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Abstract
Let A be an abelian group with |A| > 4. Suppose that G is a
3-edge-connected simple graph on n > 19 vertices. We show in this
paper that if max{d(z),d(y),d(z)} = n/6 for every 3-independent
vertices {z,y, z} of G, then either G is A-connected or G can be 7-
reduced to the Petersen graph, which generalizes the result of Zhang
and Li (Graphs and Combin., 30 (2014), 1055-1063).

Keywords nowhere-zero flow- k-independent vertices- Group connectivity

1 Introduction

The graphs considered in this paper are finite, loopless, and may have
multiple edges. Terminology and notation not defined here can be referred
toin [1]. Let X and Y be two disjoint sets of vertices of a graph G = (V, E).
We denote by E[X,Y] the set of edges of G with one end in X and the
other end in Y, and by e(X,Y’) the cardinality of E[X,Y). If Y = {v}, we
write e(v, X) instead of e({v}, X). When Y = V' \ X, we refer to e(X,Y)
as the boundary of X and denote it by dg(X) (8(X) for short). If H is a
subgraph of G, then define 8(H) = §(V (H)).
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A k-cycle is a cycle of length k. The girth of a graph G, denoted by
9(G), is the length of its shortest cycle. The set of neighbors of v in G is
denoted by Ng(v), or simply N(v). For two distinct vertices u and v, we
denote by dg(u,v) (d(u,v) for short) the shortest distance between u and
v. A k-independent vertices is a set of k vertices that no two of its elements
are adjacent.

For any subset S of V(G), G — S denotes the graph obtained from G
by deleting all the vertices of S together with all the edges with at least
one end in S. For a subset X C E(G), the contraction G/X is the graph
obtained from G by identifying the two ends of each edge in X and then
deleting all loops generated in this process. If H is a subgraph of G, then
G/H denotes G/E(H).

For a graph G, we denote by 7(G) the maximum number of edge-disjoint
spanning trees of graph G. Let Z denote a family of graphs such that a
graph G € 7 if and only if 7(G) > 2 or G is a cycle of length 3. A graph
G* is called the T-reduction of G if it is obtained from G by repeatedly
contracting nontrivial subgraphs of G in  until no subgraph in J left.
It is obvious that if G cannot be contracted to G*, then G cannot be T-
reduced to G*.

For an orientation of a graph G and for a vertex v € V(G), denote
by Et(v) (or E~(v), respectively) the set of all arcs with tail v (or head
v, respectively). Let A be an abelian group where the identity of A is
denoted by 0. Let A* denote the set of nonzero elements of A. Define
F(G,A) ={f | f : E(G) » A} and F*(G,A) ={f | f : E(G) = A"}.
Given a function f € F(G, A), the boundary of f is a map 8f : V(G) = A.

Let
afwy= > fle— D f(e),

ecE+(v) e€E—(v)

for all v € V(G), where “ 3" refers to the addition in A.

For an integer k > 2, a nowhere-zero k-flow of G is an integer-valued
function f on E(G) such that 0 < |f(e)| < k for each e € E(G), and
8f = 0 for each v € V(G). A function b: V(G) — A is an A-valued zero-
sum function on G if 3 ¢y () b(v) = 0. Denoted by Z(G, A) the set of
all A-valued zero-sum functions on G. A graph G is A-connected if G has
an orientation such that for any function b € Z(G, A), there is a function
f € F*(G, A) such that 8f = b. It is observed in [7] that group connectivity
is independent of the orientation of G, and that every A-connected graph
is 2-edge-connected. Note that if a graph G is A-connected with |A| > &,
then G admits a nowhere-zero k-flow.

Integer flow was originally introduced by Tutte in [13] as a dual version
of graph coloring. Tutte ([13, 14], see also [7]) posed longstanding conjec-
tures on the existence of nowhere-zero flows. The 4-flow conjecture is due



to Tutte as follows.

Conjecture 1.1 Every bridgeless graph containing no subdivision of the
Petersen graph admits a nowhere-zero 4-flow.

The concept of group connectivity was introduced by Jaeger et al.[7] as
a generalization of nowhere-zero flows. They proposed two conjectures
on group connectivity of graphs: Z3- and Zs-connectivity conjectures,
which implies the corresponding conjectures of nowhere-zero flows, and
they proved the following theorem.

Theorem 1.2 If A is an abelian group with |A| > 4, then every 4-edge-
connected graph is A-connected.

The purpose of study in group connectivity is to characterize con-
tractible configurations for integer flow problems. Group connectivity plays
an important role to study nowhere-zero flow problems. Recently, degree
conditions are used to guarantee the existence of group connectivity. Fan
and Zhou in [5] characterized all Z3-connected graphs G on n vertices with
degree sum of any two adjacent vertices at least n + 2. Zhang et ol. in
[21] further generalized the result of Fan and Zhou by lowering degree sum
condition with n. Luo et al.[12] characterized all Z3-connected graphs that
satisfy the Ore-condition: for every uv ¢ E(G), d(u) + d(v) = n. This
result was improved by Yang and Li in (18], who proved that if for every
3 independent vertices u,v,w, if max{d(u),d(v),d(w)} > 3n, then G is
not Zz-connected if and only if G is one of 12 specified graphs. For more
results, the readers can be referred to [6, 16, 18] and others.

Yao et al. in [17] proved that for 2-edge connected simple graph on
n > 13 vertices, if for every uv ¢ E(G), max{d(u),d(v)} > n/4, then either
G is A-connected with [A| > 4, or G* € {K3 3, 4-cycle,5-cycle}. Li et al. in
(11} further showed that every graph G satisfying max{d(u),d(v)} > n/2
for every uv ¢ E(G), G is not Zz-connected if and only if G is isomorphic to
one of twenty-two graphs or G can be Zs-reduced to the specified graphs.
Zhang and Li in [20] extended the result of Yao et al. and lowered the
bound from n/4 to n/6, and proved the following result.

Theorem 1.3 Let A be an abelian group with |A| > 4, and let G be a
3-edge connected simple graph on n > 19 vertices. If for every wv ¢ E(G),
maz{d(u),d(v)} > n/6, then G is A-connected.

In this paper, we further relax with restriction on the degree condition
in Theorem 1.3. Motivated by Conjecture 1.1 and above results, we present
the theorem as follows.



Theorem 1.4 Let A be an abelian group with |A| > 4. Suppose that G
is a 3-edge-connected simple graph on n > 19 vertices. If for every 3-
independent vertices {z,y,z}, maz{d(z),d(y),d(z)} > n/6, then either G
is A-connected or G can be T-reduced to the Petersen graph.

The bound n > 19 in Theorem 1.4 is best possible in the sense that
there is an example as follows. Let B denote a Blanusa’s snark of order
18. Then B satisfies the degree condition of Theorem 1.4 that for every
3-independent vertices {z,y,z}, max{d(z),d(y),d(z)} = 3 = |V(B)|/6.
Watkins and Wilson proved in {15] that neither B admits a nowhere-zero
4-flow nor B is contractible to the Petersen graph. Thus neither B is A-
connected with |A] > 4 nor B can be T-reduced to the Petersen graph.
This shows that Theorem 1.4 does not hold when n = 18.

The rest of the paper is organized as follows: In section 2, some useful
lemmas are presented and in section 3, Theorem 1.4 is proved.

2 Preliminaries

We first state some basic properties and known results on group connec-
tivity as follows.

Lemma 2.1 ([7, 9]) Let G be a graph and A be an abelian group with
|A| > 3. Then each of the following holds.

(i) K, is A-connected.

(it) Let H be a subgraph of G. If H is A-connected, then G is A-
connected if and only if G/H is A-connected.

(iii) An n-cycle is A-connected if and only if |A| 2 n+ 1.

(iv) If 7(G) > 2, then G is A-connected with |A| > 4.

Let v be a vertex of a graph G and u,w be two neighbors of v in G. Let
Glvu,vw) be the graph obtained from G by deleting vz and vw and adding
a new edge uw. The following technique is due to Lai and Chen et al.

Lemma 2.2 ([4, 9]) Let A be an abelian group with |A| > 3. Let v be a
vertez of graph G with d(v) 2> 4 and u,w be two neighbors of v in G. If
Glvu,vw) 8 A-connected, then so is G.

For an integer i > 1, define D;(G) = {v € V(G) : dg(v) = i}. Let G*
be the T-reduction of G. For simplicity, we write D; for D;(G*). Let F(G)
denote the minimum number of additional edges that must be added to G
so that the resulting graph has two edge-disjoint spanning trees.

Lemma 2.3 ({2, 17]) Let G* be a T-reduced graph. If G* is nontrivial,
then each of the following holds.



(i) G* is simple and contains no 3-cycles.
(i) 2|V (G*)| —| E(G*)| > 3 and §(G*) < 3.
(iti) 2|Da| + D3| 2 6 + 3.~ 5(i — 4)| Dyl
(i) F(G*) = 2|V (G*)| -| E(G*)| - 2.

Lemma 2.4 ([17]) Let G be a simple graph and let H be a subgraph of G.
Ifdg(v) > q for everyv € V(H) and 8(H) < q, then |V(H)| > q .

Denote by O(G) the set of vertices of odd degree in G. A graph G is
collapsible if for every even set R C V(G), there is a spanning connected
subgraph Hp of G such that O(Hg) = R.

Lemma 2.5 ([3]) Let G be a connected graph. If F(G) < 2, then G is
collapsible or G is contractible to a K3 or a Ky, for some integert > 1.

Lemma 2.6 ([10]) Let A be an abelian group with |A| = 4. If G is col-
lapsible, then G is A-connected.

The following two results deal with group connectivity for 3-edge-connected
graphs with small order.

Lemma 2.7 ([19]) Let G be a 3-edge-connected simple graph on n < 11
vertices and A an abelian group with |A| > 4. Then either G is the Petersen
graph or G is A-connected.

Lemma 2.8 ([8]) Let G be a 3-edge-connected graph on n vertices. If one
of the following holds:

(i) n < 15;

(i) n=16 and A > 4; or

(1) n =17 and A > 5,

then G is A-connected with |A| 2 5.

3 Proof of Theorem 1.4

In this section, we first establish the following lemmas, which are useful to
prove the main theorem of this paper.

Lemma 3.1 Let v be a vertex of graph G with d(v) > 4 and u,w be two
neighbors of v in G and let N[v] = N(v)U{v}. Let G1 = Gpyu,yu)- Suppose
that G is k-edge connected and H, is a subgraph of G, where N[v] C V(H,).
Then Gy /H, is k-edge connected.

Proof. Let H = H; + {vu,vw} — {uw}. It follows that H is the subgraph
of G. By the definition of contraction, G1/H, = G/H. Since the edge
connectivity will not decrease under contraction, G/H is k-edge connected.
Then so is G1/H;. [ |



Lemma 3.2 Let G be a 3-edge connected graph on 17 < n < 20 vertices
and let V(G) = D3(G) U D4(G). Suppose that |D3(G)] = 6 and L is a
5-cycle of G with V(L) C D3(G). If g(G) = 5, then G is A-connected for
any abelian group A with |A| > 5.

Proof. Since |D3(G)| = 6 and L is a 5-cycle with V(L) C Ds(G),
e(D3(G),D4(G)) < 3x6—-5x2 =8 S8Since 17 < n < 20, 11 <
|D4(G)| < 14. It follows that there are at least |Ds(G)| —8 = 3 ver-
tices of degree 4 which are not adjacent to any vertex in D3(G). We
assume that d(u) = 4 and e(u, D3(G)) = 0. Let N(u) = {u1,uz,u3,uq}
and N[u] = N(u) U {u} and N(u;) = {u, i, vz, i3} where 1 < i < 4.
Since g(G) = 5, N(u;) N N(ux) = {u} for j # k,1 < j,k < 4. Let
Ny, = N(u;) = ({u} U V(L)) where 1 < i < 4. By the definition of N,;,,
[Ny,| € 3. Let S = V(G) — (N(u1) U N(ug) UN(uz) U N(ug) UN(u)). It
is easy to see that |S| = n — 17 < 3. Let H be the subgraph induced by
Ny, U Ny, U Ny, UN,,.

Claim 1. For 1 <¢ <4, |[N(w;)NnV(L)| £ 1.

Proof of Claim 1. Suppose otherwise that |N(u;) N V(L)| > 2 for some i
and vy,v2 € N(u;) N V(L). Since L is a 5-cycle, d(v1,v2) < 2. It follows
that vy, v2 and u; are vertices of a cycle of length 3 or 4, contrary to that
g(G) = 5. This proves Claim 1.

Claim 2. If i # j and 1 < 4,5 < 4, then e(Ny,, Ny;) < 3. Moreover, if
[Nu;| = 2, then e(Ny,;, Ny;) <2 wherei# jand 1 <4,5 < 4.

Proof of Claim 2. Suppose otherwise that there exist u; and u; such that
e(Ny;, Ny;) > 4. Since |N,,| < 3, there is a vertex in Ny, which is adjacent
to at least two vertices in NV,;. This implies that G contains a 4-cycle,
contrary to that g(G) = 5. Therefore, e(Ny,;, Ny;) < 3 where i # j.
Similarly, if | Ny, | = 2, then we can show that e(Ny,, Ny;) < 2 where i # j.
This proves Claim 2.

Claim 3. Suppose that uy; € V(L). If e(Ny,, Ny,) = e(Ny,, Ny;) =2 and
&(Nuy,, Ny;) 2 1 for {i,5} = {3,4}, then G is A-connected.

Proof of Claim 8. Since g(G) = 5, we assume, without loss of gener-
ality, that ujougz, uiauss, ui2uiz, 13z and uppuje € E(G). Let G, =
Gluuy,uuy)- Then G has two 4-cycles: ujujpuuau; and ujuizugsuou;.
Contracting these 4-cycles into u*, we denote by G, the resulting graph.
Then |V (G2)| < 15 and G2 contains a 4-cycle: u;upu*u;3u;. We contract
this 4-cycle into u** and denote by G3 the resulting graph. So, |V(G3)| < 12
and G3 contains a 4-cycle: u**uujujou**. Contracting this 4-cycle and re-
peatedly contracting all cycles of length less than 5 generated in process,
we finally obtain the resulting graph G4. Then [V(G4)| < 9. Let Hj be the
contracted subgraph of G;, where G4 = G1/H; and N[u] Cc V(H;). By
Lemma 3.1, G4 is 3-edge connected. By Lemma 2.8, G4 is A-connected.



By repeatedly applying Lemma 2.1, G; is A-connected. By Lemma 2.2, G
is A-connected. This proves Claim 3.

By Claim 1, we conclude that 3"7; |[N(u;) N V(L)) < 4. Since L is a
5-cycle, |SNV(L)| > 1. On the other hand, since |S| < 3, we can get that
|SNV(L)| £ 3. Next we proceed our proof in three cases.

Case 1. [SNV(L)| =1.

In this case, Zf=1 IN(u;) N V(L)| = 4. It follows by Claim 1 that
[N(wui)NV(L)| =1for all 1 <i < 4. Let {v} = SNV(L). We assume,
without loss of generality, that L = vuyjug us1uqv is a 5-cycle of G. Since
|D3(G)| = 6, there is at least one of 415 and u;3 of degree 4. Thus,
we assume, without loss of generality, that d(u;2) = 4. Since g(G) = 5,
u12 is not adjacent to v. Since |S| < 3, there exists u;; € Ny, where
t # 1 such that ujou;s € E(G). Let G1 = Gluu, uu;)- Then Gy contains
a 4-cycle: ujujsussusu;. Contracting this 4-cycle, we denote by Gz the
resulting graph. So |V(G2)| < 17. Since L is a 5-cycle and u;;,uq € V(L),
d(ui,ui) < 2. It follows that u;; and u;; are contained in a 3-cycle or
a 4-cycle of G;. Contracting this cycle, we get the resulting graph Gs.
Thus, L is contracted into a 4-cycle or a 3-cycle of G3. Contracting this
cycle into u*, we denote by G4 the resulting graph. Thus, |V(G4)| <
12 and G4 contains a 4-cycle: uuju*uru where j # k and j,k # 1,d.
Contracting this 4-cycle and repeatedly contracting all cycles of length less
than 5 generated in process, we finally obtain the resulting graph Gs. It
follows that |V (Gs)| < 9. Let H; be the contracted subgraph of Gy, where
Gs = G1/H, and N[u] C V(H,). By Lemma 3.1, G5 is 3-edge connected.
By Lemma 2.8, Gs is A-connected. By repeatedly applying Lemma 2.1, G,
is A-connected. By Lemma 2.2, G is A-connected.

Case 2. |[SNV(L)|=2.

In this case, i, |N(u;) N V(L) = 3 and |S] > 2 and |V(H)| =9. By
Claim 1, we assume, without loss of generality, that u;;,ug;,us; € V(L).
Then, |Ny,| = |Ny,| = |Nyy| = 2. By Claim 2, e(Ny,, Ny;) < 2 for i # j.
It follows that 85 (N,,) < 6. Since g(G) =5, |[E(H)| = § T, 0u(Ny,) <
12.

Assume first that |S| = 2. Then e(S,H) = 2. So, 8(H) =9+ 2 = 11.
Since | D3| = 6 and |V(L)| = 5, there is one vertex of degree 3 in H. Since
9(G) = 5, |E(H)| = 3(X.evudv) — O(H)) = 3(4 x 8 +3-11) = 12,
which implies that e(Ny,, Ny;) = 2 for i # j. By Claim 3, G is A-connected.

Next, we assume that |S| = 3. Let {w} = § — V(L). Since g(G) =5,
e(w,S —w) < 1. We consider three cases: d(w) = 3; d(w) = 4 and
e(w,S —w) =1; d(w) =4 and e(w,S —w) =0.

Suppose that d(w) = 3 or d(w) = 4 and e(w,S — w) = 1. We first
show that |E(H)| > 11. If d(w) = 3, then each vertex in H is of degree



4. It is not difficult to see that e(S,H) < 5. So, (H) < 9+4+5=1
Therefore, |E(H)| = (X ey d(v) —0(H)) 2 4(4x9-14) = 1
If d(w) = 4 and e(w,S — w) = 1, then there is one vertex of degree 3
in H. It is easy to see that e(S,H) < 4. Thus, (H) < 9+4 = 13.
Then, |[E(H)| = }(C,evan dv) — 0(H)) > (4 x 8 +3 - 13) = 1L
Next, we show that 8y (N,,) > 5. Suppose otherwise that 9y (Ny,) < 4.
Since e(Nu;, Ny;) < 2 for i # j, |E(H)| < 2 x 3+ 4 = 10, contrary
to that |[E(H)| = 11. Therefore, g(N,,) > 5. We claim that either
e(Ny,, Nu,) = 2 or e(Ny,, Ny, ) = 2. Suppose otherwise that e(Ny,, Ny,) <
1 and e(Ny,, Ny;) < 1. Then e(Ny,, Ny,) 2 3, contrary to Claim 2. By
symmetry, we assume that e(Ny,, Ny,) = 2. It follows that e(N,,, Ny;) =2
and e(Ny,, Ny,) > 1 where {i,5} = {3,4}. By Claim 3, G is A-connected.
Suppose that d(w) = 4 and e(w, S—w) = 0. Since g(G) = 5, e(w, Ny,;) =
1 for 1 < i < 4. We assume, without loss of generality, that wu;o, wuss,
wuge, wugz € E(G). Since L is a 5-cycle, there is at least one edge in
u11,U21,u31. Thus, we assume that ujjuz € E(L). Define G1 = Guu,,uu,y)-
Then G; contains a 4-cycle: ujujjugiusy;. Contracting this 4-cycle into
u*, we denote by G, the resulting graph. Thus, L is contracted into a
4-cycle of Ga and u*ujpwugsu* is also a 4-cycle of G5. Contracting these
two 4-cycles into u**, we get the resulting graph Gs. Thus, |V(G3)| < 11
and G3 contains a 3-cycle: u**uguzpu**. Contracting this cycle, we obtain
the resulting graph G4. Then |V(G4)| £ 9 and u, u4, u42 are contained in a
4-cycle of G4. Contracting this 4-cycle and repeatedly contracting all cycles
of length less than 5 generated in process, we finally get the resulting graph
Gs. It follows that |V(Gs)| < 6. Let H; be the contracted subgraph of
G,, where Gs = G1/H; and N[u] C V(H,). By Lemma 3.1, Gs is 3-edge
connected. By Lemma 2.8, Gs is A-connected. By repeatedly applying
Lemma 2.1, G; is A-connected. By Lemma 2.2, G is A-connected.

Case 3. |SNV(L)|=3.

In this case, 35, |N(u;) N V(L)| = 2 and |V(H)| = 10. By Claim 1,
we assume, without loss of generality, that u;;,ug; € V(L). Then, |N,,| =
|Ny,| = 2 and |Ny,| = |Ny,| = 3. By Claim 2, 8x(Ny,) < 6 for i € {1,2}
and Oy(Ny,) < 7 for j € {3,4}. Thus, |[E(H)| = 130, 0u(Ny,) <
2(6x2+7x2) = 13. On the other hand, it is easy to see that (S, H) = 3.
Thus, 8(H) = 10 + 3 = 13. Since |D3| = 6 and |V(L)| = 5, there is
one vertex of degree 3 in H. So, |E(H)| = %(Zvev(ﬂ) d(v) — 8(H)) =
1(4 x 9 4 3 - 13) = 13, which implies that 9y (N,,;) = 6 and dy(Ny,) =7
where i € {1,2} and j € {3,4}. It follows that e(Ny,,Ny,) = 2 where
2 < k < 4. By Claim 3, G is A-connected. ll

Let ¢ be an integer. Define U = {u € V(G) : dg(u) < n/c} and W =
{v € V(G*) : dg-(v) < n/c}. Let H, be preimage of v. Let W; = {ve W

4.
1.

—
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and preimage H,, of v has a vertex in U}, and let Wo =W — W;.

Lemma 3.3 Let G be a simple graph on n vertices. If for every 3-independent
vertices {z,y, z},

maz{d(z),d(y),d(z)} > n/e, (1)
then |Wy| < 5. In particular, if |Wy| =5, then the subgraph induced by W,
is a 5-cycle in G*.

Proof. Suppose that W; = {v1,v2,--,v}. By the definition of W},
we pick z; € V(H,,) such that dg(z;) < nfcfor1 < i <t Let X =
{xla th )xt}'

Claim. Ift > 5, then e(z;, X — ;) =2for 1 <i<t.

Proof of Claim. Assume first that there exists some ig such that e(z;,, X —
Z;,) 2 3. We assume, without loss of generality, that ip = 1 and 23,23, 24 €
Ng(z1). By (1), there is at least one edge in 3, 3, 4. This implies that G*
contains a 3-cycle, contrary to Lemma 2.3(i). Therefore, e(z;, X — z;) <
2 for 1 < ¢ < t. Next, we assume that there exists some jo such that
e(zjo, X —xj,) < 1. We assume, without loss of generality, that jo =1 and
z3,Z4,%s € Ng(z1). By (1), z3z4, 2475, T325 € E(G). This means that G*
contains a 3-cycle, contrary to Lemma 2.3(z). Therefore, e(z;, X —z;) =2
for 1 €7 <t. Claim is proved.

Assume that t > 6. By Claim, e(z;, X — z;) = 2. We assume, without
loss of generality, that z4,zs5,2¢ ¢ Ng(z1). By (1), z4zs,z4%6,Z5%6 €
E(G). This means that G* contains a 3-cycle, contrary to Lemma 2.3(3).
This proves that |W;| < 5.

Assume that ¢ = 5. By Lemma 2.3(3), g(G*) > 4. So by Claim, the
subgraph induced by W, is a 5-cycle in G*. I

Lemma 3.4 Let G be a simple graph on n vertices. If for every 3-independent
vertices {z,y, z}, maz{d(z),d(y),d(z)} = n/c, then |W| < c+4.

Proof. Let |W| =t. By Lemma 3.3, |W)| =1 < 5. Let W; = {uy,ua,--- ,u}
and Wy = {uj41,%42,---,u:}. By the definition of W;, none of the
preimages of uy41,ui42,- - ,u: has a vertex in U. It follows that for each
v € V(H,,), dg(v) > n/c where l+1 < i <. On the other hand, 8(H,,,) =
dg-(u;) < nfc. By Lemma 2.4, JV(H,,, | >n/cwherel+1<i<t. There-
fore, n 23 [V(H) > L+ (t = Dn/e

Evaluating this inequality, we get that ¢ < ¢+ — c//n. Since l and n are
both integers, t <c+1l—1<c+4. B

Lemma 3.5 Let G be a 3-edge-connected simple graph on 19 < n < 24 ver-
tices. If for every 3 independent vertices {z,y, z}, maz{d(z),d(y),d(z)} >
n/6, then n 2 3 i54|Dil + 5| D3| — 4|Wh|. Furthermore, n > 3,5, |D;| +
5|Ds| — -

11



Proof. Since 19 < n < 24, 3 < n/6 < 4. Let ¢ = 6. By the definition of
W, W = {veV(G*):dg-(v) <n/6 < 4}. Since the edge connectivity will
not decrease under contraction, G* is still 3-edge-connected. It follows that
W = D3 and Wy = D3 — W;. By Lemma 3.3, |W;] < 5. Let v € W,. By
the definition of W5, dg(u) > 4 for every v € V(H,) and 3(H,) = dg-(v) =
3 < 4. By Lemma 2.4, |V(H,)| 2 5. It follows that n > 3. , | Di| + W1 |+
5|Wa| = 3 ;54 | Di| + 5| D3| — 4|Wh| 2 3454 | Ds| + 5| Ds| — 20. u

Lemma 3.6 Let G be a 3-edge-connected simple graph on 19 < n < 24 ver-
tices. If for every 3-independent vertices {z,y, z}, maz{d(z),d(y),d(z)} >
n/6, then G is A-connected for any A with |A| > 4.

Proof. Suppose otherwise that G is not A-connected with |A| > 4. By
Lemma 2.1, G* is not A-connected with |A| > 4. Let n* = |V(G*)|, and
Let ¢ = 6. Then W = D3 and W; C D3. Next we show the following
claims.

Claim 1. 6 < |D;| < 8.

Proof of Claim 1. Since the edge connectivity will not decrease under
contraction, G* is still 3-edge-connected. So, |D2| = 0. By Lemma 2.3(ii),
| D3] > 6. It is sufficient to show that | D3| < 8. We suppose, to the contrary,
that |D3| > 9. By Lemma 3.5, n 2> 3,5, |Di|+5|D3|—20 > 5x9—-20 = 25,
contrary to that n < 24. Therefore, 6 < |D3| < 8. This proves Claim 1.

Claim 2. A(G*) =4.
Proof of Claim 2. If A(G*) > 7, then by Lemma 2.3(iit), |D3| > 6 +
Yoiss(t — 4)|Di| = 6 +3 = 9, contrary to Claim 1. If A(G*) = 6, then
by Claim 1 and Lemma 2.3(iii), 8 > |Ds| > 6 + | Ds| + 2|Dg| > 8 + | Ds|.
It means that |D3| = 8,|Dg| = 0 and |Dg| = 1. By Lemma 3.5, n >
Yi>4 |Di| +5| D3| — 20 = | D4| +21. Since n < 24, |D4| < 3. Thus, n* < 12
. By Lemma 2.8, G* is A-connected with |A| > 5. Note that 2|E(G*)| =
3 x 8+ 6+ 4(n* —9) = 4n* — 6. By Lemma 2.3(iv), F(G*) =2|V(G*)| -
|E(G*)] — 2 = 1. Since G* is 3-edge-connected, G* isn’t contractible to
a K, or a K, for some integer ¢ > 1. By Lemma 2.5, G* is collapsible.
By Lemma 2.6, G* is A-connected with |A| = 4. We conclude that G* is
A-connected with |A| > 4, a contradiction. Therefore, A(G*) < 5.

If A(G*) = 5, then by Lemma 2.3(¢it), |D3| > 6 + |Ds|. By Claim
1, 6 < |Ds] < 8. Assume that |D3| = 6. This means that [Ds| = 0,
contrary to that A(G*) = 5. Therefore , 7 < |D3| < 8. By Lemma 3.5,
n 2 Y54 |Di| 45| D3| =20 > | Dy|+|Ds|+15. Since n < 24, | Dy|+|Ds| < 9.
Then n* < 17. It follows by Lemma 2.8 that G* is A-connected with
|A] = 5. Since |Ds| > 1 and |Ds| < 8, 2|E(G*)| = 3| D3| + 5| Ds| + 4(n* —
|D3| =| Ds|) = 4n* + |Ds| —| D3| 2 4n* — 7. By Lemma 2.3(iv), F(G*) =
2lV(G*)| - |E(G*)] — 2 < 3/2 < 2. Since G* is 3-edge-connected, G* isn’t
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contractible to a K; or a K, for some integer ¢ > 1. By Lemma 2.5, G*
is collapsible. So we conclude by Lemma 2.6 that G* is A-connected with
|A| = 4, a contradiction. Therefore, A(G*) < 4.

If A(G*) = 3, then n* = |D3|. By Claim 1, 6 < |D3| < 8. It follows
that G* is 3-edge connected with 6 < n* < 8. By Theorem 2.7, G* is
A-connected with |A| > 4, a contradiction. Claim 2 is proved.

Claim 3. G* is A-connected with |A| = 4.

Proof of Claim 3. By Claim 2, V(G*) = D3UD,. By Claim 1, |D3| =1 < 8.
Then 2|E(G*)| = 3l +4(n* —1) = 4n* — | > 4n* — 8. So by Lemma 2.3(iv),
F(G*) = 2|V(G*)| —| BE(G*)] — 2 £ 2. Since G* is 3-edge-connected, G*
isn’t contractible to a K or a K3, for some integer t > 1. By Lemma 2.5,
G* is collapsible. By Lemma 2.6, G* is A-connected with |A| = 4. This

proves Claim 3.

Claim 4. |D3| = 6.

Proof of Claim 4. By Claim 2, V(G*) = D3 U Dy4. Since there are even
number of the vertices of odd degree, Dj is even. Thus by Claim 1, |D3| =6
or 8. Assume that |D3| = 8. By Lemma 3.5, n > .., |Di| +5|D3] — 20 =
|D4g| + 20. Since n < 24, |Dy| < 4. It follows that n* < 12. By Lemma 2.8,
G* is A-connected with |A| > 5. We conclude by Claim 3, that G* is A-
connected with |A| > 4, a contradiction. Therefore, |D3| = 6. This proves
Claim 4.

Claim 5. 17 < n* <20 and |W;| =5.
Proof of Claim 5. By Claim 4, |D3| = 6. By Claim 2, n* = |D3| + |D4|.
Suppose that |D4| < 10. Then n* < 16. By Claim 2, A(G*) = 4. Then
by Lemma 2.8, G* is A-connected for every abelian group A with 4] >
5. By Claim 3, G* is A-connected with |4] = 4. So G* is A-connected
with |A| > 4. a contradiction. Therefore, |D;| > 11. By Lemma 3.5,
n > 375 4|Di| + 5| D3| — 20 = |D4| + 10. Thus, |D4| < 14. It follows that
17<n* < 20.

By Lemma 3.3, |W;| < 5. Suppose that |[W;| < 4. By Lemma 3.5,
n >3 .5 4|Di| + 5| D3| — 4{W;| 21145 x 6 — 4 x 4 = 25, contrary to that
n < 24. Therefore, |W;| = 5. This proves Claim 5.

Claim 6. g(G*) =5.

Proof of Claim 6. By Lemma 2.3(i), g(G*) > 4. Assume that g(G*) > 6.
By Claim 2, A(G*) = 4. We suppose that dg-(u) = 4. Assume first that
there are at least three vertices of degree 3 in Ng-(u). By Claims 4 and 5,
|D3| = 6 and |W;| = 5. This implies that there is only one vertex of degree
3 not in W;. Then there are at least two vertices in Ng-(u)NW;. By Claim
5, |Wi| = 5. By Lemma 3.3, the subgraph induced by W, is a 5-cycle. Then
the distance between any two vertices in W} is at most 2. It follows that
g9(G*) < 5, contrary to that g(G*) > 6. Therefore, there are at most two
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vertices of degree 3 and at least two vertices of degree 4 in Ng- (u). Let v be
a neighbor of u with dg. (v) = 4. Define Ni(u) = {w | dg—uv(u,w) = k}
and N (v) = {w | de—uv(v,w) = k}. Since g(G*) > 6, we can obtain
that [N} (u)| = 3 and [N} (v)] = 3 and Nj(u) N Ni(v) =0 for1 <¢,j <
2 and [Nj(u)] > 2x2+3 =7 and |N3(v)] = 3 x 2 = 6. Therefore,
n* > 2+ [Ny (u)| + [Nt (v)| + |[N3 (w)| + | N3 (v)| = 21, contrary to Claim 5.
Therefore, 4 < g(G*) < 5.

Assume that g(G*) = 4 . Let L; be a 4-cycle in G*. Suppose first
that there is at least one vertex of degree 4 in L;. Let G; = G*/L;.
Then, A(G;) > 5. By Claim 5, |V(G,)| £ 20 -3 =17. If G, is a simple
graph, then by Lemma 2.8 , G; is A-connected with |A| > 5. If G, is
multigraph, then we repeatedly contract these multiple edges such that the
resulting graph G is a simple graph. It follows that either |V(G2)| = 16
and A(G2) = 4 or |[V(G)| < 15. By Lemma 2.8, G5 is A-connected with
|A] > 5. By Lemma 2.1, G; is A-connected with |A| > 5. It follows
by Lemma 2.1 that G* is A-connected with |A| > 5. By Claim 3, G*
is A-connected with |4| > 4, a contradiction. Thus, each vertex in L;
is of degree 3. Since the subgraph induced by W; is a 5-cycle in G,
there are three vertices in W) N V(L;). Let G* = G*/L;. Then this
5-cycle is contracted into a 3-cycle in G!. Contracting this 3-cycle and
repeatedly contracting all cycles of length less than 5 generated in process,
we obtain the resulting graph G2. By Claim 5, {V(G?)| < 20 — 5 = 15.
Since the edge connectivity will not decrease under contraction, G2 is still
3-edge-connected. By Lemma 2.8, G? is A-connected with |A| > 5. By
repeatedly using Lemma 2.1, G* is A-connected with |4| > 5. It follows by
Claim 3 that G* is A-connected with |A| > 4, a contradiction. Therefore,
9(G*) = 5. Claim 6 is proved.

By Claims 5 and 6, G* satisfies the hypothesis of Lemma 3.2. Thus,
G* is A-connected with |A| > 5. By Claim 3 that G* is A-connected with
|A] = 4. Therefore, G* is A-connected with |A| > 4, a contradiction. Il

Proof of Theorem 1.4 Let ¢ = 6. In the case when 19 < n <24, G is A-
connected with |A| > 4 by Lemma 3.6. It sufficient to show our theorem for
the case when n > 25. In this case, n/6 > 4. By Lemma 3.4, | D3| + |Dy4| <
10. Let H* = G* — D3 — Dy. Then |V(G*)| = |Ds| + |D4| + |V(H*)| and
2|E(G*)| = Xyev(c) @(v) 2 3|Ds| +4|D4| + 5|V (H*)|. Thus, 2lV(G*)| -
|E(G*)] < 3(|Ds| — |[V(H*)]). By Lemma 2.3, 2|V(G*)| — |[E(G*)| 2 3. It
follows that |V(H*)| <| D3| — 6 < 4. So, |V(G*)| < 14.

Assume that |[V(G*)| < 11. By Theorem 2.7, G* is A-connected with
|A| > 4 or G* is the Petersen graph. Thus by Lemma 2.1, G is A-connected
with |A| > 4 or G can be T-reduced to the Petersen graph.



Therefore, we assume that |V(G*)| = 12. This implies that |V(H*)| >
2. So F(G*) = 2|V(G*)|~|E(G*)|~2 < }(IDs|~IV(H*)) -2 < 3(10-2)—
2 = 2. Since the edge connectivity will not decrease under contraction, G*
is still 3-edge-connected. Therefore, G* isn’t contractible to a K, or a Ky,
for some integer ¢ > 1. By Lemma 2.5, G* is collapsible. By Lemma 2.6,
G* is A-connected with |A| = 4. By Lemma 2.8, G* is A-connected with
|A] = 5. It follows that G* is A-connected with |A] > 4. So far, we complete
our proof. W
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