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Abstract

Let G be a graph and let §(G) denote the minimum degree of
G. Let F be a given connected graph. Suppose that |[V(G)| is a
multiple of [V(F)|. A spanning subgraph of G is called an F-factor
if its components are all isomorphic to F.

In 2002, Kawarabayashi [5] conjectured that if G is a graph of
order ¢k(¢ > 3) with §(G) > £33¢t1k, then G has a K -factor,
where K, is the graph obtained from K, by deleting just one edge.
In this paper, we prove that this conjecture is true when ¢ = 5.
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1 Introduction

We use [1] for notations and terminology not defined here, and consider
finite undirected simple graphs only. Let H be a subgraph of G. Denote
Ng(v) = {u € V(G)lww € E(G)}, Ny(v) = Neg(v) N V(H), de(v) =
|Ng(v)|, and dgy(v) = |[Ng(v)|. The minimum degree of G is denoted by
0(G). For a subset S of V(G), the subgraph induced by S is denoted by
G|[S)- For a subgraph H of G and the vertices = and y of G with z € V(H)
and y ¢ V(H), G — H = GIV(G) - V(H)), H - = G[V(H) - {z}],
H+y=G[V(H)U{y}}, and H -z +y = G[(V(H) — {z}) U{y}]. The
complement of the subgraph H of G is denoted by H. Let H and K be
two vertex-disjoint graphs. H U K denotes the union of H and K. The
joint HV K is the graph with V(HV K)=V(H)UV(K) and E(HV K) =
E(H)UE(K)U {uv|u € V(H),v € V(K)}.

Let F be a given connected graph. Suppose that |V (G)| is a multiple of
|V(F)|. A spanning subgraph of G is called an F-factor if its components
are all isomorphic to F. There are many results concerning minimum
degree conditions for a graph to have an F-factor. Hajnal and Szemerédi
[4] proved that for F = Ky, 6(G) > 451 - [V(G)| suffices. Let K be the
graph obtained from K, by deleting just one edge. It is natural to ask what
condition in terms of the minimum degree can guarantee the existence of
a K -factor.

For the case ¢ = 3, since K; = P3, Enomoto, Kaneko, and Tuza [3] proved
that a connected graph G with order 3k has a Ps-factor if 6(G) > k. For
the case £ = 4, Kawarabayashi proved the following in 2002.

Theorem 1.1 (Kawarabayashi [5]) Let G be a graph of order 4k with
i(G) > gk. Then G has a K -factor.

Consider the graph G = Kj_, V G’', where G’ is a K,_;-free graph. It is
obvious that G contains at most k—1 vertex-disjoint K¢_,, and a K, -factor
needs at least k vertex-disjoint K,—1. So G does not have a K, -factor.
Since G’ is a Ky_)-free graph, by Turan’s Theorem, the minimum degree
of G is at most

(¢-1k+1 2 -30+1 1

T (€= k1= k=

Based on this fact, Kawarabayashi [5] proposed the following conjecture.
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Conjecture 1.2 (Kawarabayashi [5]) Let G be a graph of order ¢k with
§(G) > £53&1k, where £ > 3. Then G has a K; -factor.

Conjecture 1.2 is true for the case that £ = 3,4 (in the case £ = 3, the
assumption “connected” is necessary). Also, this conjecture was verified in
[2] if the order of the graph is sufficiently large. The remaining question
is what if the order of the graph is not so large. In this paper we give a
complete answer for the case £ = 5.

Theorem 1.3 Let G be a graph of order 5k with §(G) > k. Then G has
a K -factor.

The condition on §(G) is best possible in a sense. Consider the graph
G=K;, VKﬁg-_l VKd_ks-}_l VKd_kétl. Then n = 5k, §(G) = k- }. Since

Kas V Kargr V Kagr is Ky-free, G does not have a K -factor.

Let S be the graph obtained from K5 by removing two edges incident with a
common vertex, and let L be the graph obtained from K5 by removing three
edges incident with a common vertex. Since both S and L are subgraphs
of K; and they have K4 as a subgraph, the condition on §(G) is also best
possible because of the same example as in Theorem 1.3. Hence we can get
the following corollaries.

Corollary 1.4 Let G be a graph of order 5k with 6(G) > 3}k. Then G
has an S-factor.

Corollary 1.5 Let G be a graph of order 5k with 6(G) > -Is—lk. Then G
has an L-factor.

2 Preparation for the Proof of Theorem 1.3

Let G be an edge-maximal counterexample. Since a complete graph of
order 5k has a K -factor, G is not a complete graph. Let u and v be
nonadjacent vertices of G and let G’ be the graph obtained from G by
adding the edge uv. Then G’ is not a counterexample by the maximality
of G and G’ has a K -factor, that is, G’ contains k vertex-disjoint sub-
graphs Dy, Ds, -+, Dg, where D; is isomorphic to K or Ks. Since G is a
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counterexample, the edge uv lies in one of Dy, Do, - - - , Di. Without loss of

generality, we may assume wv € E(Dy), that is, G has k — 1 vertex-disjoint
k=1
subgraphs Dy, Da,- -+ , Di—y such that 3 |D;| = 5k—5. Let H be the sub-

i=1
k—1
graph of G induced by |J V(D;) and M = G- H. Since uv € E(Dy), M is
i=1

obtained from K by removing just one edge. So there are two possibilities
for M, namely S and W, (see Figure 1).

Figure 1

Now we choose Dy, Dy, -+ ,Dg_1 so that

(1) M is either S or Wy,

(2) Subject to the condition (1), if there are two possibilities for M,
namely S and Wy, then we choose S.

(3) Subject to the conditions (1) and (2), Z |E(D;)] is as large as possi-

ble, that is, the D;’s (1<i < k—1) take K5 instead of K as many
times as possible.

In Section 3, we shall prove the case where M is isomorphic to S. In Section
4, we shall settle the case where M is isomorphic to W, by reducing the
situation to the case where M is isomorphic to S.

3 The case where M is isomorphic to S

Let a, b, ¢, d, e be the vertices of M such that dps(a) = 2, dar(b) = dp(e) =
4 and dps(c) = dpr(d) = 3. Let V(D;) = {as, bi, ci,di,e;} with dp,(b;) =
dDi(ci) = dD;' (ez) = 4, and dDi(a'i) > 3 and dD( (dt) > 3 (see Figure 2).
For a subgraph N of G, let Oy = dn(a) + dn(b) + dn(c) + dn(d) + dn(e).
Next we will evaluate 8p, for each D;(i =1,2,--- ,k—1).
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» L

M=S D;
Figure 2

Lemma 3.1 If dp,(c) = 5§ or dp,(d) = 5, then, for any y € V(Dy),
dm(y) < 4. Therefore, 8p, < 20.

Proof. Without loss of generality, we assume that dp,(c) = 5. If dpm(y) =
5 for some y € V(D;), then M —c+ y and D; — y + ¢ contain K, , a
contradiction. Therefore, for any y € V(D;), dp(y) < 4. 1

Lemma 3.2 Ifdp,(a) < 2, then 8p, < 20.

Proof. By Lemma 3.1, we assume that dp,(z) < 4 for z € {c,d}. Since
dp,(z) < 5forz € {b,e}, p, = dp,(a)+dp, (b)+dp,(c)+dp, (d)+dp, (e) <
24+5+4+445=20.

Lemma 3.3 Ifdp,(a) =5, then 6p, < 15.

Proof, Since dp,(a) = 5, for any = € V(D;), |Ng(z) N {b,c,d,e}| < 2
(Otherwise, D; — z + @ and M — a + z contain K, a contradiction).
Therefore, 0p, < 5+2 x 5 =15. |

Lemma 3.4 Ifdp,(a) = 3, then 6p, < 20.

Proof. Assume that 0p, > 21. By Lemma 3.1, dp,(c) < 4 and dp,(d) <
4. Thus dp,(b) = dp;(e) = 5 and dp,(c) = dp,(d) = 4. As |Np,(e) N
Np,(d)| > 4, we may assume a;,e; € Np,(e) N Np,(d). If aa;,ae; € E(G),
then G[{ai, ei,a,e,d}] and G[{b;,ci,d;, b, c}] contain K, a contradiction.
So |Np,(a) N {b;, ci,d;}| > 2. Thus G[{a,b,b;,¢;,d;}] and G[{c,d, e, a;, e;}]

contain K , a contradiction.

Lemma 3.5 If dp,(a) = 3 and O0p, > 20, then p, = 20, D; = K, and
the subgraph induced by V (D;)UV (M) is isomorphic to H, shown in Figure
3.
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Figure 3. Hy

Proof. By Lemma 3.4, 6p, = 20.
Claim 1. D; = K;'.

Assume D; = Ks. Without loss of generality, we may assume Np,(a) =
{ai,b;,¢c;}. Then dps(e;) < 2 (Otherwise, D; —e; +a and M —a + ¢;
contain K , a contradiction). Similarly, dp(d;) < 2. As dp(z) < 5 for
z € {ai, b;,¢;}, we have Op, = dpr(a;)+dum(bi)+dm(ci)+dpr(di)+dm(e;) <
3.54+2.2=19, a contradiction. So Claim 1 holds.

By Claim 1, a;d; & E(G).
Claim 2. Np,(a) # {b;, c;,e:}.

Assume Np,(a) = {b;,c;,e;}. Then dy(a;) < 2 (Otherwise, D; — a; + a
and M — a + @; contain K, a contradiction). Similarly, dar(d;) < 2. As
dp(z) <5 for z € {b;,c;,e;}, we have 0p, = dy(a;) + dar(b;) + dm(e) +
dp(d;) + dp(e;) <3-5+2-2 =19, a contradiction, and hence Claim 2
follows.

Claim 3. {a,-,d,-} g NDi (a)

Assume not. By Claim 2, we may assume that Np,(a) = {ai, b;,¢}. If
dp(a;) = 5, then D; — a; + a is isomorphic to S, and M — a + a; is K.
This contradicts the extremality condition (3). So das(a;) < 4. Similarly,
dp(e;) < 3. If dps(d;) > 3, then D; — d; + a and M — a + d; contain Ky,
a contradiction. So dp(d;) < 2. As dy(z) < 5 for z € {b;,c;}, we have
O0p, = du(a:)+dp(bi) +dm(e:) +dm(di) +dm(e:) <4+3+2+5+5 =19,
a contradiction, and hence the result follows.

By Claim 3, we may assume that Np,(a) = {ai,d;,e;}. If dps(a;) = 5, then
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D;—a;+ais S, and M —a+a; is K5. It would contradict the extremality
condition (3). So dps(a;) < 4. Similarly, da(d;) < 4.

Claim 4. dp,(b) <4 and dp,(e) < 4.

Assume that dp,(b) = 5. Then G[{a;, d;,e;,a,b}] is K . Next we consider
the subgraph induced by {b;, ¢;, ¢, d, €} to get a contradiction. As dp(a;) <
4and dy(d;) < 4, dpr(b;)+dm(c) = 20— (4+4+5) = 7. Asab;,ac; € E(G),
[Na(5:)N{c, d, e} +|Nas(e:)N{c, d, e}] > 5. Thus Gl{bi, c,c, d,€}] contains
K, a contradiction. So dp,(b) < 4. Similarly, dp,(e) < 4. Therefore,
Claim 4 holds.

As dp,(a) = 3, dp,(b) + dp,(c) + dp,(d) + dp,(e) = 17. By Claim 4,
dp,(c) +dp,(d) = 9. Thus we have either dp,(c) = 5 or dp,(d) = 5.
Without loss of generality, we assume that dp,(c) = 5. By Lemma 3.1,
20 < dps(as) +dar(b:) +dpr(e;) +dp(di) +du(e;) < 20, and so as ab;, ac; €
E(G), we have hoth dp(z) = 4 for any x € V(D;) and Ny (b;) = Nm(ci) =
{b,c,d,e}. Since dp(a;) = dp(di) = dm(e;) = 4, [Npm(ai) " Ny(ei)] 2> 3
and [Ny (di) N Ny(ei)| > 3.

Claim 5. (i) b,e &€ Np(a;) N Npys(e;). Therefore, Nps(a;) N Nps(e;) =
{a,¢,d}.
(ii) b, e & Np(d;) N Nps(e;). Therefore, Nas(d;) N Npg(e;) = {a,¢,d}.

By contradiction, we assume that b € Nps(a;)NNps(e;). Then G[{a, b, a;, e;,
b;}) is K5 . Asdpm(di) =4, [INm(di)N{c,d,e}| > 2. Thus G[{ci,d;,c,d,e}]
contains K , a contradiction. So, b € Na(a;) N Nas(e;). Similarly, e ¢
N(a;) N Np(e;), and b, e & Nps(d;) N Npag(e;). Therefore, Claim 5 holds.

By Claim 5, {a,c,d} C Np(e;). As dp(e;) = 4, we have either be; € E(G)
or ee; € F(G). By symmetry of M, we assume that ee; € E(G). Then
be; € E(G). If a;e € E(G), then G[{a,e,a; b;,e;}] and G[{b,c,d,c;,d;}]
contain K, a contradiction. So, a;e € E(G). Similarly, die € E(G).
Therefore, Ny (a;) = Ny(d;) = {a,b,c,d}, and the subgraph induced by
V(D;) U V(M) is isomorphic to H; shown in Figure 3. |l

Lemma 3.6 Suppose that dp,(a) = 4. Then the following statements hold.
(i) If D; = K5, then 0p, < 14.
(ii) If D; = K; and 0p, > 17, then a;,d; € Ng(a).

(iii) If D; = K5, then 0p, < 18.

Proof. (i) Assume D; = K;. Then for each z € V(D;), |Ng(z) N
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{b,c,d,e}| < 2 (Otherwise, D; — z + a and M - a + z contain K, a
contradiction). So fp, < 4+2 x5 =14

(ii) By contradiction, we assume that a;a € E(G). Then Np,(a) = {b;,c;,
di,e;}. If dpr(a;) > 2, then M — a + a; contains S, and D; — a; + a is K.
It contradicts the extremality condition (3). So da(a;) < 1. If dps(e;) = 5,
then D; —e; +ais S and M — a + ¢; is Ks. It contradicts the extremality
condition (3) again. So dps(e;) < 4. Similarly, dps(b;) < 4 and dp(c;) < 4.
If dp(d;) > 4, then M —a+d; and D; —d;+a contain K, a contradiction,
and hence dps(d;) < 3. Therefore, p, < 4x3+1+3 = 16, a contradiction.
So, a;a € E(G). Similarly, d;a € E(G).

(iii) By (ii), we may assume that Np,(a) = {ai, b;,¢i,d;}. Then D; —e;+a,
D; — a; + a, and D; — d; + a are isomorphic to K;. Thus |Ng(e;) N
{b,c,d,e}| < 2, |Ng(a;) N {b,c,d,e}| < 2 and |Ng(d;) N {b,c,d,e}| < 2.
Therefore, dar(a;) < 3,dp(d;) < 3, and dp(e;) < 2. Clearly, dy(c;) <5
and dps(b;) < 5. So, 0p, <5x2+3+3+2=18.1

Lemma 3.7 Ifdp,(a) =4, then 0p, < 17.

Proof. By contradiction, we assume that p, > 18. By Lemma 3.6,
D; = K, ai,di € Ng(a), and 6p, = 18. Without loss of generality,
we assume that Np,(a) = {ai,bi,ci,d;i}. Then D; —e; + a, D; — a; + a,
and D; — d; + a are isomorphic to K. Thus, |[Ng(e;) N {b,¢c,d,e}| < 2,
|Ng(a;)n{b,c,d,e}| < 2 and [Ng(d;)N{b,c,d, e}| < 2. Therefore, dp(a;) <
3,dym(d;) < 3, and dp(e;) < 2. Clearly, day(e;) < 5 and dpy(b;) < 5.
So 18 < fp, £ 5x2+3+3+2 = 18. This implies that §p, = 18,
dy (b)) = dpl(e) = 5, dyg(ai) = dp(di) = 3, and dy(e;) = 2. Hence,
M-a+di, M —a+a;, and M — a + ¢; are isomorphic to S.

Let T = {b,¢c,d,e,d;,e;}, and let F be the subgraph induced by V(M) U

V(D;). Since dp(d;) = 6 and dr(e;) = 6, andsince 3.  dp(z) = (18—
z€{b,c,d,e}

)+ Y du(z)=14+14 =28, wehave Y dp(z) =28+6+6 =40.
z€{b,c,d,e} z€T
To get a contradiction, we consider Y, dg(z). Denote 7; = 3 dp,(z),
z€T z€T

where j € {1,2,--- ,k— 1} and j #i. If 7; < 22 for all 5, then

22k < Y dg(z) =40+ ) 7; < 40 +22(k — 2) = 22k — 4,
zeT J#i

a contradiction. So there is some j such that 7; > 23.
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Note that D; — e; +a, D; — a; + a, and D; — d; + a are isomorphic to Ky,
and note that M —a +d;, M —a +a;, and M — a + e; are isomorphic to S.
To get a contradiction, we need to reset M and D;. For example, we will
reset M and D; to be either M := M —a+d; and D; := D; — d; + a, or
M =M-a+e and D;:=D; —e; +a.

If dp,(d;) = 5, by resetting M := M —a+d; and D; := D; — d; + q,
we have 7; < 15 + dp,(e;) < 15+ 5 = 20 by Lemma 3.3, a contradiction.
So dp,(d;) < 4. Similarly, dp,(e;) < 4. If dp,(d;) = 4, by resetting
M := M —a+d; and D; := D; — d; + a again, we have 7; < 18+dp,(e;) <
18 + 4 = 22 by Lemma 3.6, a contradiction. So dp,(d;) < 3. Similarly,
dp,(e;) < 3. Furthermore, if either dp,(d;) < 3 or dp,(e;) < 3, without
loss of generality, we assume that dp,(d;) < 3 and dp,(e;) < 3. We reset
M:=M-—-a+d; and D; := D; — d; + a. By Lemmas 3.2 and 3.4,
Y. dp,(z) £ 20. Thus 7; < 20 +dp,(e;) < 22, a contradiction. So
zeV (M)
dp,;(d;) = 3 and dp,(e;) = 3.

Since 7; > 23, we have > dp;(z) > 20 and > dp,(z) >

z€{b,c,d,e,d;} z€{b,c,de,ei}
20. By Lemma 3.5 and by resetting M and D; to be either M := M —a+d;
and D; := D;—d;+a,or M := M —a+e; and D; := D; — e; + a, the sub-
graphs induced by {b,¢c,d,e,d;} UV (D;) and {b,c,d, e, e;} UV (D;) are iso-
morphic to H; (see Figure 1), and D; = Ky (i.e., a;d; € E(G)). Therefore,
ajd;,aje;, d;d;, dje; € E(G). As dp,(e;) = 3, we may assume that e;e; €
E(G). By the structure of Hy, b,c,d,e € Ng(b;) and b,c,d,e € Ng(c;). By
using the structure of H, again, d;e; € E(G). Since ae, b;e, cie € E(G), the
Subgraphs induced by {a'y €, aj, bi: C.'}, {dn €i, aj, dj) ej}’ and {b7 ¢, d9 bj1 cj}
are isomorphic to either K or K3, a contradiction.

Now we are ready to prove Theorem 1.3 when M is isomorphic to S. By
Lemmas 3.2, 3.3, 3.4, and 3.7, we can evaluate dg(a) and . For0 < j < 5,
let g; denote the number of indices ¢ such that dp,(a) = j. Since there are
k — 1 such Dy’s and since dg(a) > 6(G) > Lk, we have

5
ZQj = k-1 1)
=0
11
dg(a) = q1+2g2+3g3+4q4+5¢5+22> gk (2)

Since fpr = 16, we can get the following.

1
-glk x5< 6c < 20qp+20q; + 20g2 + 20g3 + 17g4 + 15¢5 + 16 (3)

105



From 5 x (2) + 2 x (3), we can get the following
40qo + 45¢; + 50¢gs + 55¢3 + 54q4 + 55¢5 + 42 > 55k 4)
From (1), we can get the following

40qo + 45¢; + 50go + 55q3 + 54q4 + 55g5 + 42
5
< 55 g;+42=>55(k— 1)+ 42 = 55k — 13.
j=0

But, this contradicts to (4). This completes the proof of Theorem 1.3 when
M is isomorphic to S.

4 The case where M is isomorphic to Wy

We need additional notations. Let V(D;) = {a;, b;, ¢i, di, e;} with dp, (b;) =
dp,(ci) = dp,(e;) = 4 and dp,(a;} > 3 and dp,(d;) > 3 (If D; = K,
then dD‘(a.,-) = dDi(di) = 3. If D; = K3, then dD..(a,-) = dD‘. (d‘) = 4).
Suppose M = W,. Let V(M) = {v;,v2,v3,v4,vs5} with dps(v;) = 4 and
dpr(v2) = dp(vs) = dpr(ve) = dpr(vs) = 3 (see Figure 4). For a subgraph
N of G, let Oy = dn(v;) + dn(v2) + dy(v3) + dn(vg) + dn(vs). Next we
will evaluate @p, for each D;(i =1,2,--- ,k—1).

V2

Figure 4

Lemma 4.1 Let z € {vq,vs3,v4,vs} with dp,(z) = 5. Then the following
holds.

(i) For any y € V(D;), dm-2(y) < 3.

(it) Let ', z" be the vertices adjacent to = in the 4-cycle vovsvavsve. If, for
somey € V(D;), dp-=(y) = 3, then yz',yz" € E(G). Therefore, M —z+y
s Wy.
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Proof. (i) If dyy—.(y) =4, then D; — y+z and M — z + y contain K,
a contradiction.

(ii) Without loss of generality, we may assume that dp,(ve) = 5 and
dp—v,(y) = 3 for some y € V(D;). If yus € E(G), then yvi,yvs,yvs €
E(G), and so M — v, +y is isomorphic to S. Since dp,(v2) =5, D; —y+v2
contains K , which is contrary to the extremality condition (2).

Lemma 4.2 If dDi (1‘) = 5? T € {‘U2,'U3,’U4,’U5}, then Z dDi (y) S
yeV(M)—{xz}
13. Therefore, 8p, < 18.

Proof.  Without loss of generality, we assume that dp,(v2) = 5, and
dp,(v1) + dp,(v3) + dp,(v4) + dp,(vs) = 14. Suppose that D; = K5 . If
dM—v;(d;i) > 3, then, by Lemma 4.1, dpr—v, (d;) = 3 and M ~ vz +d; is Wi,
But D; — d; + v is K5. It contradicts to the extremality condition (3). So
dM-v,(di) < 2. Similarly, duy—v,(a:) < 2. By Lemma 4.1, dy—o, (bi) < 3,
dM—v,(ci) £ 3, and dpr—o,(e;) £ 3. So dDi('Ul) + dD‘.('Ua) + dD‘(v4) +
dp,(vs) €2+ 2+ 3+ 3+ 3 = 13, a contradiction. Therefore, D; = K.

Since dpf—v, (@) +dM v, (b:)Fdp—v, (€)+dpr—u, (di) +dM—v, (€:) = dp; (V1)
+dp,(v3) + dp,(v4) + dp,(vs) > 14, by Lemma 4.1(i), there are at least
four vertices z in V(D;) such that dpr—.,(z) = 3. Since D; = K5, we may
assume that dpr—y,(ai) = dp—v, (bi) = dp—o,(ci) = dpr—v,(di) = 3 and
dp—v,(e;) = 2. By Lemma 4.1, zv3, zvs € E(G), where z € {a;, b;, ¢i, d;}.

If via; € E(G), then M — v5 +a; is S and D; — a; + vs contains K, which
is contrary to the extremality condition (2). So via; & E(G). Therefore,
vga; € E(G). Similarly, v1b;, v1¢:,v1d; € E(G) and v4b;, v4ci, v4d; € E(G).

Notice that dpr—.,(e;) > 2. If vie; € E(G), then G[{v1,v2,€;,0i,b:}] is S
and G|[{vs,vs4,vs,¢;,d;}] is K5, which is contrary to the extremality con-
dition (2). So vie; € E(G). If vse; € E(G), then G[{v1,v2,vs,e;,d;}] and
G|{vs,v4,ai,b;,¢;}] are isomorphic to S and Kj, respectively. It contra-
dicts to the extremality condition (2) again. So vse; € E(G). It forces that
ve;, vae; € E(G). Hence G[{v1,v3,v4,€:,d;}] is S and G{{v2,vs, ai, bi, c:}]
is K5, a contradiction.

Lemma 4.3 If dp,(v1) =5, then 8p, < 19.
Proof. By contradiction. Suppose that 8p, > 20. Then dp,(v2) +

dp,(vs) + dp,;(va) + dp,(vs) > 20 — 5 = 15. By Lemma 4.2, for z €
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{v2,v3,v3,vs}, dp,(z) < 4. Thus there are three vertices in {vg, v3,v4,vs},
say vg,vs,vq, such that dp,(v2) = dp,(v3) = dp,(v4) = 4. In addition,
dp;(vs) 2 3. Thus, Np,(vs)NNp,(vs) N\Np,(vs) # 0, Np,(v2) NNp,(vs) D
Np,(vs) # 0, and Np,(v2) N Np,(v3) N Np,(vs) # 0. Let 2 € Np,(v3) N
ND‘(’U‘;) n ND‘.(’I)s).

Assume that D; = K5, or D; = K and z € {ai,d;}. Then D; — z is K.
Since dp, (v2) = 4, |[Ng(ve) N (V(D;) — {2})| 2 3. Thus D; — z + v2 and
M — vy + 2 contain K, a contradiction. So D; = K, and Np,(v3) N
Np,(va) N Np,(vs) C {bi,ci,e;}. Similarly, Np,(v2) N Np,(v3) N Np, (vs) C
{bi,ci e}, and Np, (v2) N Np,(vs) N Np,(vs) C {bi,ci,e;}. Without loss of
generality, we assume e; € Np, (v3) N Np, (v4) N Np, (vs).

If voa; € E(G), then Np,(v2) = {b;,ci,di,e;} since dp,(v2) = 4. Thus
D;—e;+vyis S and M —va+e; is K, which is contrary to the extremality
condition (2). So a;vs € E(G). Similarly, d;vs € E(G). Applying the same
discussion on Np, (v2)NNp, (v4)NNp,(vs) and Np, (v2)NNp, (v3)NNp, (vs),
we have vza;,v3d;, vaa;,vad; € E(G). Thus, M — vs + a; is K; . Since
dp,(vs) > 3 and e;us € E(G), we have |Ng(vs) N {b;,ci,d;}| > 1. Hence
D; — a; + vs is isomorphic to either S, K, or Ks, a contradiction.

Lemma 4.4 If dp,(v1) = 5, and 0p, = 19, then 8p, = 19, D; = K
and the subgraph induced by V(D;) U V(M) is isomorphic to Hy shown in
Figure 5.

Figure 5. Hs

Proof. By Lemma 4.3, 8p, = 19, and so dp,(v2) + dp,(v3) + dp,(vs) +
dp,(vs) = 14. By Lemma 4.2, for any = € {ve,vs,vs,¥s}, dp,(z) < 4.
Thus, there is a vertex in {ve,vs,vs,vs}, say vz, such that dp,(v2) = 4.
Thus, dp, (vs) +dp,(v4) + dp, (vs) = 14 — 4 = 10.

Claim 1. D; = K.
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Suppose that D; = K5 and Np,(v2) = {ai, b;,¢;,d;}. If there is a vertex in
{ai, bs, ¢i, d;}, say a;, such that das(a;) = 5, then D;—a;+ve and M —va+a;
would be isomorphic to K, a contradiction. So, for z € {ai,b;,ci,d;},
dp(z) < 4. It forces that dps(e;) = 3, and hence [Ng(e;) N {v3,vq,v5}| = 2.

If vse; € E(G), then either vze; € E(G) or vse; € E(G). Thus D; —e; + vz
is Ks and M — vs + e; contains S, which is contrary to the extremality
condition (2). So wvse; & E(G). Therefore, Nps(e;) = {v1,v3,vs}, and
dy(z) =4 for z € {a;, bi, i, d;}.

Assume vga; € E(G). Since a;v;,a;v2 € E(G), we have either via; € E(G)
or vsa; € E(G). Then D; —a; + v2 is K; and M — vy + a; contains
S, a contradiction. So vsa; € E(G). Similarly, v4b;, vac;,vad; € E(G).
Therefore, Ny (z) = {v1,v2,vs,vs5} for € {as;, b;, ¢, d;}. It implies that
G[{v1,v4,vs,0:,b:}] is S and G[{va,vs,¢;,d;,e;}] is K5, a contradiction.
So Claim 1 holds.

By Claim 1, a;d; € E(G).
Claim 2. G[Np,(v2)] = K.

Assume not. We may assume that Np, (v2) = {a;, b;,ci, €;}. As D;—d;+v2
is Ks, dy—v,(d;) < 2 (Otherwise, M — vy + d; contains either S or W,
which is contrary to the extremality condition (2) or (3)). Since d;v; €
E(G), |Ng(d;) N {vs,v4,v5}| < 1. Thus, [Ne(a:) N {vs, v, v} + |[Na(bi) N
{vs, v, vs}|+|Na(ei)N{vs, v, v5}|+|Ne(e:)N{vs, v4, v5}| > 19-5-4-1=
9, and so there is a vertex z € {a;, b;, ¢;, &;} such that zvs, zv4, zv5 € E(G).

If z = a;, then M —v3 +a; and D; — a; + v are K, a contradiction. Thus
z # a;, and so z € {b;, c;,e;}. Without loss of generality, we assume that
z =b;. Then M — vy + b; is K, and D; — b; + vo is S, a contradiction,
and hence Claim 2 follows.

By Claim 2, we may assume Np, (v2) = {as, b;,¢;, d;}.

Claim 3. Np,(v3)NNp,(vs) C {b;,c;} and Np, (vg) N Np,(vs) € {b;,¢c:}-
Therefore, dp,(v3) + dp,(v4) < 7 and dp,(v4) + dp,(vs) < 7.

Suppose that there is a vertex z € {a;,d;,e;} such that zvs,zvs € E(G).
Then D; — z + vp is K; ', and M — vy + z contains S, which is contrary to
the extremality condition (2). So Np,(vs) N Np,(vs) C {b;,c:}. Similarly,
Np,(va) N Np, (vs) C {b;, ¢;}. So Claim 3 holds.
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As dp,(v3) + dp,(v4) + dp, (vs) = 10, by Claim 3, we have dp,(vs) > 3 and
dp, (03) > 3.

Claim 4. dp,(v4) = 4. Therefore, dp,(v3) = dp,(vs) = 3.

By contradiction, we assume that dp,(v4) < 3. If dp,(vs) < 2, then
dp,(v3) = dp,(vs) = 4 and dp,(v4) = 2. We re-label (v1,vs,v2,v3,v4) to
be (y1,¥2,¥3,v4,9s). Then dp,(y2) = 4, and dp,(y3) + dp,(va) = 8, which
is contrary to Claim 3. So dp,(v4) = 3. Therefore, dp, (v3) + dp,(vs) = 7.
Without loss of generality, we assume that dp,(v3) = 4 and dp,(vs) = 3.
Applying the same argument in Claim 2 on Np, (v3), we have G[Np,(vs)] =
K; . Thus a;,d; € Ng(v3).

Since dp, (v3) = 4 and dp,(v4) = 3, |Np,(v3) N Np,(v4)| = 2. By Claim 3,
Npi(‘v:;)r]ND‘.(v.;) = {b,-,c"}. Thus ND..(vg) = {a,-,bg,ci,d,-} and ND‘.('U4) =
{bi,ci,ei}. Therefore, G[{ai, ¢, di,v2,v3}] is K5, and G[{b;, e;,v1,v4,05}]
contains S, a contradiction, and hence Claim 4 follows.

By Claims 3 and 4, Np, (‘Ua) N Np,(v4) = Np, (va) N Np, (vs) = {b,,c,}
Applying the same argument in Claim 2 on Np, (v4), we have G[Np, (v4)] =
K;. Thus Np,(vs) = {ai,bi, i, s} By Claim 3, Np,(vs) = Np, (vs) =
{bs, i, ei }. Therefore, the subgraph induced by V/(M)UV (D;) is isomorphic
to Hs.

Lemma 4.5 If dp,(z) < 4 for z € V(M), then 8p, < 19. Moreover, if
6p, = 19, then D; = K, dp,(v1) = 3, dp,(v;) = 4 for j = 2,3,4,5,
and the subgraph induced by V(D;) U V(M) is isomorphic to Hy shown in
Figure 6.
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Figure 6. H3

Proof. Suppose that 6p, > 19. Since dp,(x) < 4 for any z € V(M),
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there are at least three vertices in {vo,vs,vq,vs}, say vo,vs,vs, such that
dp,(ve) = dp,(v3) = dp, (va) = 4. Thus dp,(v1) + dp,(vs) 2> 7.

Claim 1. D; = K.

Suppose that D; = Ks. Consider va. Since dp,(ve) = 4, we may as-
sume that Np, (v2) = {a;, b;, ¢, d;}. Clearly, for any z € V(D;), |Ng(x) N
{v1,v3,vs,v}| < 3. Moreover, if |[Ng(z) N {v1,v3,v4,v5}| = 3, then
zv3,zvs € E(G) (Otherwise, D; — = + v contains K, and M — vy +
is S, a contradiction). Therefore, 0p, = 19, dp(a;) = dp(b;) = dmlci) =
dy(di) = 4, dm(e:) = 3, and zvs,zvs € E(G) for z € V(D;). It implies
that dp, (v3) = dp,(vs) = 5, a contradiction. So Claim 1 holds.

By Claim 1, a;d; € E(G).
Claim 2. Let z € {v2,v3,v4,v5} with dp,(z) = 4. Then G[Np, (z)] = K .

By contradiction, we assume that G[Np,(v2)] = K4 and Np, (v2) = {a;, b;,
cisei}. I dpr—yy(di) > 3, then D; — d; + ve is K5 and M — vp + d; contains
either S or Wy as a subgraph. This contradicts to the extremality condition
(2) or (3). So dpr—v,(d;) < 2. For = € {ai, b;, ci,¢;}, if dyr—v, () = 4, then
D; - z + vy is isomorphic to either § or K, and M — v + z is K,
a contradiction. So dp_y,(z) < 3. Thus, p, < 4+2+3-4 =18, a
contradiction, and hence Claim 2 holds.

By Claim 2, {a;,d;} C Np,(v2)NNp,(v3)NNp,(vq). Since dp, (v2) = 4, we
may assume that Np,(v2) = {ai, b;, ¢i,d;}. Thus D; — a; +ve, D; —d; + v,
and D;—e;+v; are isomorphic to K. So, for z € {a;, €;,di}, dpM—v, (z) < 3.
Furthermore, if dy_y,(z) = 3, then zv3,zvs € E(G). As a;vz,a;v4 €
E(G), we have a;v; € E(G). Similarly, djv; ¢ E(G). Since dp,(v1) > 3,
Np,(v1) = {bi,ci,ei}. Therefore, dp,(vs) = 4, {a;,d;} € Np,(vs), and
op, = 10.

Claim 3. e;vs € E(G). Therefore, Np,(v4) = {as, b;, i, di}.

Assume that e;uqs € E(G). As e;vq € E(G), we have e;jvs,e;us € E(G)
(Otherwise, D; —e;+v2 is Ky , and M — vz +e; contains S, a contradiction).
Thus, Np,(v3) = Np,(vs) = {ai, bi,ci,di}. As dp,(vs) = 4, we have either
¢ivg € E(G) or bjvy € E(G). Without loss of generality, we assume c;vy €
E(G). Then G[{ci,d;,ei,vs,vs}] and G[{ai,b;, v1,v2,v3}] are isomorphic
to K, a contradiction. So Claim 3 holds.

Claim 4. e;vs,e;v3 € E(G).
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Assume that e;vs € E(G). Then Np, (vs) = {a4, bi,ci,d;}. Since dp,(vs) =
4 and a;vs,div3 € E(G), [Ng(vs) N {bi,ci,e;}| = 2. Thus |[Ng(v3) N
{bi,c;}| =2 1. Without loss of generality, we assume b;v3 € E(G). Since
Np,(v?) = Np,(va) = {ai,b;,ci,d:}, we have G[{a;, b, v1,v2,v3} is Ky
and G[{c;, d;, ei,v4,v5}] is S, a contradiction. So e;v5 € E(G). Similarly,
e;vs € E(G). Therefore, Claim 4 holds.

As dp,(vs) = 4 and e;u5 € E(G), we have either c;us € E(G) or byus €
E(G). Since b; and ¢; are symmetric, we may assume that c;v5 € E(G).
Then NDi('US) = {ai,ci,di,ei}. If bv3 € E(G), then G[{c,-,ei,d,-,v4,v5}]
and G[{v,v2,vs,ai,b;}] are K, a contradiction, and hence b;v3 € E(G)
and Np, (v3) = {ai,c;,d;, e;}. Therefore, the subgraph induced by V(M)uU
V(D;) is isomorphic to Hs. I

Lemma 4.6 Ifdp,(v;) < 4, then 6p, < 18.

Proof. By contradiction, we assume that 6p, > 19. By Lemma 4.2, for
z € {v2,v3,v4,V5}, dp,(x) < 4. By Lemma 4.5, 6p, = 19, D; = K, and
the subgraph induced by V(M) U V(D;) is isomorphic to Hs. Let T =
{v1,v2,--- ,vs,04,b;,d;, e;} (see Figure 6), and denote F the graph induced
by V(MYuV(D;). Then Z dr(z) =97 = 63. To get a contradiction, we

consider 7; = E dp,(z), where je{1,2,- —1}and j#4 If 1; <33
for all 7, t;hen
llk
33%k=9. <) do(z) <63+ 33(k—2) =33k -3,

z€T

a contradiction. So there is some j such that 7; > 34. Note that G[{a;, b;,
eimvlavS}]’ G[{di’vl:v2av4: 05}], G[{aiaeia‘v%vﬁlavS}]a and G{{aiyv2yv3’v4,
vs}] are isomorphic to Wy, and G[{c;, d;,v2,va,vs}], G[{ai, b;, ci,e;,v3}],
Gl{b;, ¢;,di,v1,v4}), and G[{b;, ¢;, d;, e;, v1 }] are isomorphic to K . To get
a contradiction, we need to reset D; and M. For example, we will reset D;
and M to be either D; := G[{c;,d;,v2,v4,v5}] and M := G[{ai, b, e;, 1,
va}), or D; := G[{a;, bi, ¢, €5,v3}) and M := G[{d;, v1,v2,v4,vs}], ete.

Claim 1. For each z € T, dp,(z) < 4.
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Figure 7. The complement of H3

Note that the complement of H3 is K3UK3UK3UK), and T is the collection
of the vertices of these three triangles (see Figure 7). By symmetry of the
complement of Hj3, we just need to prove dp,(v;) < 4.

By contradiction, we assume dp,(v1) = 5. By resetting M := G[{e;,v1,
ai,b;,v3}] and D; := G[{vz,v4,vs,ci,d;}], we have dp,(e;) + dp,(v1) +
dDJ. (a;) + dDj () + dDJ. (v3) < 18 by Lemma 4.2. Thus dDj (es) + dDj (a:) +
dp,(b;) + dp,(v3) < 13. Similarly, by resetting M := G[{vs, v1,d;,v2,v4}]
and D; := G[{vs,a;,b;,c;,e;}], we have dp,(vs) + dp,(d:) + dp,(v2) +
dp,;(vq) < 13. Thus, 7; < 13+ 13 + 5 = 31, a contradiction, and hence
Claim 1 follows.

Claim 2. Foreachz €T, dp,(z) <3.

By symmetry of the complement of Hg, we just need to prove dp,(v1) < 3.
By contradiction, we assume dp, (v1) = 4. Let’s consider M := Gl{ei,v1, as,
bi,v3}] and D; := G[{ve,vs,vs,ci,d;i}]. By Claim 1 and Lemma 4.5,
dDj (ei) + dDj (vl) + dDj (a'i) + dDj (b‘l.) + dDj (03) < 19. Similarly, by re-
defining M := G[{vs,v1,d;, v2,v4}] and D; := G[{vs, a;, b;, ¢i, €;}], we have
dDJ. (vs) +dDj (wn) +dDj (d;) +dDj (1)2) 'l‘dDj (1)4) < 19. Thus, 38 =34+4 <
75 + dp,;(v1) < 38, and hence dp,(e;) + dp,(v1) + dp,(a:) + dp,(b:;) +
dDJ. (1)3) =19 and dD]. ("’5)+dD_.,- (v1)+dpj (di)-f-dDj (‘Ug)-{-dpi (‘04) =19. By
Lemma 4.5, dp;(e;) = 3 and dp,(v1) = dp,(a;) = dp,(b:;) = dp,(vs) = 4,
and dp,(vs) = 3 and dp,(d;) = dp,(v2) = dp,(vs) = 4. By reset-
ting M := G[{bi,v1,0:,v2,v4}] and D; := G[{vs,vs,ci,di,e;}], we have
20 =dp,(b;) +dp,(v1) + dp;(a;) + dp, (v2) +dp, (v4) < 19 by Lemma 4.5,
a contradiction, and hence Claim 2 follows.

By Claim 2, 7; < 3-9 = 27, a contradiction. |

Next we will prove 8p, < 18 if dp,(v1) = 5. Before doing that, we will
prove Lemmas 4.7—4.11.

Lemma 4.7 dp,(v2) + dp,(v3) + dp,(vs) + dp, (vs) < 16.
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Proof. By contradiction, we assume that dp, (v2) + dp, (v3) + dp, (v4) +
dp,(vs) 2 17. Then there are two vertices ¢, s in V(D;) such that {vq,vs, v,
vs} C Ng(t) and {v2,v3,vs,v5} € Ng(s). In addition, there is a vertex in
{v2,v3,v4,Vs}, say ve, such that V(D;) C Ng(v2).

Suppose that ts € E(G) and D; — {t, s} is a triangle, without loss of gener-
ality, we assume {t, s} = {ai,b;}. Then [Ng(vs) N {ci,di,e;}| + |Ng(ve) N
{ci,di, es}| + |[Ne(vs) N {ci,di,es}| > 17— 5 — 6 = 6. Since |Ng(vg) N
{ci,diyes}| < 3, |Ng(v3) N {ci,di, e} + |[Na(vs) N {ci,di, e;}| > 3. So we
may assume that |Ng(vsz) N {Ci,di,ei}! > 2. Hence G[{ai,bi,v4,v5,v1}]
contains S and G[{¢;,d;, ei,v2,v3}] contains K, a contradiction. So, we
have either ts € E(G) or D; — {s,t} is not a triangle. Therefore, D; = K .

If ts ¢ E(G), then {t,s} = {ai,d;}. Then D; —d; + v2 is K5 and M —
vz +d; contains Wy, a contradiction, and hence D; — {s,t} is not a triangle.
Without loss of generality, we assume {¢, s} = {b;,¢;}.

If |[Ng(ai) N {vs,v4,v5}| = 3, then D; — a; + vp is K5 and M — va + a;
contains Wy, a contradiction, and hence |Ng(a;) N {vs,vq,v5}| < 2, and
so |Ng(a;) N {vo,vs,v4,vs}] < 3. Similarly, [Ng(d;) N {vs, v4,vs}] <2 and
[Ng(di)N{va, v, v4,vs}| < 3. Thus {Ng(e;)N{ve, v, vs,v5} > 17-8~6 =
3, which implies that either e;u3 € E(G) or e;us € E(G). Without loss of
generality, we assume e;v3 € E(G).

Suppose that vza; € E(G). Then Ng(di) N {vs,v5} = @ (Otherwise,
G({a;, €i,v2,v3,v1 }] contains S and G[{b;, ¢;, d;, v4, vs }] contains Ky, a con-
tradiction). Thus 9 < |Ng(a;)N{v2, v, v4, vs}|+|Ng(di)N{ve, vs, va, s} +
|Ng(e:)N{ve, v3,vq,vs}} < 3+2+4 = 9. and hence [Ng(a;)N{v2, v3,v4,vs}|
= 3, |Ne(di)N{va, v3, v4,v5}] = 2, and | Ng(e;)N{va,v3,v4,vs}| = 4. There-
fore, [Ng(a;) N {vs,vs}| = 1 and d;ve, djvz € E(G). So G[{d;, e;, v2,v3,v1}]
contains S and G[{a;, b;, ¢;, va, vs }] contains K, a contradiction. So vga; ¢
E(G). Similarly, divs ¢ E(G), and so dp,(vs) < 3. Thus dp,(v4) +
dp,(vs) = 17—5—3 = 9. Furthermore, e;vs ¢ E(G) (otherwise, by using the
same argument above, we have a;,d; € Ng(vs), and so dp, (vs) < 3. Thus,
dp,(v4)+dp, (vs) < 5+3 = 8, a contradiction). Therefore, dp, (v4) = 5 and
dp,(vs) = 4. Hence G[{ai,c;,di,v2,v5}] is K5, and G[{b;,e;, vs,vq,v1}]
contains .9, a contradiction.

Lemma 4.8 Suppose that dp,(ve) = dp;(v4) = 5. Then 8p, < 17.

Proof. Assume®dp, > 18. By Lemma 4.2, 0p, = 18. Then Y |Ng(zx)
eV (D;)
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N{vy,v3,v4,vs5}| = 13. We consider two cases.
Case 1. Di = Ks.

By Lemma 4.1(i), for any = € V(D;), dm—o,(z) £ 3. Thus there are at
three vertices in V(D;), say a;, b;, ¢;, such that das_,,(a;) = 3, dp—o, (b:) =
3, and dps—y,(c;) = 3. By Lemma 4.1(ii), a;,b;,¢c; € Ng(vs) and a;, b;,¢; €
Ng(vs). By Lemma 4.7, dp,(v3) = dp,(vs) = 3, and so dp,(v1) = 2 and
dM—v,(€i) = dpm—v,(d;) = 2. Thus, Np,(v3) = Np,(vs) = {ai, bi,c;} and
Np,(v1) = {di, e;}. Hence, G[{vs,vs, ai, bi,¢;} and G[{d;, e, v1,v2,v4}] are
K3 , a contradiction.

Case 2. D,' =K5—.

Then a;d; € E(G). If dpr—y,(d;) > 3, then, by Lemma 4.1, dp—y,(di) = 3
and M - vy + d; is Wy. But D; — d; + vy is K5, which is contrary to
the extremality condition (3). So dpg,(d;) < 2. Similarly, dy—y,(a;) < 2.
By Lemma 4.1, dpr—y,(bi) < 3, dm—vy(ci) < 3 and dpy—o,(ei) < 3. So
13 = Y |Ng(z) N {v1,v3,vg,05}| £ 2:-2+3-3 = 13. Therefore,
z€V(Dy)

dM—v, (bt) = dM—‘Uz (ci) =dM-y, (ei) =3 and dM—vz (a'i) = dM—vz(di) =2.
By Lemma 4.1(ii), b;,¢;,e; € Ng(vs) and b;,¢;,e; € Ng(vs). By Lemma
4.7, dDi(‘vs) = dD.' ('U5) = 3 and dD,.(vl) = 2. Thus ND..(’U:;) = ND'.(’Us) =
{bi,ci, e}, and Np,(vy) = {a;,d;}. Therefore, the complement of the graph
induced by V(M) U V(D;) is the following graph.

Figure 8

Let T = {v,v2,v4,vs,vs,a:,d;,€;}, and denote F the graph induced by
V(M)UV(D;). Then Z drp(z)+dp(v1)+dp(e;) = 68. To get a contradic-

tion, we consider 7; = z dp,(z)+dp,(v1)+dp,(e;) for j € {1,2,--+ ,k—1}
and j #1i If 7; <36 for all 3, then

10 %<T,<3ﬁ(k 2) + 68 = 36k — 4,
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a contradiction. So there is some j such that 7; > 37. Since v; and v4 are
symmetric, we may assume dp, (v2) > dp;(vs).

Claim 1. dp,(vz) =5.

Assume dp,(ve) < 4. By resetting M := G[{vz,v1,€;,v3,0;}] and D; :=
G[{bi’ Ciy V4, Vs, di}]; we have dDj (v2)+dDj (v1)+dD,' (ei)+dD5 ('03)+dDj (ai)
< 18 by Lemma 4.6. Thus dp,(v1) + dp,(e:) + dp,(v3) + dp,(a;) <
18 — dp, (v2). Similarly, by resetting M := G[{v2,v1,€;,v5,d;}] and D; :=
G[{bs, ci, v4,v3,0:}], we have dp,(v1) +dp,(e;) +dp,(vs) +dp,(d;) < 18 -
dp,(ve). Therefore, 7; < (18 — dp,(v2)) + (18 — dp,(v2)) + dp,(v2) +
dp,(vq) = 36 — dp,(v2) + dp, (v4) < 36, a contradiction.

Claim 2. dp,(v4) > 4.

Assume that dp,(vs) < 3. By resetting M := G[{vz,v1,€;,v3,0;}] and
Di = G[{bu Ci, ‘U4,‘Us,di}], we have dDj (vz) +dDj (vl) +dDj (ei) +dDj (1)3) +
dp, (a;) <19. Thus dp; (v1)+dp; (&) +dp; (va) +dp; (a;) < 14. Similarly,
by considering M := G[{v2,v1,€;,vs,d;}| and D; := G[{b;, ¢i, v4,v3,0a:}],
we have dp,(v1) + dp;(e;) + dp;(vs) + dp,(di) < 14. Therefore, 7; <
14 + 14 + dp, (v2) + dp, (v4) < 36, a contradiction.

Claim 3. dp,(v4) # 5.

Assume dp,(vq) = 5. By Lemma 4.2, dp,(v1) + dp,(vs) + dp,(vs) < 18 —
dp,(v2) — dp,(v4) = 8. Similarly, by resetting M := G[{v1,v2,v4,:,d;}]
and D; := G[{b;,c;,e;,vs,vs}], we have dp,(v1) + dp,(a;) + dp,(d;) <
8. Thus, 7; < 8 + 8 + 2dp;(e;) + dp,(v2) + dp,(v4) < 16 +20 = 36, a

contradiction, and hence Claim 3 follows.

By Claims 2 and 3, dp,(vs) = 4. By resetting M := G[{v2, 1, €;,v3,a:}]
and D; := G[{b;,ci,v4,vs,d:}], we have dp,(v2) + dp,(v1) + dp,(e;) +
dDJ (‘U3) -+ dDj (ai) < 19. Thus dDJ. (‘Ul) + dDj (eg) + dDj (’Ua) + dDj (a;) < 14.
Similarly, by considering M := G[{v2,v1, €;,vs,d;}] and D; := G[{a;, b;, ¢,
v3,v4}], we have dp,(v1) + dp,(e;) + dp,(vs) + dp,(d;) < 14. Therefore,
37 < 7; < 14+ 14+dp,(v2) +dp,(v4) = 37, and hence dp, (v2) +dp,(v1) +
dp,(e;)+dp,(va)+dp,(a;) = 19 and dp,(v2)+dp, (v1)+dp,(e:)+dp,(vs)+
dp,(d:) = 19. By Lemma 4.4, either dp,(v1) = dp,(e;) = 3 and dp,(v3) =
dp,(vs) = dp,(a;) = dp,;(d:) = 4, or dp,(v1) = dp,(e;) = 4 and dp,(v3) =
dDj(‘U5) = dpj(a,-) = dp; (d;) = 3, and so dDj (v1) + dDJ.(’Uz) + dDj(’va) +
dp,(v4) +dp;,(vs) is either 19 or 20. However, since dp,(v2) = 5, dp,(v1) +
dp,(ve) +dp,(v3)+dp,(vs)+dp,(vs) < 18 by Lemma 4.2, a contradiction.
|
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Lemma 4.9 Suppose dp,(v1) = 2 and dp,(z) = 4 for z € {ve,v3,v4,vs}.
Then the complement of the graph induced by V(D;) U V(M) must be iso-
morphic to one of the graphs in Figure 9.

M D; M D; M D;
" v n
v2 (%] v2
v3 V3 v3 °
Uq V4 V4
Us Vs Vs

Hy Hs Hg
Figure 9

Proof. We consider two cases.
Case 1. Di = Ks.

Since dp, (v2) = 4, without loss of generality, we assume Np, (v2) = {a;, b;,

Ci,di}. Let z € V(D;). Since D; — x + vy contains K, |Ng(x)ﬂ{v1,vg,v4,

vs}| < 3. Moreover, if |[Ng(z) N {v1,vs,vs,v5}| = 3, then zvs,zvs € E(G).

Since 9D‘. = 18 and dD',(‘vg) = 4, Z |N(;(:L') N {vl,va,v4,v5}| = 14.
zeV(D;)

Thus there are four vertices z € V(D;) such that |[Ng(z) N {v1,v3,v4,vs}]

=3.

Assume that |Ng(e;) N {v1,v3,v4,v5}| < 2. Then, for z € {a;,b;,¢;,d;i},
[Ne(z) N {v1,v3,v4,05}| = 3, and hence zv;,zvs € E(G). So Np,(v3) =
Np,(vs) = {ai, bi,ci,d;}. Since dp,(v1) = 2 and |Ng(z) N {v1,v3,v4,v5}| <
3 for x € V(D;), Np,(vs) # {ai,bs,ci,di}. Without loss of generality, we
assume Np,(v4) = {ai, b;,ci,e;}. Then Np,(v)) = {d;,e;}. Thus D; —
di + vy is Ks and M — vy + d; is K, a contradiction. So |Ng(ei) N
{vlvv.'.’n 1)4,’05}' = 3.

Note that there are four vertices z € V(D;) such that |[Ng(z) N {v1,v3,v4,
vs}| = 3. Without loss of generallty, we assume |Ng(z)N{vy,v3, v4,v5} = 3
for = € {ai,b;,ci,e;} and |Ng(d;) N {v1,v3,v4,v5}] = 2. Then Np,(v3) =
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Np,(vs) = {a:, bi,ci,e:}.

Let’s consider Np,(v4). Suppose that e;vy € E(G). Since dp,(v1) = 2
and |Ng(z) N {v1,v3,v4,vs}| < 3 for z € V(D;), Np,(vs) # {ai, bi,ci,e:}.
Therefore, d;vqs € E(G). Without loss of generality, we assume Np, (v4) =
{ai, bi,di,e;}. Then Np, (v1) = {¢i,d;}. Thus D; —c; +v4 and M —vg +¢;
contain K, a contradiction, and hence e;v4 € E(G). Therefore, Np, (v4) =
{ai,bi,ci,d;}, and so Np,(v1) = {d;,e;}, and the complement of the graph
is isomorphic to H, in Figure 9.

Case 2. D;=K;.
Then a;d; € E(G). We consider two subcases.

Case 2.1. There is a vertex = in {vo,v3,v4,v5} such that the subgraph
induced by Np,(z) is K.

Without loss of generality, we assume Np, (v2) = {a;, bi,ci,e;}. Then D; —
di+vg is K5, D;—a;+vq is Ky , and D;—x+v; is S for z € {b;,c;,e;}. Since
D; = K, we have |[Ng(z) N {v1,v3,v4,vs}| < 3 for = € {a;,b;,¢;,€;}, and
[Ne(di) N {v1,v3,v4,v5}| < 2. Since 8p, = 18, |Ng(z) N {v1,v3,v4,v5}] =
3 for z € {ai,bi,ci,e;}, and |Ng(d;) N {v1,v3,v4,v5}] = 2, and hence
a;v3,a;vs € E(G) (Otherwise, D; — a; + vp is K5 and M — vz + a; is
S, a contradiction).

We claim d;v3 € E(G). By contradiction, we assume d;v3 € E(G). Then
Np,(v3) = {a:, b;, ¢, e;}. Since dp,(v4) = dp,(vs) = 4, |[Np,(va) N Np, (vs)|
> 3. Thus |(Np, (v4) N Np,(vs)) N {b;,ci,e;}| > 1. Without loss of gener-
ality, we assume e; € Np,(v4) N Np,(vs). If di € Np,(v4) N Np;,(vs), then
G[{d;, ei, v4,vs,v1}] contains S and G[{a, bi,ci,v2,v3}] is Ks, a contradic-
tion, and hence d; & Np,(v4) N Np,(vs). Since |Ng(d;) N {v1,v3,v4,v5} =
2 and divs € E(G), divi € E(G) and |[Ng(di) N {v4,vs}] = 1. Thus
G[{d;, ei,v4,vs,v1}] contains Wy and G[{a;, b;,ci,v2,v3}] is Ks, which is
contrary to the extremality condition (3). So div3 € E(G). Similarly,
divs € E(G). Since |Ng(di) N {v1,v3,v4,v5} = 2, divy € E(G) and
divs € E(G), and hence Np, (v4) {ai, bi,ciyei}.

Note that a;,d; € Np,(v3) N Np,(vs). If Np,(vs) = Np,(vs), without loss
of generality, we may assume Np,(v3) N Np,(vs) = {ai,di,bi,¢;}. Then
INe(z) N {v1,v3,v4,u5}| = 3 for z € {ai,bi,c;}. Thus a;vy, bivy,civn &
E(G), and so dp,(v1) < 1, a contradiction. So Np,(vs) # Np,(vs).
Since b;, ¢;, e; are symmetric, we may assume Np,(v3) = {as,d;, b;,¢;} and
Np,(vs) = {a:,d:,b;,e;}. Then Np,(v1) = {ci,ei}. Hence G[{d;,v4,bi,c;,
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vs}] and G[{ve, a;,v1,vs,€;}] are K , a contradiction.

Case 2.2. For each z in {vs,vs, v4,vs}, the subgraph induced by Np,(z)
is K.

In this case, a;,d; € Np,(z) for € {v2,vs,v4,v5}. Without loss of gen-
erality, we assume Np,(vs) = {ai,di, b;,¢;}. Thus, D; — z + v, is K for
z € {ai,di,e;}, and D; —z + vy is Wy for z € {b;,¢;}. So, |Ng(z) N
{vl,vg,v4,v5}| <3forze {a,-,d,-,ei}, and |Nc(x)ﬂ{v1,v3,v4,v5}| < 4 for
z € {bi e}

We claim that Np,(ve) # Np,(vs) and Np,(v;) # Np,(vs). By contra-
diction, we assume Np,(vs) = {ai, b;,¢;,di}. If e; € Np,(vs) N Np,(vs),
then G[{d;, e;,v4,vs,v1}] contains S and G|[{a;, b;,c;, ve,v3}] is K5, a con-
tradiction, and hence e; € Np,(vs) N Np,(vs). Since dp,(v4) = 4 and
dp,(vs) = 4, we have |[Np,(vs)NNp,(vs)| = 3. Thus |(Np,(v4)NNp,(vs))N
{bi,c;i}| > 1. Without loss of generality, we assume b; € Np, (v4) N Np, (vs).
Since dp,(vi) = 2, we have either Ng(v;) N {a;,b;} # @ or Ng(vi) N
{cidi} # 0. If Ng(v1) N {a;,b;} # 0, then G[{vy,v4,vs,a:,b;}] contains
Ky and G[{c;,di,e;,v9,v3}] contains S; if Ng(v1) N {ci,di} # 0, then
G[{v1,v2,v3,c¢i,d;}] contains K5 and G[{a;, b;, e;, v4,v5}] contains S, a con-
tradiction, and hence Np,(v2) # Np,(v3). Similarly, Np,(v2) # Np,(vs).
Therefore, e;v3, e;us € E(G).

Since dp,(v3) = 4 and b;,¢; are symmetric, we may assume Np,(v3) =
{ai,d,-,ei,b,-}. If e;vq € E(G), then G[{di,e,-,v.;,vs,vl}] contains S and
G({ai, bi,ci,v2,v3}] is K7, a contradiction, and hence e;vs ¢ E(G) and
ND.'(v4) = {aiabi3ci»di} = ND.‘(”?)' Simlla.rly, ND{(v3) = NDi(v5) =
{ai, b;,d;, e;}. Since |Ng(z) N {v1,v3,v4,vs}| <3, Np,(v) C {bi,ci,e:}. If
Np,(v1) = {b;,c;} or Np,(v1) = {b;, €;}, then the complement of the graph
induced by V(M) U V(D) is isomorphic to Hg; if Np,(v1) = {c:, e}, then
the clomplement of the graph induced by V(M) U V(D) is isomorphic to
Hs.

Lemma 4.10 Ifdp,(z) = 4 for x € {va,v3,v4,v5}, then 8p, < 17.

Proof. By contradiction, we assume 6p, > 18. By Lemmas 4.3, 4.4
and 4.6, 0p, = 18. Thus dp,(v1) = 2. By Lemma 4.9, the complement of
the graph induced by V(M) U V(D) is isomorphic to either Hy, or Hs or
Hg in Figure 9. Next we will exclude Hy. Use the same method we could
exclude Hs and Hg. For the convenience of discussion, the vertices of D;
from the top to the bottom in Hy, Hs, Hg are labelled by by, bo, b3, by, and
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bs, respectively.

For the graph Hy, denote T = {v, b1, v2,v3,v4,v5}, and denote F the

graph induced by V(M) UV(D;) in G, that is, Hy is the complement of F.

Then 3 dp(x) = 42. To get a contradiction, we consider 7; = 3 dp,(z)
z€T zeT

for each j € {1,2,--- ,k — 1} and j # . If ; < 22 for all j, then

22k=6-i3k5er+42522(k-2)+42=22k—2,
i

a contradiction. So there is a D; such that 7; > 23.

First we claim that dp,(z) < 4 for each z € {v2,vs,v4,vs}. By contradic-
tion, we assume dp,(v2) = 5. By resetting M := G[{vs,v1,b1,v2,v4}] and
D; := G[{b, b3, b, b5, v5}], we have dp,(v3)+dp, (v1)+dp,(b1)+dp, (v2) +
Dp,(vq) < 18 by Lemma 4.2. Since 7; > 23, dp,(vs) = 5. Similarly,
by resetting M := G'[{vs,vl,bl,vg,v,;}] and D; := G[{bg,bg,b4,b5,v3}],
we have dp,(vs) = 5. By Lemma 4.8, dp,(v1) + dp,(v2) + dp,(v3) +
dp,(v4) + dp, (vs) < 17. Thus, dp,(b;) > 23 — 17 = 6, a contradiction. So
dDj (‘UQ) < 4. Simllarlya dDj (’03) < 4) dDj ('04) < 41 and dDj ('05) < 4.

Again, let’s reset M := G[{va,vl,bl,vg,w}] and D; := G[{bg,bs,b4,b5,
vs}]. By Lemma 4.6, dp, (v3)+dp,(v1)+dp, (b1) +dp, (v2) + Dp,(va) < 18.
Since 7; > 23, we have dp,(vs) = 5, a contradiction. This contradiction
implies that H,4 should be excluded.

For the graph Hs and Hg, we still consider T = {b;,v1,v2,v3,v4,v5}. Ar-
guing similarly as above, we can obtain a contradiction.

Lemma 4.11 Ifdp,(vi) =5, then 0p, < 18.

Proof. By contradiction, we assume that p, > 19. By Lemma 4.4, 8p, =
19, D; = K and the subgraph induced by V(M)UV(D;) is isomorphic to
the graph Hs in Figure 5. The following graph is the complement of Ho.

M

Figure 10. The complement of H»
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For j # i, denote T = {v;,vq,--*,vs,0i,di,e;} and 7; = E dp,(z) +

dp,(v2), and let F' be the subgraph induced by V(M)U V(D,) 1n G. Then
Y dp(z) + dr(v2) = 61. To get a contradiction, we consider 7; for each
z€T

j€{1,2,--- ,k—1} and j #i. If 7; < 33 for all j, then
11k
33k =9 == <) 7;+61=33(k—2)+61=33%—5,
3 J#i

a contradiction. So there is a D; such that 7; > 34.
Claim 1. dp,(v1) # 5.

Assume dp,;(v1) = 5. Then dp,(v1) + dp,(v2) + dp,(v3) + dp,(va) +
dp,(vs) < 19. By resetting M := G[{v1,v2, €;,a;,d;}] and D; := G[{b;,c;,
v3,v4,v5}], we have dD_, (v1)+ dDj (v2) + dDj(ei) + dDJ. (ai) + dDJ. (d;) £19.
Thus 34 + 5 < dp,(v1) + 75 < 19 + 19 = 38, a contradiction, and hence
Claim 1 follows.

Claim 2. dp,;(v1) <2

By contradiction, we assume dp,(v;) = 3. By Lemma 4.6 and Claim
1, dp,(v1) + dp,(v2) + dp,(v3) + dp,(va) + dp,(vs) < 18. By reset-
ting M = G[{vy,v2,€;,0:,d;}] and D; := G[{b;,ci,vs3,vs,v5}], we have
dp,(v1)+dp,(v2) +dp,(e;) +dp,(ai) +dp,(d;) < 18. Thus 37 < dp,(v1) +
7; < 18 + 18 = 36, a contradiction. So Claim 2 holds.

Claim 3. dp,(vi) =2

By Claim 2, we assume that dp,(v1) < 1. Since 7; > 34, [dp,(v2) +
dp;(v3) + dp, (vs) + dp, (vs)] + [dp, (v2) + dp,(e:) + dp,(a;) + dp,(di)] =
7; — dp,;(v1) > 33. Thus we have either dp,(v2) + dp,(vs) + dp, (vs) +
dp,(vs) 2 17 or dp,(v2) + dp;(ei) + dp,(a:) + dp,(d:) = 17, which is
contrary to Lemma 4.7. So Claim 3 holds.

Claim 4. Let § be Wy in F and F — V(S) be K. If v1,v2 € V(S) and

d_g(vl) = 4, then Z dD_.,- (J:) = 16.
zeV(S)—{wn}

Without loss of generality, we assume S = G[{v1,v2,d;,e;,v3}]. By re-
setting M := G{{v1, v, d;, €;,v3}] and D; := G[{b;, i, v4,vs,a;}], we have
dp,(v1)+dp,(v2)+dp,(d;)+dp;, (e;) +dp, (v3) < 18. By considering M :=
G[{v1,v2,v4,0i,v5}] and D; := G[{b;,c;,vs,di,e;}], we have dp,(v1) +
dp,(v2) + dp,(v4) + dp,(a:) + dp,(vs) < 18. Then 36 < dp,(v1) +7; <

121



18+18 = 36, and hence dp, (v1)+dp, (v2)+dp; (d:)+dp,(e:)+dp, (vs) = 18.
Therefore, dp,(v2) + dp,(d;) + dp;(e:) + dp,(v3) = 16.

Claim 5. dp,(v4) = dp,(e:), and dp,(v3) = dp,(vs) = dp,(a;) =
dp, (d;).

Consider G[{vy, vz, v3, v4,vs}] and G[{v, v2, €;,v3,v5}]. Since D; and D; —
e;+vy are Ky, hy Claim 4, dp, (ve) +dp, (v3)+dp,(v4) +dp,(vs) = 16 and
dp,(v2) +dp;,(e;)+dp,(v3) +dp,(vs) = 16. Then dp, (v4) = dp,(e;). Simi-
larly, by considering G[{v1,v2, e;, v3,a;}] and G[{vy, vz, €;,vs,a;}], dp,(vs)
= dp,(vs), by considering G[{v1, vz, €;,vs,a;}} and G[{v1, va, €;,v3,v5}],
dp,(v3) = dp,(a;), and by using G[{v1,v2, €, v3,vs5}] and G[{v1,v2,€;,vs,
d;}], dp,(v3) = dp,(d;). So Claim 5 holds.

Claim 6. dp,(v2) > dp,(v4) and dp,(v2) 2 dp,(e;)-

By resetting M := G[{v1,vs,v4,d;,e;}] and D; := G[{b;, c;, v2,vs,0a;}], we
have dp,(v1) + dp,(v3) + dp,(va) + dp,(d;) + dp,(e;) < 18. By Claim
4, dDj(vz) + dDj (vq) + dDJ. (a;) + dDJ. (v5) = 16. Thus 34 + dDj('U4) -
dp;(v2) < 75 +dp;(v4) — dp,;(v2) < 18 + 16 = 34. So dp,(v2) > dp,(v4).
Similarly, since dp,(v1) + dp,(vs) + dp,(v4) + dp,(d:) + dp,(e;) < 18 and
dp,(v2) +dp,(e;) +dp,(a;) +dp,(vs) = 16, we have dp, (v2) > dp,(e;). So
Claim 6 holds.

Claim 7. dp,(vs3) < 4.

By contradiction, assume that dp,(vs) = 5. Then for x € {vs,vs,a;,d:},
dDJ.(:L') = 5. By Lemma 4.8, dp,(v1) + dDj('Ug) + dp,(v3) + dp,(v4) +
dDJ. (vs) < 17. Thus dDJ. (v2) + dD’. (v3) + dDj (vq) + d[_);f (vs) <17-2 =15,
which is contrary to Claim 4. Therefore, Claim 7 holds.

By Claims 3, 5, 7 and 7; > 34, we have dp, (v2) + dp,(va) > 8.
Claim 8. dp,(v2) < 4.

By contradiction, we assume that dp,(ve) = 5. If dp,(vs) < 3, then
dp,(v3) = dp;(vs) = 3 and dp,(v4) = 5. By Lemma 4.8, dp,(v) +
dp,(v2) + dp,(v3) + dp,(v4) + dp,(vs) < 17. Thus dp,(v2) + dp,(v3) +
dp,(vs) + dp;(vs) < 17 — 2 = 15, which is contrary to Claim 4, and hence
dp,(vs) = 4. By Claim 5, dp,(vs) = dp;,(a:) = dp,(d;) = 4. By Claim 4,
dp,(v2) + dp, (v3) + dp,(vs) + dp,(vs) = 16, and hence dp,(vs) = 3. By
Claim 5, dp, (e;) = 3. Since dp, (v1) = 2, there are two vertices t, s € V(D)
such that v;¢,v;s € E(G). Next we consider the subgraph induced by
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V(M)UV(D;).

If ts € E(G) and D; — {s,t} is a triangle, without loss of generality,
we assume that {s,t} = {a;j,b;}. Note that Ng(vs) N {c;j,dj,e;} # 0
since dp,(va) = 3. If {c;,dj,e;} € Ng(vs), then G[{ci, d;,e;,v4,75}]
contains S and G[{a;,b;,v1,v2,vs}] contains K7, a contradiction. So
[Nc(vs) N {cj,d;,e;}| < 2. Similarly, |Ng(vs) N {c;,dj,e;}| < 2. Since
dp,(vs) = dp,;(vs) = 4, we have a;jvs,bjv3,a;vs5,b;us € E(G). Thus
G[{a;j,bj,v1,v3,v4}] contains S and G[{c;,d;,e;,v2,vs}] contains K5, a
contradiction. So we have either ts € E(G) or D; — {s,t} is not a triangle.
Therefore, D; = K.

If ts ¢ E(G), then {t,s} = {a;,d;}. Since dp,(vs) = 4, we have either
ajvz € E(G) or djvz € E(G). Without loss of generality, we assume a;jvs €
E(G). Thus G[{a;,v1,v2,vs,v4}] contains S and G[{b;,¢;,d;,e;,vs}] con-
tains K, a contradiction. So D; — {s,t} is not a triangle. Without loss of
generality, we assume that v1b;,v1¢; € E(G).

If |NG(dj) N {'01,’03,1)4,1)5}1 > 3, then, by Lemma 4.2, G[{dj,vl,va,m,vs}]
is Wy. However, G[{vo, a;, bj,c;,e;}] is Ks, a contradiction. So |[Ng(d;) N
{v1,v3,v4,v5}| < 2. Similarly, |[Ng(a;) N {vi,v3,v4,vs}| < 2. By Lemma
4.1, |NG(:B) N {'vl,v3,v4,v5}| <3forze {bj,cj,e,-}. Thus

13 = dp,(v1) + dp,(v3) + dp,(va) + dp;, (vs)

= Z |Ne(z) N {v1,v3,v4,5}| £2x2+3x3=13.
2eV(D;)

Hence, |Ng(z) N {v1,v3,v4, vs}| = 2 for =z € {a;,d;}, and |Ng(z) N
{v1,v3,v4,v5}| = 3 for z € {b;,¢c;,e;}. By Lemma 4.1, bjvs, bjvs, ¢cjvs, cjvs,
e;vs, e;vs € E(G). If INg(va) N {a;,e;j,d;}]| = 3, then G[{a;, €;,d;,v4,vs}]
contains S and G[{b;,¢;,v1,v2,v3}] is K5, a contradiction, and hence
|Nc(v4)r‘l{aj,ej,d,-}]| < 2. Since dDj (vq) =3, NG(U4)ﬂ{bj,Cj} # (. Thus
G[{b;,cj,v1,v3,v4}] contains K7 and G[{a;,e;,d;,v2,v5}] contains S, a
contradiction. So Claim 8 holds.

By Claims 7 and 8, we have dp,(z) = 4 for z € {v2,v3,v4,vs5,0:,d;, €}
By Claim 3, dp,(v1) = 2. Thus dp,(v1) + dp,(v2) + dp,(v3) + dp;(vq) +
dp,(vs) = 18, which is contrary to Lemma 4.10. i

Now we are ready to prove Theorem 1.3 when M is isomorphic to Wjy.
By Lemmas 4.6 and 4.11, p, < 18 for each i € {1,2,---,k — 1}. Since
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0 = 16, we have
5. %kg Y do(z) < 18(k—1)+16 = 18k — 2,
z€V (M)

a contradiction. This finishes the proof of Theorem 1.3 when M is isomor-
phic to Wy.
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