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Abstract

The b-chromatic number b(G) of a graph G is defined as the
maximum number & of colors in a proper coloring of the vertices of
G in such a way that each color class contains at least one vertex
adjacent to a vertex of every other color class. Let u(G) denote the
Mycielskian of G. In this paper, it is shown that if G is a graph
with b-chromatic number b and for which the number of vertices of
degree at least b is at most 2b — 2, then b(u(G)) lies in the interval
[p+1,2b—1]. As a consequence, it follows that b(G)+1 < b(u(G)) <
2b(G)—1 for G in any of the following families: split graphs, Ki x—{a
1-factor}, the hypercubes Q,, where p > 3, trees and a special class
of bipartite graphs. We show further that for any positive integer b
and every integer k € [b+ 1, 2b— 1], there exists a graph G belonging
to the family mentioned above, with b(G) = b and b(u(G)) = k.

Key Words: b-chromatic number, Mycielskian, split graphs and hyper-
cubes.
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1 Introduction

All graphs considered in this paper are non-trivial, simple and undirected.
Let G be a graph with vertex set V and edge set E. The order of G will
be denoted by n. A proper k-coloring of a graph G is a partition P =
{"1,Va,...,V&} of V into independent sets (also known as color classes).
A proper k-coloring of a graph G is a b-coloring of G using k colors if each
color class contains a color dominating vertex (c.d.v.), that is, a vertex
adjacent to at least one vertex of every other color class. The b-chromatic

ARS COMBINATORIA 122(2015), pp. 89-96



number of a graph G, denoted by b(G), is the maximum k such that G has
a b-coloring using k colors.

The b-chromatic number was introduced by R.W. Irving and D.F.
Manlove [8] by considering proper colorings that are minimal with respect
to a partial order defined on the set of all partitions of V(G). They have
shown that the determination of b(G) is N P-hard for general graphs, but
polynomial for trees. There has been a lot of papers on b-coloring in recent
times, for instance [1], [2], [3], (4], [5], (6], (7}, (9}, [10], [12], [13] and the
references given in these papers. '

The b-chromatic number is a graph parameter which is similar to the
achromatic number. As it is well-known, the achromatic number of a graph
G is the maximum number of colors used to give a proper coloring to the
vertex set of G so that hetween any two distinct color classes, there is at
least one edge. On the other hand, the b-chromatic number is the maximum
number of color classes in a proper vertex coloring of G so that each color
class contains a c.d.v.. Interestingly, the minimum number of color classes
required in these two colorings is the same as x(G), the chromatic number
of G.

Suppose that the verticess of a graph G are ordered as
V1,V2,. ..,V With d(v1) > d(v2) 2 ... 2 d(vn). Then the m-degree, m(G),
of G is defined by (8]

m(G) = max{i: d(v;) 2i—1, 1 <i<n}.
It is easy to see that the following observations are true for b(G) and m(G).

Remark 1.1 (i) x(G) < b(G) < A(G) + 1, where A(G) is the maximum
degree of G.

(i) b(G) < m(G).

(iii) The number of vertices of degree at least m(G) is at most m(G).

A vertex z € V(G) is said to be dense if dg(z) > m(G) — 1. A tree
T = (V, E) is pivoted (see (8]) if T has exactly m(G) dense vertices and T
contains a distinguished vertex v such that:
(i) v is not dense.
(ii) Each dense vertex is adjacent either to v or to a dense vertex adjacent
to v.
(iii) Any dense vertex adjacent to v and to another dense vertex has degree
m(G) - 1.

Such a vertex v is called the pivot of T [8]. Clearly, a pivot is unique,
if it exists. In (8], Irving and Manlove have determined the b-chromatic
number of trees.
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Theorem 1.2 ((8])
IfT is a pivoted tree, then b(T) = m(T) — 1. If not, b(T) = m(T).

In [11], Kouider and Mahéo have determined the b-chromatic number
of the hypercubes Q.

Theorem 1.3 ([11])
b(Q1) = b(Q2) = 2 and b(Q,) =p+ 1, p > 3, where Q, is the hypercube
of dimension p.

In a search for triangle-free graphs with arbitrarily large chromatic num-
bers, Mycielski [14] developed an interesting graph transformation as fol-
lows. For a graph G = (V, E), the Mycielskian of G is the graph u(G)
with vertex set V UV’ U {u}, where V' = {2’/ : z € V} and edge set
Eu{zy :zy € F}U{y'u:y' € V'}. The vertex z’ is called the twin of the
vertex = (and z the twin of z’) and the vertex u is called the root of u(G).

In this paper, we obtain bounds for the b-chromatic number of the
Mycielskians of certain families of graphs.

2 Bounds for b(u(G))

In this section, we determine bounds for the b-chromatic number of certain
families of the Mycielskian.

Theorem 2.1
Let G be a graph with b(G) = b, and let G have at most 2b — 2 vertices of
degree at least b. Then b+ 1 < b(u(G)) < 2b-1.

Proof. Let {V4,V%,...,V;} be a b-coloring of G using b colors with z; being
acd.v. of V;, 1 < ¢ < b. We shall extend this coloring to a b—coloring for
#(G) using b+ 1 colors as follows. Let U; = V,UV/, 1 < i < b, and
Upy1 = {u} (Here V/ stands for the set of twins of the vertices of V;).
Clearly, z{, the twin of z; is a c.d.v. of U; for each 4, and u is trivially a
c.d.v. of the color class Up41. Thus b(u(G)) > b+ 1.

Let K = K(G) denote the set of vertices of G of degree at least b, and
L(G) = V\K. By our assumption, |K| < 2b— 2. Let P = {1, V3,...,V,}
be some b-coloring of p(G) using p colors. By the definition of u(G),
Nuye)(z') = Ng(z) U {u}. If 2’ is a c.d.v. with respect to P, then z
has a neighbor in all Vs except perhaps the color class containing =’ and
the class containing u. Thus z € V;UV;, where 2’ € V; and u € Vj for some
ik €{1,2,...,p}. This is true for all z’ € V’ which are c.d.v.’s with re-
spect to P. Hence we have the following conclusion: If z and z’ are c.d.v.’s
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of distinct color classes, then z and u must belong to the same color class.
Since by our assumption | K| < 2b—2, there can be at most 26—2+1 = 2b—1
c.d.v.’s of u(G) in KU K’ U {u} belonging to distinct color classes in u(G).
Now for b(4(G)) to be strictly greater than 2b — 1, there should be at least
2b vertices in u(G) each of degree at least 2b— 1. This is not possible since
for any z € L(G)U L'(G), d,c)(z) < (b—1)+ (b~1) = 2b— 2. Therefore,
b(u(G)) < 2b-1. [ ]

Remark 2.2

(i) Note that b(G) + 1 < b(u(G)) holds good for all graphs.

(ii) From the proof of Theorem 2.1, it follows that b(u(G)) < n+ 1 where
n is the order of G.

Corollary 2.3
For any tree T with b(T) =b, b+ 1 < b(u(T)) < 2b-1.

Proof. We prove the result by establishing that |K(T)| < 2b — 2. First
assume that T is pivoted. Now by Theorem 1.2, b(T") = m(T) — 1. From
the definition of a pivoted tree, |K(T)| = m(T) = b+ 1 < 2b— 2 for any
b > 3. For b = 2, we can see that T is not pivoted. Thus |K(T)| < 2b—2
for all pivoted trees T. For a tree T that is not pivoted, by Theorem
1.2, 5(T) = m(T) and by (iii) of Remark 1.1, |K(T)| < m(T). Therefore
|K(T)| < 2b—2. [ ]

Corollary 2.4
For a graph G with b(G) = A(G) + 1, b(G) + 1 < b(u(G)) < 2b(G) — 1.

Proof. Since there are no vertices of degree (G), |K| = 0. [ |

As a consequence, we see that b(G) + 1 < b(p(G)) < 2b(G) — 1 for
G = K,,K,,—{a 1-factor} and the hypercubes Q,, where p > 3. In
particular, since b(K,)+1=n+1 < b(u(K,)) <1+ A(u(K,)) =1+n,
b(u(Kp)) =n+1.

Recall that a graph G is said to be a split graph if its vertex set V(G)
can be partitioned into two subsets such that the subgraph induced by one
set is a clique and the other is totally disconnected.

Corollary 2.5
For any non-trivial split graph S, b(S) + 1 < b(u(S)) < 2b(S) — 1.

Proof. As S is a split graph, V(S) can be partitioned into V;,V, where

< VI > is a clique of maximum order, say k, and < Vo > is totally
disconnected. For each z € Vs, ds(z) < k — 1. As S is a split graph,
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k = w(8) = x(S) < b(S), where w(S) denotes the clique number of S. As
the number of vertices with degree at least & is at most &, b(S) = k. Hence
|K(S)| < k = b(S) < 2b(5) - 2.

Corollary 2.6

Let G = (V,E) be a bipartite graph with edge disjoint cycles and b(G) =
b > 3. If there exists a vertex x € V such that d(z,y) < 2 for all y €
K(G) = K, then b(G) + 1 < b(u(G)) < 2b(G) — 1.

Proof. The proof is based on the result that for these bhipartite graphs,
IK| <b+1forb<6and |K|<b+2forb>7. We omit the details of
the proof (which is somewhat lengthy) of this result as this pertains to a
rather restricted family of bipartite graphs. [ ]

3 All values in [b+ 1,2b — 1] are attainable

In this section, we show that for any positive integer b and every integer
k € [b+1,2b — 1], there exists a graph G with b(G) = b and b(u(G)) = k.
We establish this by showing that for any positive integer ¢ > 2 and for
any integer p, where 0 < p < q — 2 there exists a tree T with (T") = ¢ and
b(uT)=p+q+1

Let T, 4 be the caterpillar (Recall that a caterpillar is a tree in which the
removal of the pendant vertices results in a path) constructed as in Figure
1. In Tpq, v1,v2,...,vq are vertices of degree 2g — 2, and let N(v;) =
{vi1,vi2,. .., vi2q—2} fori =1,...,q. Let uy,uy,...,up be the vertices of
degree ¢ — 1 with N(u;) = {uj1,%;52,...,uj4-1} for j = 1,...,p. Also
d(vi,vig1) = d(uj,ujq1) = d(vg,uy) =4 fori =1,...,g—1land j =
1,...,p—1. Further w; is the middle vertex of the path of length 4 hetween
v; and vi4q, for ¢ = 1,2,...,¢ — 1, wg4; is the middle vertex of the path of
length 4 between u; and u;41, for j =1,2,...,p — 1 and w, is the middle
vertex of the path between v, and u;. In Theorem 3.1, we show that for
g>4and 0 <p<q-2, T, satisfies the required conditions.

Theorem 3.1
ForT, o withq > 4and0 < p < q-2,b(T},q) = g and b(u(Tp,q)) = p+q+1.

Proof. Observing b(T} ) < g is not difficult as Tp, 4 does not have ¢ + 1
vertices of degree at least g. Moreover, it is easy to show that b(Tpq) = ¢.
A b—coloring using g colors can easily be given to T}, 4 : Simply color the
vertices vy, v2, ...,V by the colors 1,2,..., g respectively and extend it to
a b-coloring of T}, 4. Such an extension is easily obtainable. Consequently,
b(Tp,q) = g. We shall next show that p(Tp, ) has a b-coloring using p+g+1
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colors. For eachi=1,...,qand j =1,...,p, color v; with ¢ and u; with
g+jand u with p+q+1. Since dr,  (v;) =2¢—2foralli=1,...,q and
Nr, . [z] A Ng, [y) = 0 for all z,y € {v1,...,vg,%1,...,up}, We can make
v; a c.d.v. of color class 7 by giving distinct colors to the neighbors of v; in
Tp,4- Now color each vertex in (N,  [vi])’ by the color of its twin except for
the twins of those vertices for which the color p + ¢ + 1 is given. For these
twins, give any color except ¢ and p + g + 1. This would make « a c.d.v.
of the color class p + g+ 1. For each j, 1 < j < p, dyr, )(u;) = 29 -2
and thus it is possible to make u; a c.d.v. of the color class g + j by giving
distinct colors to the neighbors of u; in u(Tpq). While doing so, we have
to be careful not to give color p + g + 1 to any of the twins of Nr, _(u;).
Note that, for = € {v1,...,vg,u1,...,up}, if some vertices in N, _[z] or
(N, ,[z])’ are not colored, giving a proper color to it is not difficult. At
this stage, the vertices that have heen left out without coloring are only
the vertices of degree 2 in Tp 4. Such vertices are of degree 4 in (T} q)
and their twins are of degree 3 in u(Tpq). Clearly since p+ g+ 1 > 5,
these vertices can be properly colored. Thus p+ ¢+ 1 < b(u(T},q)). If
b(p(Tpq)) > p+ g + 1, then there should be at least p + g + 2 vertices of
degree at least p+ g+ 1 > 5. But this is not possible as all vertices other
than those in {u}U{v1,ve,...,v}U{u1,uz,...,up} and their twins (except
for u) are of degree at most 4 in u(T,q). Thus b(u(Tpq)) =p+q+1. B

We now consider the cases not covered by Theorem 3.1. For b(G) =
3, 2b(G) —1 = 5. Thus b(u(G)) = 4 or 5. We can easily see that b(Ps) = 3
and b(u(Ps)) = 4 and for Ps, b(Pg) = 3 and b(u(P)) = 5 (P, stands for
the path on n vertices). For b(G) = 2, b(G)+1 = 2b(G) —1 = 3 = b(u(G)).
Thus we see that there exists a tree T with b(T") = b such that for each k,
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b+1<k<2b—1, b(u(T)) =k

Open Problems

(1) Does there exist a graph G for which b(u(G)) > 2b(G)?

(2) Is it true that for chordal graphs G, |K| < 2b — 27 (where K is as
defined in Theorem 2.1)
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