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Abstract
For a graph G = (V, E), the Schultz index of G is defined as
S(G) = > (de(w) + de(v))de(u, v) where de(u) (or d(u)) is
{u,v}CV(G)

the degree of the vertex u in G, and dg(u,v) is the distance between
u and v in G. In this paper, we investigate the Schultz index of
tricyclic graphs. The n-tricyclic graphs with the minimum Schultz
index are determined.

1 Introduction

We use Bondy and Murty (1] for terminologies and notions not defined
here. Let G = (V, E) be a simple connected graph with the vertex set V(G)
and the edge set E(G), and |V(G)| = n, |E(G)| = m are the number of
vertices and edges of G, respectively. For any u,v € V, dg(u) (or simply by
d(u)) and dg(u, v) denote the degree of u and the distance (i.e.,the number
of edges on the shortest path) between u and v, respectively, Ng(v) =
{u|uv € E(G)} denotes the neighbors of v, and dg(v) = |Ng(v)|. Pn, Cn
and K n-i(or S;) be the path, cycle and the star on n vertices.

Schultz [2] in 1989 introduced a graph-theoretical descriptor for char-
acterizing alkanes by an integer, namely the Schultz indez, defined as

S@G)= Y (do(u)+dc(v))de(u,v) (1)

{u0}CV(G)

In (3], the authors derived relations between Wiener index W(G) and S(G)
for trees, i.e., S(G) = 4W(G) — (n — 1)(2n — 1). In [4], the analogous
results on (unbranched) hexagonal chain composed of n fused hexagons
were derived as well, S(G) = 245W(G) - %(271 +1)(20n + 7). More results

in this direction can be found in references [5-10].
*Projects supported by National Natural Science Foundation of China (11401192,

11326057), Natural Science Foundation of Hunan Province(2015JJ3031), Scientific Re-
search Fund of Hunan Provincial Education Department (14A206)

ARS COMBINATORIA 122(2015), pp. 79-88



The cyclomatic number of a connected graph G is defined as ¢(G) =
m—n+ 1. A graph G with ¢(G) = k is called a k— cyclic graph. For
¢(G) = 3, we named G as a tricyclic graph. Let J, be the set of all tricyclic
graphs with n vertices. We know, by Li et al.[11-15], that a tricyclic graph
G contains at least 3 cycles and at most 7 cycles, furthermore, there do not
exist 5 cycles in G. The authors in [16] characterized the laplace radius of
tricyclic graphs. Let J, = Z3UZ2U 58U, where J,} denotes the set of
tricyclic graph on n vertices with exact i cycles for ¢ = 3,4, 6, 7. Note that
the induced subgraphs of vertices on the cycles of G € J! (i = 3,4,6,7)
are depicted in Figure 1.
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Figure 1. The arrangement of cycles in J:(i = 3,4,6,7)
For any graph G € 4, G can be obtained from some graphs showed in
Figure 1 by attaching trees to some vertices.
In this paper, we shall investigate the Schultz index of tricyclic graphs
by introducing some grafting transformations, and characterize the corre-
sponding extremal graphs.

2 Preliminaries

Let E' C E(G), we denote by G — E’ the subgraph of G obtained by
deleting the edges of E’. V' C V(G), G — V' denotes the subgraph of G
obtained by deleting the vertices of V' and the edges incident with them.
Let (G1,v1) and (Gs,v2) be two graphs rooted at vy and vy respectively,
then G = (G1,v1)v(G2,v2) denote the graph obtained by identifying v;
with v, as one common vertex v.
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Lemma 1. Let C, be the cycle of order p, and v is a vertex on C,.
Then

if p is even,

Z dcp (z,v) = 42 _

2eV(C,) P , » ifpisodd

For convenience, we provide some grafting transformations, which will
decrease the Schultz index of graphs as follows:

Transformations A. Let uv be an edge G, dg(v) > 2, Ng(v) =
{u wy,ws, <+, W}, and wy,ws,---,w; are leaves adjacent to v. Then
G =G — {vwy,vws, - - ,vws} + {uw, uwy, - - ,uw;}.

Lemma 2. Let G’ be obtained from G by transformation A. Then we
have S(G') < S(G).

Proof. Let Go = G — {v,w;,ws, - ,w,}, and Gy = Go — u. By the
definition of the Schultz index, we have

5(G)
= ZGIG dey (z) + day ()ldey (2, y) + (s +2) Z day (x)da; (€, u)
T,y€lyg
+ldgo(u) + 25 + 1] Z dgy(z,u) + (25 + 1) Z dg,(z)
z€Gy
+(3s + 1)|V(Gp)| + (2s +1)dgy(u) +3s2 +3s+1
S(G")
= Ze:G (dgy(z) + dg; (¥))day (2, y) + (s +2) E dg; (z)dgy (. w)
z,y€Gy
+(dgo(u) +2s +1) E dgy(z,u) + (s + 1) Z dg; (z)
z€Gy

+(s + 1D)|Gp| + (s + l)dco(u) +3s2+4s+1
Therefore, S(G)—S(G') =s 3 dg;(z)+2s|V(Gp)|+5dg,(u) —s > 0.
z€Gy

Remark 1. Repeating Transformation A, any tree can changed into a
star, any cyclic graph can be changed into a cyclic such that all the edges
not on the cycles are pendant edges.

Transformations B. Let u and v be two vertices in G. u;,ug, -+ , U
are the leaves adjacent to u, vy, vs, -+ ,v; are the leaves adjacent to v.
GD =G - {U1,U2,' cr,Us UL, U2, ,'Ug}, G =G- {’U'U]_,U’UQ,‘ v 1U'Ut} +
{uvi,uvg, -+ ,uve}, G" = G — {uuy,uug, - - - ,uu,} + {vuy,vug, - ,vug}.

Lemma 3. Let G’, G” are graphs obtained from G by transformation
B. Then S(G') < S(G), or S(G”) < S(G).

Proof. Let G§ = Go — {u,v}. By the definition of Schultz index, we
have
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S(G)
= Y [dey(2) + do; (v))de (z,y) + (s +1) Z dg; (z)day (x, )

YVEG
+!(lt +1) Z dg; (z)dgy (z,v) + (dg, (u) + dGo('u) + s + tldg, (u, v)

+(s+ t)[dGo (U) + dg, (v)] + (dg, (u) + 25) ZC:: dag(z,u)+
zeGy
(dgo(v) + 2t) EZG dgy(z,v) + (s +¢t) e%‘ dgs(z) + (s + )|V (Gy)]

+3(s + 8)2 + dg, (u,v)Ast + 5 + £ + sdg,(v) + tdg, (u)]
Similarly, we have
S(G"
= Ze: [des () + dez (v)ldes (z,y) + Z _dg;(2)de; (z, )
z,y 0
+(s+t+1) Zc:: dgy (z)dgy (z,v) + [dc,-o(u) +dg,(v) + s+
z€G]

Aot 9) + (s + O)ldoa ) + dao(0)] +doy(w) T3 doz(,u)
+Hdau(v) +26+21] T do(a:0) +(s+) >: o3 @)

+(s +)V(GH)| + 3(3 + t)2 + dgo(u,v)[s + t + sdao (v) + tdg, (u)]
Therefore,
Ay =S5(G) -
=t 33 (2+do;(@))ldo; (@:0) = do (2]

+de'o (u’ 'U)[4S + dGo (u) - dGo (v)]}
A, =8(G)-S(G")
= s{ §:-<2 + dgg(z))[de; (7, u) — dg;(z,v)]

+dgy (u, V)[4t + dg, (v) — de, (u)]}
If Ay <0, thus

D (2+dg;(2))lde; (2, %) — dag (@, )] > dag (u, 2){4s + da, (u) — dgo (v)]
z€G]

Then, Az > 4s(s+t)dg,(u,v) >0

Otherwise, Ay < 0, we shall have A; > 0.

Remark 2. Repeating Transformation B, any cyclic graph can be
changed into a cyclic graph such that all the pendant edges are attached
to the same vertex.

Following from the proof of Lemma 3, we have directly

Lemma 4. Let G’ and G” be the graphs depicted in transformation
B, and G} = Go — {u,v}. Then S(G') > S(G”) if dg,(u) > dg,(v) and

> dGo (x)dgy(z,u) < Z dgy(z)dgy(z,v). Otherwise S(G') < S(G").
z€G, o

Lemma 5. Suppose that G is a graph of order n > 7 obtained from
a connected graph Gy % P, and a cycle Cp = vov; - - vp—10(p = 4 for p
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is even. Otherwise p > 5) by identifying vo with a vertex v of the graph
Go. Let G' = G —vp_1vp_2 + vv,_3. We name above operation as grafting
transformation C. Then S(G’) < S(G).
Proof. Let Gy = Go — v, C, = Cp — {v,9p-1}, Cp_1 = Cp—1 ~v. By
the definition of Schultz index, we have
Case (i). p is even.
S(G)
= EG (dgy () + day (v))day (z, ) + Z (day (z) + de(v))dg; (2, v)
z,y€
+4 E dey (z,y) + (2 + dg(v)) Z dc: (z,v) +2 + dg(v)
z,y€C, &/4
+4 Y dei(z,v) + Z (2+dG/ (:v ) E [dGo(:n v)+
z€Cy,
2 (2+dg, (w))](dc' (=, v) +1)
z€G)
= ZG [dey (%) + de;, ()lde (T, y) +p E dgy (z)dg;, (1‘ v)
z, Y€l
2
+lda(v) +2p—-2] Y dgy(z,v) + E dco(fc +7 dc(v)

z€GY
3

T NGB
Similarly, we have
S(G)
= 3 [doy(z) +day(W)ldey(z,9) +p X dgy(z)dey (z,v)+
z,y€GY z€Gy

do(w) +2-2] T day(a)+(, ~5+1) & dayla)
z€Gy

Pl +? e sp-d P 2p+2(IV(H)I—1)
Thus,
S(&') - $(6)
-9 F, doy@) + (1 - 5)da() + (1 =V - 1)

1
—2(p— 3)2+ ; < 0, (since p > 4)
Case (ii). p is odd.
Similar to case (i), we have

S(G') - S(C) \
- %) T dgy@) +(, — 5)do() + 2 - p)IV(H) - 1
zeGy

—;(;:—4)2 +; < 0, (since p > 5)
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3 The minimum Schultz index of 7’

In this section we shall determine the graphs achieve the minimum Schultz
index in Z}(i = 3, 4,6, 7), respectively.

3.1 The minimum Schultz index in 92

Let H be a graph formed by attachmg three cycles C,, Cp, C, to a common
vertex u; see Figure 1.(c). Then let Ga »,c is the graph on n vertices obtained
from H by attaching k pendent edges to the vertex u. We also set § =
{G € Jn: G is a graph obtained from H by attaching k pendent vertices
to the vertex v of H except u} , where a +b+c+k=n+2, and let G¥, .
is one of the resulted graph. See Figure 2.

o@ %X}

a,b,c ab,c
Figure 2. The graphs G%, | and Ga be
Immediately, by Lemma 4, the following result is obvious.
Lemma 6. Let G* G’a‘,b' are graphs depicted above, then

a,b,c?
S(GE4.0) < S(Gh b0

Lemma 7. Let G is a n vertices tricyclic graph with exactly three
cycles Ca, Cy and C¢, then $(G) > S(Gk , ) with the equalities if and only

ifG= Ga be:

Proof. Let G is a n vertices tricyclic graph with exactly three cycles
Ca, Cp and C;, then the arrangement of the three cycles contained in G are
depicted in Figure 1. a,b,c,d,e,f,g, respectively. Repeating transformation
A and B on G, and by Lemma 2 and Lemma 3, we have S(G) > S(G%, )
or S(G) = S(G o)

Hence, by Lemma 6, we have S(G) > S(Ga be)

Lemma 8. For any given positive integers a, b, c and k, then

(i) S(Gk 4} > S(Getl, ) ifa>4,b,c>3;

(i) S(Gk, ) > S(GEYL, ), ifa,c23,b2>4;

(iii) S(G¥ ;) > S(G';T,lc ) ife>4,a,b>3.

Proof. By the symmetry of three cycles C,, Cp and C, contained in
G, here we only show that (i) holds. We omit the proofs for (ii) and (iii).
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Let Gy = CpuC.ukK;, Gy = CpuCculk + 1)K, then Ga be = C,uGyp
and G":ﬂ b,c = Ca—1uGy. Applying transformation C on G‘l »,c and we get
Gkl by Lemma 5, the results hold.

a—1,b,c?
éonclbmg Lemma 6, Lemma 7 with Lemma 8, we have
Theorem 3.1. Let G € J3, then S(G) > 3n? + 5n — 26. The equality
hold if and only if G = G335.
Proof. Follows Lemmas 6, 7 and 8, for any graph G € 42, S(G) >
S(G335)- It is ease to calculate out that S(G335) = 3n? + 5n — 26.

3.2 The minimum Schultz index in J*

Let Pst1, Pot1, Pey1 be three vertex disjoint paths with a,b,¢ > 1, and at
most one of them is 1. Identifying the three initial vertices and terminal
vertices of them, resp. The resulting graph, denote as ©—graph ©(a, b, c).
Connecting the cycle Cy and ©(a, b, ¢) by a path Py, where k& > 1, naming
the resulting graph as ©—graph. From [11-16], we know that the are exactly
four types of ©—graph, see Figure 1. h,ijk. F, is the set of graphs
each of which is a é—graph has some trees attached, if possible. Let
Ho = ©(a,b,c)vCy, and HF ‘b,c,d IS a m vertex graph formed from Ho by
attaching k(k=n+5—-a — b—c— d) pendent vertices to v, see Figure 3.

Figure 3. The graph H"f,b’c,d

Similar to the discussion way of section 3.1, we have

Lemma 9. Let G € ! such that G contains the ©(a,b,c) and the
cycle Cq with E(©(a,b,c)) N E(Cy) = @. Then S(G) > S(H":'b,c,d). The
equality holds if and only if G = H "b c.d

Similarly, we have

Lemma 10. For any given positive integers a, b, ¢,d and k, then

() S(HE, cq) > S(Hff;,,cd) for either a > 4, b,c > 2 and bc > 6,
d>3ora=3bcd>

(i) S(H; bc‘,,) > S( l,c,d)’ for either b > 4, a,c > 2 and ac > 6,
d>3orb—3 a, c,d>3

(i) S(HE, .q) > S( abc_ld), for either ¢ > 4, a,b > 2 and ab > 6,
d23orc—3 a,b,d23,

(iv) S(HE, .a) > S(HEEL ;_)), for d > 4, a,b,c > 2 and abc > 18.

And
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Theorem 3.2. Let G € Z}, then S(G) > 3nz + 5n — 28, the equality

holds if and Only ifG= H2333 (Or H3233, H3323)
Proof. Note that H2 33,3 = Hj, 2% g = H3 323 By Lemma 10, for any
graph G € Z}, S(G) > S(H.Zg,s’?,), and S(H2,3'3,3) =3n2 4 5n —28.

3.3 The minimum Schultz index in ¢

Let I}, ., is a tricyclic graph with exact 6 cycles on n vertices obtained
from Fxgure 1(1) by attaching k pendent vertices to v showed in Figure 4(i);
Jf'b,c is a tricyclic graph with exact 6 cycles on m vertices obtained
from Figure 1(m) by attaching k pendent vertices to v showed in Figure
4(ii);
bec is a tricyclic graph with exact 6 cycles on n vertices obtained
from Flgure 1(n) by attaching & pendent vertices to v showed in Figure

A(iii).

(I Eb cd (1) I3 pc.a (i) K5
Figure 4. The graphs I* byed> J‘f_b’c, Kf'b'c

Lemma 11. Let G € J¢. Then

(i) S(G) = S(Ik, . ), if the six cycles in G are arranged the same way
with the graphs deplcted in Figure 1(1);

(i) S(G) > S(JF ab,c)s if the six cycles in G are arranged the same way
with the graphs deplcted in Figure 1(m);

(iii) S(G) = S(K (’f’b, o) if the six cycles in G are arranged the same way
with the graphs depicted in Figure 1(n).

Similarly, we have

Theorem 3.3 Let G € Z¢,

(i) If the arrangement of the six cycles is the same as Flg 1(1), then
S(G) = S(I"a 3.2)- The equality holds if and only if G 2 7335 »;

(ii) If the arra.ngement of the six cycles is the same as Fig 1(m), then
- S(G) =28 (J";s) The equality holds if and only if G 2 J7'33;

(iii) If the arrangement of the six cycles is the same as Fig 1(n), then

S(G) = S(K73%)- The equality holds if and only if G = xS

Moreover, 1t is easxly to compute out that

3(1;532) = 3n? + 5n — 32, S(J733) = 3n® + 5n — 30, S(K{33) =
3n? + 16n — 84.
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Combining above results, we arrive at:
Theorem 3.4. Let G € %, then S(G) > 3n? + 5n — 32. The equality
holds if and only if G 2 I35 ,.

3.4 The minimum Schultz index in J7

Let R*(a,b,c,d, e, f) is a tricyclic graph with exact seven cycles on n ver-
tices obtained from Figure 1(o) by attaching k pendent vertices to v showed
in Figure 5, wherea+b+c+d+e+ f+k=n+8.

Figure 5. The graph Rﬁ,b,c,d&, f
Applying the similar methods above, we can obtain the following results,
and we omit the proof here.
Theorem 3.5. Let G € 7, then S(G) > S(R33%222)- The equality
holds if and only if G = R33% 545
Note that S(R53% 544) = 3n® +5n — 32,

4 The minimum Schultz index of 7,

Combining all the results above, we arrive at our main result:

Theorem 4.1 Let G € 9,,, then S(G) > 2n? + 13n — 30. The equality
holds if and only if G 2 I335, or G = R33%,,,.

Proof. Combining Theorem 3. 1, 3.2, 3 4 with 3. 5, for any graph G €
Iy, we have

S(:g ) > min{S(G333), S(H333,5): SU533,2)s S(R525,222)} = 3n® +
5n

Therefore, 1335 ; and R33% 5.2,2 have the minimum Schultz index among
all n-tricyclic graphs
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