we will avoid referring to the input and output vertex and will just say that
there exists PST in ICG, (D).

Theorem 3 [5] An integral circulant graph ICG, (D), where D has ezactly
two divisors, has PST if and only if So(n) 2 3 and D = {1,n/2}, D =
{1,n/4} .

We end this section with the following results concerning nonexistence

of PST in ICG,(D) for n € 4N + 2 and existence of PST in ICG,(D) for
n € 4N,

Theorem 4 [21] There is no PST in ICG,(D) for an arbitrary set of
divisors D for n € 4N 42,

Theorem 5 [21] Let n be a positive integer such that Sa(n) = 2. Then
graphs ICG,(1,2,4,n/4) and ICG,(1,2,4,n/2) have PST.

4 The diameter of integral circulant graphs
with one divisor

The distance d(u, v) between two vertices u and v of a graph is the minimum
length of the paths connecting them (i.e., the length of a graph geodesic
between v and v). The diameter of a graph is the maximum distance of
any pair of vertices in the graph.

Definition 1 Let! and N be given integers. If there exist integers 31, sa,. .. Sk
with ged(s;, N) =1, for1 i< k, andl=s1+s2+...+ 8¢ (mod N) then

the k-tuple (sy, 82,...,Sk) is called a reduced decomposition of | modulo N
(RDn(l)) on k elements.

Lemma 6 For any positive integers m andl such thatl < m and ged(l,m) =
1, the following conditions hold:

(i) There exists RD,,(l) on three elements.
(i) If m is odd then there exists RDm(l) on two elements.
(iii) If m is even there is no RDpy(l) on two elements.

Proof.
(i) Since ged(l,m) =1 it follows that ged(m — I, m) = 1 and thus we have
l=(m-=10)+1+1 (mod m).
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(ii) If m is odd then ged(2l,m) =1 and thus [ = (m — ) 4+ 2] (mod m).

(iii) Suppose that there are two element RD,(1). This means that there
exist integers a and b both relatively prime tom and = a + b (mod m).
As m is an even integer, the last equation yields that { —a — b is also even.

On the other hand, since a,b and [ are relatively prime to m, they are a.ll
odd and thus [ —a — b € 2N + 1, which leads to a contradiction.

Lemma 7 Let m = p*, where p is a prime number and o > 1. For any
positive integer | < m divisible by p, there exists RDp (1) on two elements
and for p > 2 there is RDp,(l) on three elements.

Proof. The numbers m and m — 1 are relatively prime and for p > 2 the
number m — 2 is not divisible by p. Under the conditions of the lemma,
both ((m — 1),1) and ((m — 2),1,1) represent RD,,({) on two and three
elements, respectively. a

Lemma 8 For any positive integer | less than a given positive integer N,
there is RDn(l) of at most three elements.

Proof.

(i) Let N be a prime number. Since all integers smaller than N are rel-
iatively prime to N, each of them trivially satisfies the assertion of the
emma.

(ii) Now let N = p* for an arbitrary prime number p > 2 and o > 1. Then
for all numbers not relatively prime to N there is RDy(l) on two elements
by Lemma 7.

(iii) Suppose that N = nm, where n,m > 1 are relatively prime integers.
Also assume m = p for an odd prime p and « > 1. Consider the congruent
classes modulo m, C; = {tm + 1 | 0<t<n—1} for0<i<m—-1

The proof is further carried out using induction on N. For N = p®
where p is prime, the assertion holds according to part (i) and (ii) of the
proof. Suppose the assertion holds for all n < N.

Consider an arbitrary class Cy for 0 € k < m — 1. By the assumption,
f%r each element ! € C. we have that there exists an integer 1 € = < 3 such
that
l=si+s2+ -+ (modn), 3)
and ged(si,n) =1for1 i<z

In the case where 2 € = < 3 according to Lemma 6 (parts (i) and (ii))
and Lemma 7 there exist numbers ry,73,...,7, such that

l=k=ri+r2+4--+r: (modm), (4)

and ged(r;,m) =1for1 i < =

The proof of the assertion for z = 1, i.e. ged(l,n) = 1, is easily reduced
to that for z = 3, using part (i) of Lemma 6.

Since ged(n, m) = 1, the elements of an arbitrary class form a complete
residue system modulo n. This implies that for each element s; there exists
an integer 8} € C,,, such that s; = s; (mod n) for 1 € 7 < x. Thus,
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according to (3) and (4) we obtain | = s} + 85 +--- + s.. (mod n,m) or
equivalently | = s} + s5 + --- + s, (mod N = nm), since ged(n,m) = 1.
Due to the choice of the integers s}, they are relatively prime to both n and
m and thus to N = nm. a

Now, we are ready to prove the main result of this section, concerning
the diameter of integral circulant graphs with divisor set D = {1}.

Theorem 9 For a given ICG,(1) and n 2 2, we have that

1, n is a prime
diam (ICG,(1)) = 2, n is an odd composite integer or a power of 2

3, otherwise.

Proof. Consider two arbitrary vertices u,v € Z,, such that v < v and
let | = v — u. According to Lemma 8 there is RD,(l) on at most three
elements implying that diam (ICG.(1)) < 3.

(i) The diameter of a graph equals one if and only if it is complete. Equiv-
alently, the degree of regularity ¢(n) must be equal to n—1. The last equa-
tion is satisfied if and only if n is a prime number. Therefore, in the rest of
the proof we assume that n is a composite number and diam(ICG,(1)) > 2.

(ii) If n is a power of 2, according to part (ii) of Lemma 8, we have
diam(ICG,(1)) = 2.

Now, assume that n is an odd composite integer. Let pI'p3? ... pe* be
a prime factorization of n. Using induction on &, as in the proof of Lemma
8, we can conclude that there exists RDe: (l) on two elements (according

to part (ii) of Lemma 7), for 1 < i < k Thus, there is RD,(l) on two
elements and diam (ICG,(1)) =

(iii) Let n be an even number divisible by an odd prime number. Hence,
it can be represented as n = 2°'m, where m is an odd number greater
than one. Suppose that diam (ICG,(1)) = 2. Choose vertices u and v
such that ! is an odd number not relatively prime to m. Since m is an
odd number, according to part (ii) there exists RD,,(l) on two elements.
On the other hand, according to the part (iii) of Lemma 6 there is no
RD301 (1) on two elements. Thus there is no RD,(l) on two elements or
equivalently diam (ICGn(1)) # 2, which leads to a contradiction. The only
remaining possibility is diam (ICGn(l)) = 3, which completes the proof of
the theorem. O

5 Perfect quantum communication distance

and diameter of integral circulant graphs
In the first part of the section we consider the diameter of ICG, (D) for

D = {1,d}. We calculate the diameter in Theorem 14 and the proof of
this result is naturally divided into a sequence of lemmas. Throughout the
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section, we let n = p'p3? - ... pp*, where p; < pp < ... < pi are distinct
primes, and o; > 1. The proof of the following Lemma is omitted since it
is simple.

Lemma 10 ICG, (D) is complete if and only if n = p? and d = p where p
is an arbitrary prime number.

Lemma 11 Let n be an even number and k > 2. Then diam(ICG,(D)) =
2 if one of the following conditions is satisfied

(i) d is a power of 2
(i) n=2%p and d = p for a odd prime number p.

Proof. Let u,v € Z, be two arbitrary vertices such that = v —u.

(i) Suppose also that d = 2* where 1 < o < ;. Now we will prove
the existence of numbers s;,s2 € Z, such that | = s; + s2 (mod n) and
s1,82 € Gn(D).

If I € 2N then we will find s;, s3 € Z,, such that there exists RD,(l) on
two elements. Let n = 2*'m where m is odd. According to the part (ii) of
Theorem 9, the existence of RD,,(l) on two elements is guaranteed. On the
other hand, from Lemma 8 (part (ii)) it holds that there exists RDja: ({)
on two elements and thus there is RD,(!) on two elements. Notice that
there exists RD,(l) on z elements if and only if there exists RD,(!') on
z elements, where !’ represents the residue of [ modulo n. It is true since
l=l=3s+5s3+...+ s, (mod n), where ged(s;,n) = 1. This means that
the above consideration also holds when { > m or [ > 2.

If | € 2N + 1 then without loss of generality, suppose that s; € 2N +1
and s; € 2N. This yields that ged(s1,n) = 1 and ged(se,n) = 2%. We
conclude that p; { s; for 1 <i <k and if o < ; we have 2* | sg, 20+l § 59
and p; 1 s3 for 2 < i < k. The last relations can be rewritten in the
following form: s; # 0 (mod p;) for 1 < i < k, s = 0 (mod 2%), s2 #0
(mod 2%*!) and s # 0 (mod p;) for 2 < i < k. Since s; =1 — s, (mod n),
using the above relations we obtain s; = 0 (mod 2°), s; # 0 (mod 2°+1)
and sp # {0,!} (mod p;) for 2 < i < k. Notice that, when we join the first
two relations together we finally have the following system

s3 = 2% (mod 2**?)

s2 # {0,l} (modp;)for2<i<k.
According to the Chinese remainder theorem, it follows that there exists a
solution s of the above system of congruences such that 0 < s < M and

s = s (mod M) where M = 2%*1p, ... p.. Notice that the relation M < n
holds since a < o.

If @ = a; then the condition gcd(s2,n) = 2% is equivalent to s; = 0
(mod 2°1) and sz # 0 (mod p;) for 2 < i < k. Thus, the above system is
reduced to

s = 0 (mod 2°)
sg # {0,l} (modp;)for2<i<k.
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Using the Chinese remainder theorem again, the system has a solution s
such that 0 < s < M and s; = s (mod M) where M = 2%1p,...p;.
(ii) Suppose that n = 2%1p and d = p. If | € 2N + 1 we have that either
pllorpfl. It follows that either ged(l,n) = p or ged(l,n) = 1. In either
case we conclude that I € G,(D).

(For ! € 2N there is RD,(l) on two elements as we have already proved
in (i).

a

Lemma 12 Let p; be an arbitrary prime divisor of n for2 < i < k. We
have thatk =i =2 and ag = 1 if and only if for all odd ! € Z, | € G (1, p;)
holds.

Proof.
(=:) For ! € 2N+ 1 we have that either p; | l or p; { L. It follows that either
gcd(l,n) = p; or ged(l,n) = 1. In either case we conclude that I € G,(D).

(«<:) Suppose that for all odd ! € Z, we have that | € G,(1,p;) holds.
This implies that for any odd ! € Z,, either ged(l,n) = 1 or ged(l,n) = p;
holds. Since the number of odd ! € Z,, such that ged(l,n) = 1 is equal to
©(n) and the number of odd ! € Z, such that ged(l,n) = p; is equal to
p(n/p;), we have that

¢(n) +@(n/p) = 3. (5)

Let o; > 2. Using the Euler’s totient function formula we obtain that

2% 71p3? L pi 217 p32  p2 — 1) pp* T (pe — 1)

22171 p32  pp — 1) P T (pi — 1) B T (e — 1)
(p2—1)...(pi - l)'--(pk—l)(zm+1)
(p2—1)...(0¢ = 1)...(px — 1).

We see that the above equation does not have a solution since the left

hand side is obviously greater than the right hand side.
Now suppose that a; = 1. The relation (5) now becomes

+ 0

pz...p?...pk

22171p82 g =2 182 gy — 1) (pi = 1)L o T (o — 1)
+2°171p82 7 gy — 1) L T T pics — VPt pier — 1) 5 (o — 1)
@p2...pi.pe=(p2—1)...(pi-1 = 1)(Pi+1 = 1)... (px — 1)1»-

It can be concluded that the equality holds if and only if k = 2, since
for k > 3 the left hand side is obviously greater than the right hand side.
Then i =2 and so ap = 1. O

Lemma 13 Letn > 4 be an even number and k > 2. Then diam(ICG,,(D)) =

3 if and only if the following conditions are satisfied

(i) d is not a power of 2
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(ii) n s 2%1p or d # p for any odd prime number p.

Proof,
(=:) Suppose that diam(ICG,(D)) = 3 and that either (i) or (ii) of the

assertion of the lemma is false. This implies that either assertion (i) or (ii)
of Lemma 11 holds which yields that diam(ICG,,(D)) = 2. This contradicts
our assumption.

(«=:) Suppose now that both (i) and (ii) hold. This implies that for 2 <
t < k there is an odd prime common divisor p; of n and d.

If d # p; then ged(pi,n) = pi & {1,d}. From this it follows that
p; &€ Gp(D). Let u,v € Z,, be two arbitrary vertices such that p; = v — u.
Suppose that the distance of vertices 4 and v is equal to two. It means that
there exist s;, s3 € G(D) such that s;+s2 = p; (mod n). Since p; € 2N+1
and n € 2N then s; and s; have different parity and thus ged(s;,n) #
ged(sz,n). Without loss of generality, assume that ged(s;,n) = 1 and
gcd(sg,n) = d. We further obtain that p; { s; and p; | s; and thus p; {
81+ 82, which is impossible. We conclude that the distance between vertices
u and v is greater than two.

If d = p;, according to Lemma 12, there exists an odd ! € Z, such
that ged(l,n) € {1,p:}. Consider the vertices u and v such that l = v —u
and v > u. Suppose that the distance of vertices u and v is equal to two.
It means that there exist s;,32 € Gn(D) such that s; + s = ! (mod n).
Since | € 2N + 1, s; and s; have different parity and thus without loss
of generality we can assume that s; € 2N. On the other hand, we have
ged(s1,n) € {1, p;} which implies s; € 2N + 1. This is a contradiction and
the distance between vertices u and v is greater than two.

In both cases we have found two vertices such that the distance between
them is greater than or equal to three, which yields that diam(ICG,(D)) >
3. According to Theorem 9 we conclude diam(ICG, (D)) < diam(ICG.(1))
< 3, which completes the proof. a

Now we can formulate our main result which has important application
in Theorem 15. It is a direct consequence of Lemmas 10, 11 and 13.

Theorem 14 For a given ICG,(1,d) and n > 4 we have that

1, n=p? d=p, pis prime
2, n s odd other than prime or
diam(ICG,(1,d)) = n is even and d is a power of 2 or  (6)
niseven, k=2,a,=1and d=ps
3, otherwise.

Perfect qguantum communication distance (PQCD) of an arbitrary pair
of vertices v and v is the distance d(u,v) if perfect state transfer exists
between them. If we consider a circulant network with identical couplings
PST occurs only between vertices b and b+n/2 for 0 < b < n/2—1 (Theorem
2). For the integral circulant graph ICG, (D) where D = {1,n/2}, PQCD
of b and b+ n/2 is equal to one. In the other case, we have that D =
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{1,n/4} (Theorem 3) and thus the existence of the path b,b+n/4,b+n/2
shows that PQCD is equal to two. The above discussion leads us to the
conclusion that PST exists between antipodal vertices if and only if 1 <
diam(ICG,(1,d)) < 2.

Theorem 15 PST exists between non-antipodal vertices in ICG,(D) for
| D} = 2 if and only if one of the following conditions is satisfied

(i) n € 8N and D = {1,n/2}
(it) n € 8N other than a power of 2 and D = {1,n/4}.

Proof.

(i) PST exists in ICG,(1,n/2) between antipodal vertices b and b+n/2 for
0 < b < n/2-1if and only if diam(ICG,(1,n/2)) = d(b,b+n/2) = 1. This
implies that ICG,(1,7n/2) for n € 8N has to be complete. But, according
to Theorem 14 this is true if and only if n is a square of a prime. This is
a contradiction since 8 | n. Thus we conclude that there are no antipodal
vertices b and b+ n/2 for 0 < b <n/2 -1 in ICG,(1,n/2) for 8 | n, which
completes the first part of the proof.

(ii) Similarly, we conclude that PST exists in ICG,(1,n/4) between an-
tipodal vertices b and b+n/2 for 0 < b £ n/2—1 if and only if the diameter
of ICG,(1,n/4) for n € 8N is equal to two. Since 7 is even, using Theorem
14 we have two possibilities such that diam(ICG(1,n/4)) = 2.

If d = n/4 is a power of two, then we have that n is also a power of
two. Thus we conclude that the vertices b and b + n/2 are antipodal for
0<b<n/2—1inICG,(1,n/4) for n =2% and a; > 3.

Ifn = 2%1py and d = pg, it follows that d = n/4 = p; and hence that n =
4p,. According to the assumption we have n € 8N which is a contradiction
and consequently diam(ICG,(1,n/4)) # 2. Thus we conclude that there
are no antipodal vertices b and b+n/2 for 0 < b < n/2—1in ICG,L(1, n/4)
for 8 | n.

6 Concluding remarks

We have thus found two classes of integral circulant graphs ICG, (D) having
PST between a pair of non-antipodal vertices for n € 8N. On the other
hand, Theorems 3, 4 and 5 show that there exists an integral circulant
graph with n vertices having PST if and only if n € 4N. Thus, we will
examine the classes of graphs given in Theorem 5 and answer the question
of PST existence between non-antipodal vertices for any n € 4N.

Using a similar approach as in the proof of Lemma 10 we can prove that
ICG, (1, dy, d2, d3) is complete if and only if n = p* and d; = p*for 1 < ¢ < 3
for an arbitrary prime number p. This implies that ICG,(1,2,4,n/2) for
n € 8N+4 is not complete and thus PST only exists between non-antipodal
vertices.

Since diam(ICG,(1,2,4,n/4) < diam(ICG,(1,2)) = 2 by Lemma 11
(part (i)), it can be concluded that
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diam(ICG.(1,2,4,n/4)) = 2 for n € 8N+ 4. This leads us to the final con-

clusion that PST only exists between antipodal vertices in ICG,(1,2,4,n/4)

ff;.)r a? € 8[1\1 + 4. Following the above discussion, we can now formulate our
nal result.

Theorem 16 There exists an integral circulant graph with n vertices hav-
ing PST between non-antipodal vertices if and only if n € 4N.

It would be interesting to characterize integral circulant graphs of di-
ameter equal to two, especially graphs having PST and we leave it as open
problem. Even the special case when the divisor set consists of a small
number of divisors of n seems difficult to solve elegantly. Graphs with
small diameter also have application in molecular graph theory. Also, a
class of self-comﬁlementary integral circulant graphs should be searched
among those with diameter two.
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