Maximum degree of 3-independent vertices and group connectivity

Mingfang Huang¹,* Xiangwen Li²,†

¹School of Science

Wuhan University of Technology

Wuhan 430070, China

²Department of Mathematics

Huazhong Normal University

Wuhan 430079, China

Abstract

Let A be an abelian group with $|A| \ge 4$. Suppose that G is a 3-edge-connected simple graph on $n \ge 19$ vertices. We show in this paper that if $\max\{d(x),d(y),d(z)\} \ge n/6$ for every 3-independent vertices $\{x,y,z\}$ of G, then either G is A-connected or G can be T-reduced to the Petersen graph, which generalizes the result of Zhang and Li (Graphs and Combin., 30 (2014), 1055-1063).

Keywords nowhere-zero flow k-independent vertices. Group connectivity

1 Introduction

The graphs considered in this paper are finite, loopless, and may have multiple edges. Terminology and notation not defined here can be referred to in [1]. Let X and Y be two disjoint sets of vertices of a graph G = (V, E). We denote by E[X, Y] the set of edges of G with one end in X and the other end in Y, and by e(X, Y) the cardinality of E[X, Y]. If $Y = \{v\}$, we write e(v, X) instead of $e(\{v\}, X)$. When $Y = V \setminus X$, we refer to e(X, Y) as the boundary of X and denote it by $\partial_G(X)$ ($\partial(X)$ for short). If H is a subgraph of G, then define $\partial(H) = \partial(V(H))$.

^{*}Supported by the Fundamental Research Funds for the Central Universities (WUT: 2015IA002; 2014-Ia-041); Corresponding author: Email: ds_hmf@126.com

[†]Supported by the Natural Science Foundation of China (11171129) and by Doctoral Fund of Ministry of Education of China (20130144110001); Email: xwli68@mail.ccnu.edu.cn

A k-cycle is a cycle of length k. The girth of a graph G, denoted by g(G), is the length of its shortest cycle. The set of neighbors of v in G is denoted by $N_G(v)$, or simply N(v). For two distinct vertices u and v, we denote by $d_G(u,v)$ (d(u,v) for short) the shortest distance between u and v. A k-independent vertices is a set of k vertices that no two of its elements are adjacent.

For any subset S of V(G), G-S denotes the graph obtained from G by deleting all the vertices of S together with all the edges with at least one end in S. For a subset $X \subseteq E(G)$, the contraction G/X is the graph obtained from G by identifying the two ends of each edge in X and then deleting all loops generated in this process. If H is a subgraph of G, then G/H denotes G/E(H).

For a graph G, we denote by $\tau(G)$ the maximum number of edge-disjoint spanning trees of graph G. Let $\mathscr T$ denote a family of graphs such that a graph $G \in \mathscr T$ if and only if $\tau(G) \geq 2$ or G is a cycle of length 3. A graph G^* is called the T-reduction of G if it is obtained from G by repeatedly contracting nontrivial subgraphs of G in $\mathscr T$ until no subgraph in $\mathscr T$ left. It is obvious that if G cannot be contracted to G^* , then G cannot be T-reduced to G^* .

For an orientation of a graph G and for a vertex $v \in V(G)$, denote by $E^+(v)$ (or $E^-(v)$, respectively) the set of all arcs with tail v (or head v, respectively). Let A be an abelian group where the identity of A is denoted by 0. Let A^* denote the set of nonzero elements of A. Define $F(G,A)=\{f\mid f:E(G)\to A\}$ and $F^*(G,A)=\{f\mid f:E(G)\to A^*\}$. Given a function $f\in F(G,A)$, the boundary of f is a map $\partial f:V(G)\to A$. Let

$$\partial f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e),$$

for all $v \in V(G)$, where " \sum " refers to the addition in A.

For an integer $k \geq 2$, a nowhere-zero k-flow of G is an integer-valued function f on E(G) such that 0 < |f(e)| < k for each $e \in E(G)$, and $\partial f = 0$ for each $v \in V(G)$. A function $b: V(G) \to A$ is an A-valued zero-sum function on G if $\sum_{v \in V(G)} b(v) = 0$. Denoted by Z(G,A) the set of all A-valued zero-sum functions on G. A graph G is A-connected if G has an orientation such that for any function $b \in Z(G,A)$, there is a function $f \in F^*(G,A)$ such that $\partial f = b$. It is observed in [7] that group connectivity is independent of the orientation of G, and that every A-connected graph is 2-edge-connected. Note that if a graph G is A-connected with $|A| \geq k$, then G admits a nowhere-zero k-flow.

Integer flow was originally introduced by Tutte in [13] as a dual version of graph coloring. Tutte ([13, 14], see also [7]) posed longstanding conjectures on the existence of nowhere-zero flows. The 4-flow conjecture is due

to Tutte as follows.

Conjecture 1.1 Every bridgeless graph containing no subdivision of the Petersen graph admits a nowhere-zero 4-flow.

The concept of group connectivity was introduced by Jaeger et al.[7] as a generalization of nowhere-zero flows. They proposed two conjectures on group connectivity of graphs: Z_3 - and Z_5 -connectivity conjectures, which implies the corresponding conjectures of nowhere-zero flows, and they proved the following theorem.

Theorem 1.2 If A is an abelian group with $|A| \ge 4$, then every 4-edge-connected graph is A-connected.

The purpose of study in group connectivity is to characterize contractible configurations for integer flow problems. Group connectivity plays an important role to study nowhere-zero flow problems. Recently, degree conditions are used to guarantee the existence of group connectivity. Fan and Zhou in [5] characterized all Z_3 -connected graphs G on n vertices with degree sum of any two adjacent vertices at least n+2. Zhang $et\ al.$ in [21] further generalized the result of Fan and Zhou by lowering degree sum condition with n. Luo $et\ al.$ [12] characterized all Z_3 -connected graphs that satisfy the Ore-condition: for every $uv \notin E(G),\ d(u)+d(v)\geq n$. This result was improved by Yang and Li in [18], who proved that if for every 3 independent vertices u,v,w, if $\max\{d(u),d(v),d(w)\}\geq \frac{3}{2}n$, then G is not Z_3 -connected if and only if G is one of 12 specified graphs. For more results, the readers can be referred to [6, 16, 18] and others.

Yao et al. in [17] proved that for 2-edge connected simple graph on $n \geq 13$ vertices, if for every $uv \notin E(G)$, $\max\{d(u),d(v)\} \geq n/4$, then either G is A-connected with $|A| \geq 4$, or $G^* \in \{K_{2,3},4\text{-cycle},5\text{-cycle}\}$. Li et al. in [11] further showed that every graph G satisfying $\max\{d(u),d(v)\} \geq n/2$ for every $uv \notin E(G)$, G is not Z_3 -connected if and only if G is isomorphic to one of twenty-two graphs or G can be G-reduced to the specified graphs. Zhang and Li in [20] extended the result of Yao et al. and lowered the bound from G-reduced to G-reduced to G-reduced to G-reduced the specified graphs.

Theorem 1.3 Let A be an abelian group with $|A| \ge 4$, and let G be a 3-edge connected simple graph on $n \ge 19$ vertices. If for every $uv \notin E(G)$, $max\{d(u),d(v)\} \ge n/6$, then G is A-connected.

In this paper, we further relax with restriction on the degree condition in Theorem 1.3. Motivated by Conjecture 1.1 and above results, we present the theorem as follows.

Theorem 1.4 Let A be an abelian group with $|A| \ge 4$. Suppose that G is a 3-edge-connected simple graph on $n \ge 19$ vertices. If for every 3-independent vertices $\{x,y,z\}$, $\max\{d(x),d(y),d(z)\} \ge n/6$, then either G is A-connected or G can be T-reduced to the Petersen graph.

The bound $n \geq 19$ in Theorem 1.4 is best possible in the sense that there is an example as follows. Let B denote a Blanuša's snark of order 18. Then B satisfies the degree condition of Theorem 1.4 that for every 3-independent vertices $\{x,y,z\}$, $\max\{d(x),d(y),d(z)\}=3=|V(B)|/6$. Watkins and Wilson proved in [15] that neither B admits a nowhere-zero 4-flow nor B is contractible to the Petersen graph. Thus neither B is A-connected with $|A| \geq 4$ nor B can be T-reduced to the Petersen graph. This shows that Theorem 1.4 does not hold when n=18.

The rest of the paper is organized as follows: In section 2, some useful lemmas are presented and in section 3, Theorem 1.4 is proved.

2 Preliminaries

We first state some basic properties and known results on group connectivity as follows.

Lemma 2.1 ([7, 9]) Let G be a graph and A be an abelian group with $|A| \geq 3$. Then each of the following holds.

- (i) K_1 is A-connected.
- (ii) Let H be a subgraph of G. If H is A-connected, then G is A-connected if and only if G/H is A-connected.
 - (iii) An n-cycle is A-connected if and only if $|A| \ge n + 1$.
 - (iv) If $\tau(G) \geq 2$, then G is A-connected with $|A| \geq 4$.

Let v be a vertex of a graph G and u, w be two neighbors of v in G. Let $G_{[vu,vw]}$ be the graph obtained from G by deleting vu and vw and adding a new edge uw. The following technique is due to Lai and Chen et al.

Lemma 2.2 ([4, 9]) Let A be an abelian group with $|A| \geq 3$. Let v be a vertex of graph G with $d(v) \geq 4$ and u, w be two neighbors of v in G. If $G_{[vu,vw]}$ is A-connected, then so is G.

For an integer $i \geq 1$, define $D_i(G) = \{v \in V(G) : d_G(v) = i\}$. Let G^* be the T-reduction of G. For simplicity, we write D_i for $D_i(G^*)$. Let F(G) denote the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees.

Lemma 2.3 ([2, 17]) Let G^* be a T-reduced graph. If G^* is nontrivial, then each of the following holds.

- (i) G* is simple and contains no 3-cycles.
- (ii) $2|V(G^*)| |E(G^*)| \ge 3$ and $\delta(G^*) \le 3$.
- (iii) $2|D_2| + |D_3| \ge 6 + \sum_{i>5} (i-4)|D_i|$.
- (iv) $F(G^*) = 2|V(G^*)| |E(G^*)| 2$.

Lemma 2.4 ([17]) Let G be a simple graph and let H be a subgraph of G. If $d_G(v) \ge q$ for every $v \in V(H)$ and $\partial(H) < q$, then |V(H)| > q.

Denote by O(G) the set of vertices of odd degree in G. A graph G is collapsible if for every even set $R \subseteq V(G)$, there is a spanning connected subgraph H_R of G such that $O(H_R) = R$.

Lemma 2.5 ([3]) Let G be a connected graph. If $F(G) \leq 2$, then G is collapsible or G is contractible to a K_2 or a $K_{2,t}$ for some integer $t \geq 1$.

Lemma 2.6 ([10]) Let A be an abelian group with |A| = 4. If G is collapsible, then G is A-connected.

The following two results deal with group connectivity for 3-edge-connected graphs with small order.

Lemma 2.7 ([19]) Let G be a 3-edge-connected simple graph on $n \leq 11$ vertices and A an abelian group with $|A| \geq 4$. Then either G is the Petersen graph or G is A-connected.

Lemma 2.8 ([8]) Let G be a 3-edge-connected graph on n vertices. If one of the following holds:

- (i) $n \le 15$;
- (ii) n = 16 and $\Delta \geq 4$; or
- (iii) n = 17 and $\Delta \geq 5$,

then G is A-connected with $|A| \geq 5$.

3 Proof of Theorem 1.4

In this section, we first establish the following lemmas, which are useful to prove the main theorem of this paper.

Lemma 3.1 Let v be a vertex of graph G with $d(v) \geq 4$ and u, w be two neighbors of v in G and let $N[v] = N(v) \cup \{v\}$. Let $G_1 = G_{[vu,vw]}$. Suppose that G is k-edge connected and H_1 is a subgraph of G_1 where $N[v] \subset V(H_1)$. Then G_1/H_1 is k-edge connected.

Proof. Let $H = H_1 + \{vu, vw\} - \{uw\}$. It follows that H is the subgraph of G. By the definition of contraction, $G_1/H_1 = G/H$. Since the edge connectivity will not decrease under contraction, G/H is k-edge connected. Then so is G_1/H_1 .

Lemma 3.2 Let G be a 3-edge connected graph on $17 \le n \le 20$ vertices and let $V(G) = D_3(G) \cup D_4(G)$. Suppose that $|D_3(G)| = 6$ and L is a 5-cycle of G with $V(L) \subset D_3(G)$. If g(G) = 5, then G is A-connected for any abelian group A with $|A| \ge 5$.

Proof. Since $|D_3(G)| = 6$ and L is a 5-cycle with $V(L) \subset D_3(G)$, $e(D_3(G), D_4(G)) \leq 3 \times 6 - 5 \times 2 = 8$. Since $17 \leq n \leq 20$, $11 \leq |D_4(G)| \leq 14$. It follows that there are at least $|D_4(G)| - 8 \geq 3$ vertices of degree 4 which are not adjacent to any vertex in $D_3(G)$. We assume that d(u) = 4 and $e(u, D_3(G)) = 0$. Let $N(u) = \{u_1, u_2, u_3, u_4\}$ and $N[u] = N(u) \cup \{u\}$ and $N(u_i) = \{u, u_{i1}, u_{i2}, u_{i3}\}$ where $1 \leq i \leq 4$. Since g(G) = 5, $N(u_j) \cap N(u_k) = \{u\}$ for $j \neq k, 1 \leq j, k \leq 4$. Let $N_{u_i} = N(u_i) - (\{u\} \cup V(L))$ where $1 \leq i \leq 4$. By the definition of N_{u_i} , $|N_{u_i}| \leq 3$. Let $S = V(G) - (N(u_1) \cup N(u_2) \cup N(u_3) \cup N(u_4) \cup N(u))$. It is easy to see that $|S| = n - 17 \leq 3$. Let H be the subgraph induced by $N_{u_1} \cup N_{u_2} \cup N_{u_3} \cup N_{u_4}$.

Claim 1. For $1 \le i \le 4$, $|N(u_i) \cap V(L)| \le 1$.

Proof of Claim 1. Suppose otherwise that $|N(u_i) \cap V(L)| \geq 2$ for some i and $v_1, v_2 \in N(u_i) \cap V(L)$. Since L is a 5-cycle, $d(v_1, v_2) \leq 2$. It follows that v_1, v_2 and u_i are vertices of a cycle of length 3 or 4, contrary to that g(G) = 5. This proves Claim 1.

Claim 2. If $i \neq j$ and $1 \leq i, j \leq 4$, then $e(N_{u_i}, N_{u_j}) \leq 3$. Moreover, if $|N_{u_i}| = 2$, then $e(N_{u_i}, N_{u_j}) \leq 2$ where $i \neq j$ and $1 \leq i, j \leq 4$. Proof of Claim 2. Suppose otherwise that there exist u_i and u_j such that $e(N_{u_i}, N_{u_j}) \geq 4$. Since $|N_{u_i}| \leq 3$, there is a vertex in N_{u_i} which is adjacent to at least two vertices in N_{u_j} . This implies that G contains a 4-cycle, contrary to that g(G) = 5. Therefore, $e(N_{u_i}, N_{u_j}) \leq 3$ where $i \neq j$.

Similarly, if $|N_{u_i}| = 2$, then we can show that $e(N_{u_i}, N_{u_j}) \leq 2$ where $i \neq j$. This proves Claim 2.

Claim 3. Suppose that $u_{11} \in V(L)$. If $e(N_{u_1}, N_{u_2}) = e(N_{u_1}, N_{u_i}) = 2$ and $e(N_{u_1}, N_{u_j}) \ge 1$ for $\{i, j\} = \{3, 4\}$, then G is A-connected.

Proof of Claim 3. Since g(G)=5, we assume, without loss of generality, that $u_{12}u_{22}, u_{13}u_{23}, u_{12}u_{i2}, u_{13}u_{i3}$ and $u_{12}u_{j2} \in E(G)$. Let $G_1=G_{[uu_1,uu_2]}$. Then G_1 has two 4-cycles: $u_1u_{12}u_{22}u_2u_1$ and $u_1u_{13}u_{23}u_2u_1$. Contracting these 4-cycles into u^* , we denote by G_2 the resulting graph. Then $|V(G_2)| \leq 15$ and G_2 contains a 4-cycle: $u_iu_{i2}u^*u_{i3}u_i$. We contract this 4-cycle into u^{**} and denote by G_3 the resulting graph. So, $|V(G_3)| \leq 12$ and G_3 contains a 4-cycle: $u^{**}uu_ju_{j2}u^{**}$. Contracting this 4-cycle and repeatedly contracting all cycles of length less than 5 generated in process, we finally obtain the resulting graph G_4 . Then $|V(G_4)| \leq 9$. Let H_1 be the contracted subgraph of G_1 , where $G_4 = G_1/H_1$ and $N[u] \subset V(H_1)$. By Lemma 3.1, G_4 is 3-edge connected. By Lemma 2.8, G_4 is A-connected.

By repeatedly applying Lemma 2.1, G_1 is A-connected. By Lemma 2.2, G_2 is A-connected. This proves Claim 3.

By Claim 1, we conclude that $\sum_{i=1}^{4} |N(u_i) \cap V(L)| \leq 4$. Since L is a 5-cycle, $|S \cap V(L)| \ge 1$. On the other hand, since $|S| \le 3$, we can get that $|S \cap V(L)| \leq 3$. Next we proceed our proof in three cases.

Case 1. $|S \cap V(L)| = 1$. In this case, $\sum_{i=1}^{4} |N(u_i) \cap V(L)| = 4$. It follows by Claim 1 that $|N(u_i) \cap V(L)| = 1$ for all $1 \le i \le 4$. Let $\{v\} = S \cap V(L)$. We assume, without loss of generality, that $L = vu_{11}u_{21}u_{31}u_{41}v$ is a 5-cycle of G. Since $|D_3(G)| = 6$, there is at least one of u_{12} and u_{13} of degree 4. Thus, we assume, without loss of generality, that $d(u_{12}) = 4$. Since g(G) = 5, u_{12} is not adjacent to v. Since $|S| \leq 3$, there exists $u_{it} \in N_{u_i}$ where $t \neq 1$ such that $u_{12}u_{it} \in E(G)$. Let $G_1 = G_{[uu_1, uu_i]}$. Then G_1 contains a 4-cycle: $u_1u_{12}u_{it}u_iu_1$. Contracting this 4-cycle, we denote by G_2 the resulting graph. So $|V(G_2)| \leq 17$. Since L is a 5-cycle and $u_{11}, u_{i1} \in V(L)$, $d(u_{11}, u_{i1}) \leq 2$. It follows that u_{11} and u_{i1} are contained in a 3-cycle or a 4-cycle of G_2 . Contracting this cycle, we get the resulting graph G_3 . Thus, L is contracted into a 4-cycle or a 3-cycle of G_3 . Contracting this cycle into u^* , we denote by G_4 the resulting graph. Thus, $|V(G_4)| \leq$ 12 and G_4 contains a 4-cycle: $uu_ju^*u_ku$ where $j \neq k$ and $j,k \neq 1,i$. Contracting this 4-cycle and repeatedly contracting all cycles of length less than 5 generated in process, we finally obtain the resulting graph G_5 . It follows that $|V(G_5)| \leq 9$. Let H_1 be the contracted subgraph of G_1 , where $G_5 = G_1/H_1$ and $N[u] \subset V(H_1)$. By Lemma 3.1, G_5 is 3-edge connected. By Lemma 2.8, G_5 is A-connected. By repeatedly applying Lemma 2.1, G_1 is A-connected. By Lemma 2.2, G is A-connected.

Case 2. $|S \cap V(L)| = 2$.

In this case, $\sum_{i=1}^{4} |N(u_i) \cap V(L)| = 3$ and $|S| \ge 2$ and |V(H)| = 9. By Claim 1, we assume, without loss of generality, that $u_{11}, u_{21}, u_{31} \in V(L)$. Then, $|N_{u_1}| = |N_{u_2}| = |N_{u_3}| = 2$. By Claim 2, $e(N_{u_i}, N_{u_j}) \le 2$ for $i \ne j$. It follows that $\partial_H(N_{u_i}) \leq 6$. Since g(G) = 5, $|E(H)| = \frac{1}{2} \sum_{i=1}^4 \partial_H(N_{u_i}) \leq 6$ 12.

Assume first that |S| = 2. Then e(S, H) = 2. So, $\partial(H) = 9 + 2 = 11$. Since $|D_3| = 6$ and |V(L)| = 5, there is one vertex of degree 3 in H. Since $g(G) = 5, |E(H)| = \frac{1}{2} (\sum_{v \in V(H)} d(v) - \partial(H)) = \frac{1}{2} (4 \times 8 + 3 - 11) = 12,$ which implies that $e(N_{u_i}, N_{u_j}) = 2$ for $i \neq j$. By Claim 3, G is A-connected.

Next, we assume that |S| = 3. Let $\{w\} = S - V(L)$. Since g(G) = 5, $e(w, S - w) \le 1$. We consider three cases: d(w) = 3; d(w) = 4 and e(w, S - w) = 1; d(w) = 4 and e(w, S - w) = 0.

Suppose that d(w) = 3 or d(w) = 4 and e(w, S - w) = 1. We first show that $|E(H)| \geq 11$. If d(w) = 3, then each vertex in H is of degree

4. It is not difficult to see that $e(S, H) \leq 5$. So, $\partial(H) \leq 9 + 5 = 14$. Therefore, $|E(H)| = \frac{1}{2} (\sum_{v \in V(H)} d(v) - \partial(H)) \ge \frac{1}{2} (4 \times 9 - 14) = 11.$ If d(w) = 4 and e(w, S - w) = 1, then there is one vertex of degree 3 in H. It is easy to see that $e(S, H) \leq 4$. Thus, $\partial(H) \leq 9 + 4 = 13$. Then, $|E(H)| = \frac{1}{2} (\sum_{v \in V(H)} d(v) - \partial(H)) \ge \frac{1}{2} (4 \times 8 + 3 - 13) = 11.$ Next, we show that $\partial_H(N_{u_1}) \geq 5$. Suppose otherwise that $\partial_H(N_{u_1}) \leq 4$. Since $e(N_{u_i}, N_{u_j}) \le 2$ for $i \ne j$, $|E(H)| \le 2 \times 3 + 4 = 10$, contrary to that $|E(H)| \geq 11$. Therefore, $\partial_H(N_{u_1}) \geq 5$. We claim that either $e(N_{u_1}, N_{u_2}) = 2$ or $e(N_{u_1}, N_{u_3}) = 2$. Suppose otherwise that $e(N_{u_1}, N_{u_2}) \le 2$ 1 and $e(N_{u_1}, N_{u_3}) \leq 1$. Then $e(N_{u_1}, N_{u_4}) \geq 3$, contrary to Claim 2. By symmetry, we assume that $e(N_{u_1}, N_{u_2}) = 2$. It follows that $e(N_{u_1}, N_{u_i}) = 2$ and $e(N_{u_1}, N_{u_j}) \ge 1$ where $\{i, j\} = \{3, 4\}$. By Claim 3, G is A-connected.

Suppose that d(w) = 4 and e(w, S-w) = 0. Since g(G) = 5, $e(w, N_{u_i}) = 0$ 1 for $1 \le i \le 4$. We assume, without loss of generality, that wu_{12}, wu_{22} , wu_{32} , $wu_{42} \in E(G)$. Since L is a 5-cycle, there is at least one edge in u_{11}, u_{21}, u_{31} . Thus, we assume that $u_{11}u_{21} \in E(L)$. Define $G_1 = G_{[uu_1, uu_2]}$. Then G_1 contains a 4-cycle: $u_1u_{11}u_{21}u_2u_1$. Contracting this 4-cycle into u^* , we denote by G_2 the resulting graph. Thus, L is contracted into a 4-cycle of G_2 and $u^*u_{12}wu_{22}u^*$ is also a 4-cycle of G_2 . Contracting these two 4-cycles into u^{**} , we get the resulting graph G_3 . Thus, $|V(G_3)| \leq 11$ and G_3 contains a 3-cycle: $u^{**}u_3u_{32}u^{**}$. Contracting this cycle, we obtain the resulting graph G_4 . Then $|V(G_4)| \leq 9$ and u, u_4, u_{42} are contained in a 4-cycle of G_4 . Contracting this 4-cycle and repeatedly contracting all cycles of length less than 5 generated in process, we finally get the resulting graph G_5 . It follows that $|V(G_5)| \leq 6$. Let H_1 be the contracted subgraph of G_1 , where $G_5 = G_1/H_1$ and $N[u] \subset V(H_1)$. By Lemma 3.1, G_5 is 3-edge connected. By Lemma 2.8, G_5 is A-connected. By repeatedly applying Lemma 2.1, G_1 is A-connected. By Lemma 2.2, G is A-connected.

Case 3. $|S \cap V(L)| = 3$. In this case, $\sum_{i=1}^{4} |N(u_i) \cap V(L)| = 2$ and |V(H)| = 10. By Claim 1, we assume, without loss of generality, that $u_{11}, u_{21} \in V(L)$. Then, $|N_{u_1}| =$ $|N_{u_2}| = 2$ and $|N_{u_3}| = |N_{u_4}| = 3$. By Claim 2, $\partial_H(N_{u_i}) \le 6$ for $i \in \{1, 2\}$ and $\partial_H(N_{u_j}) \leq 7$ for $j \in \{3,4\}$. Thus, $|E(H)| = \frac{1}{2} \sum_{i=1}^4 \partial_H(N_{u_i}) \leq 1$ $\frac{1}{2}(6\times 2+7\times 2)=13$. On the other hand, it is easy to see that e(S,H)=3. Thus, $\partial(H) = 10 + 3 = 13$. Since $|D_3| = 6$ and |V(L)| = 5, there is one vertex of degree 3 in H. So, $|E(H)| = \frac{1}{2} (\sum_{v \in V(H)} d(v) - \partial(H)) =$ $\frac{1}{2}(4\times 9+3-13)=13$, which implies that $\partial_H(N_{u_i})=6$ and $\partial_H(N_{u_i})=7$ where $i \in \{1,2\}$ and $j \in \{3,4\}$. It follows that $e(N_{u_1}, N_{u_k}) = 2$ where $2 \le k \le 4$. By Claim 3, G is A-connected.

Let c be an integer. Define $U = \{u \in V(G) : d_G(u) < n/c\}$ and W = $\{v \in V(G^*): d_{G^*}(v) < n/c\}$. Let H_v be preimage of v. Let $W_1 = \{v \in W \mid v \in V(G^*): v \in V(G^*) \mid v \in V(G^*)\}$ and preimage H_v of v has a vertex in U}, and let $W_2 = W - W_1$.

Lemma 3.3 Let G be a simple graph on n vertices. If for every 3-independent vertices $\{x, y, z\}$,

$$\max\{d(x), d(y), d(z)\} \ge n/c,\tag{1}$$

then $|W_1| \le 5$. In particular, if $|W_1| = 5$, then the subgraph induced by W_1 is a 5-cycle in G^* .

Proof. Suppose that $W_1 = \{v_1, v_2, \dots, v_t\}$. By the definition of W_1 , we pick $x_i \in V(H_{v_i})$ such that $d_G(x_i) < n/c$ for $1 \le i \le t$. Let $X = \{x_1, \dots, x_t\}$.

Claim. If $t \geq 5$, then $e(x_i, X - x_i) = 2$ for $1 \leq i \leq t$.

Proof of Claim. Assume first that there exists some i_0 such that $e(x_{i_0}, X - x_{i_0}) \geq 3$. We assume, without loss of generality, that $i_0 = 1$ and $x_2, x_3, x_4 \in N_G(x_1)$. By (1), there is at least one edge in x_2, x_3, x_4 . This implies that G^* contains a 3-cycle, contrary to Lemma 2.3(i). Therefore, $e(x_i, X - x_i) \leq 2$ for $1 \leq i \leq t$. Next, we assume that there exists some j_0 such that $e(x_{j_0}, X - x_{j_0}) \leq 1$. We assume, without loss of generality, that $j_0 = 1$ and $x_3, x_4, x_5 \notin N_G(x_1)$. By (1), $x_3x_4, x_4x_5, x_3x_5 \in E(G)$. This means that G^* contains a 3-cycle, contrary to Lemma 2.3(i). Therefore, $e(x_i, X - x_i) = 2$ for $1 \leq i \leq t$. Claim is proved.

Assume that $t \geq 6$. By Claim, $e(x_1, X - x_1) = 2$. We assume, without loss of generality, that $x_4, x_5, x_6 \notin N_G(x_1)$. By (1), $x_4x_5, x_4x_6, x_5x_6 \in E(G)$. This means that G^* contains a 3-cycle, contrary to Lemma 2.3(i). This proves that $|W_1| \leq 5$.

Assume that t = 5. By Lemma 2.3(i), $g(G^*) \ge 4$. So by Claim, the subgraph induced by W_1 is a 5-cycle in G^* .

Lemma 3.4 Let G be a simple graph on n vertices. If for every 3-independent vertices $\{x, y, z\}$, $\max\{d(x), d(y), d(z)\} \ge n/c$, then $|W| \le c + 4$.

Proof. Let |W|=t. By Lemma 3.3, $|W_1|=l \le 5$. Let $W_1=\{u_1,u_2,\cdots,u_l\}$ and $W_2=\{u_{l+1},u_{l+2},\cdots,u_t\}$. By the definition of W_2 , none of the preimages of $u_{l+1},u_{l+2},\cdots,u_t$ has a vertex in U. It follows that for each $v\in V(H_{u_i}), d_G(v)\ge n/c$ where $l+1\le i\le t$. On the other hand, $\partial(H_{u_i})=d_{G^*}(u_i)< n/c$. By Lemma 2.4, $|V(H_{u_i})|>n/c$ where $l+1\le i\le t$. Therefore, $n\ge \sum_{i=1}^t |V(H_{u_i})|>l+(t-l)n/c$.

Evaluating this inequality, we get that t < c + l - cl/n. Since l and n are both integers, $t \le c + l - 1 \le c + 4$.

Lemma 3.5 Let G be a 3-edge-connected simple graph on $19 \le n \le 24$ vertices. If for every 3 independent vertices $\{x,y,z\}$, $\max\{d(x),d(y),d(z)\} \ge n/6$, then $n \ge \sum_{i\ge 4} |D_i| + 5|D_3| - 4|W_1|$. Furthermore, $n \ge \sum_{i\ge 4} |D_i| + 5|D_3| - 20$.

Proof. Since $19 \le n \le 24$, $3 < n/6 \le 4$. Let c = 6. By the definition of $W, W = \{v \in V(G^*) : d_{G^*}(v) < n/6 \le 4\}$. Since the edge connectivity will not decrease under contraction, G^* is still 3-edge-connected. It follows that $W = D_3$ and $W_2 = D_3 - W_1$. By Lemma 3.3, $|W_1| \le 5$. Let $v \in W_2$. By the definition of W_2 , $d_G(u) \ge 4$ for every $u \in V(H_v)$ and $\partial(H_v) = d_{G^*}(v) = 3 < 4$. By Lemma 2.4, $|V(H_v)| \ge 5$. It follows that $n \ge \sum_{i \ge 4} |D_i| + |W_1| + 5|W_2| = \sum_{i \ge 4} |D_i| + 5|D_3| - 4|W_1| \ge \sum_{i \ge 4} |D_i| + 5|D_3| - 20$.

Lemma 3.6 Let G be a 3-edge-connected simple graph on $19 \le n \le 24$ vertices. If for every 3-independent vertices $\{x,y,z\}$, $\max\{d(x),d(y),d(z)\} \ge n/6$, then G is A-connected for any A with $|A| \ge 4$.

Proof. Suppose otherwise that G is not A-connected with $|A| \geq 4$. By Lemma 2.1, G^* is not A-connected with $|A| \geq 4$. Let $n^* = |V(G^*)|$, and Let c = 6. Then $W = D_3$ and $W_1 \subset D_3$. Next we show the following claims.

Claim 1. $6 \le |D_3| \le 8$.

Proof of Claim 1. Since the edge connectivity will not decrease under contraction, G^* is still 3-edge-connected. So, $|D_2|=0$. By Lemma 2.3(iii), $|D_3| \geq 6$. It is sufficient to show that $|D_3| \leq 8$. We suppose, to the contrary, that $|D_3| \geq 9$. By Lemma 3.5, $n \geq \sum_{i \geq 4} |D_i| + 5|D_3| - 20 \geq 5 \times 9 - 20 = 25$, contrary to that $n \leq 24$. Therefore, $6 \leq |D_3| \leq 8$. This proves Claim 1.

Claim 2. $\Delta(G^*) = 4$.

Proof of Claim 2. If $\Delta(G^*) \geq 7$, then by Lemma 2.3(iii), $|D_3| \geq 6 + \sum_{i \geq 5} (i-4)|D_i| \geq 6 + 3 = 9$, contrary to Claim 1. If $\Delta(G^*) = 6$, then by Claim 1 and Lemma 2.3(iii), $8 \geq |D_3| \geq 6 + |D_5| + 2|D_6| \geq 8 + |D_5|$. It means that $|D_3| = 8$, $|D_5| = 0$ and $|D_6| = 1$. By Lemma 3.5, $n \geq \sum_{i \geq 4} |D_i| + 5|D_3| - 20 = |D_4| + 21$. Since $n \leq 24$, $|D_4| \leq 3$. Thus, $n^* \leq 12$. By Lemma 2.8, G^* is A-connected with $|A| \geq 5$. Note that $2|E(G^*)| = 3 \times 8 + 6 + 4(n^* - 9) = 4n^* - 6$. By Lemma 2.3(iv), $F(G^*) = 2|V(G^*)| - |E(G^*)| - 2 = 1$. Since G^* is 3-edge-connected, G^* is it contractible to a K_2 or a $K_{2,t}$ for some integer $t \geq 1$. By Lemma 2.5, G^* is collapsible. By Lemma 2.6, G^* is A-connected with |A| = 4. We conclude that G^* is A-connected with $|A| \geq 4$, a contradiction. Therefore, $\Delta(G^*) \leq 5$.

If $\Delta(G^*)=5$, then by Lemma 2.3(iii), $|D_3|\geq 6+|D_5|$. By Claim 1, $6\leq |D_3|\leq 8$. Assume that $|D_3|=6$. This means that $|D_5|=0$, contrary to that $\Delta(G^*)=5$. Therefore, $7\leq |D_3|\leq 8$. By Lemma 3.5, $n\geq \sum_{i\geq 4}|D_i|+5|D_3|-20\geq |D_4|+|D_5|+15$. Since $n\leq 24$, $|D_4|+|D_5|\leq 9$. Then $n^*\leq 17$. It follows by Lemma 2.8 that G^* is A-connected with $|A|\geq 5$. Since $|D_5|\geq 1$ and $|D_3|\leq 8$, $2|E(G^*)|=3|D_3|+5|D_5|+4(n^*-|D_3|-|D_5|)=4n^*+|D_5|-|D_3|\geq 4n^*-7$. By Lemma 2.3(iv), $F(G^*)=2|V(G^*)|-|E(G^*)|-2\leq 3/2<2$. Since G^* is 3-edge-connected, G^* isn't

contractible to a K_2 or a $K_{2,t}$ for some integer $t \ge 1$. By Lemma 2.5, G^* is collapsible. So we conclude by Lemma 2.6 that G^* is A-connected with $|A| \ge 4$, a contradiction. Therefore, $\Delta(G^*) \le 4$.

If $\Delta(G^*)=3$, then $n^*=|D_3|$. By Claim 1, $6 \leq |D_3| \leq 8$. It follows that G^* is 3-edge connected with $6 \leq n^* \leq 8$. By Theorem 2.7, G^* is A-connected with $|A| \geq 4$, a contradiction. Claim 2 is proved.

Claim 3. G^* is A-connected with |A| = 4.

Proof of Claim 3. By Claim 2, $V(G^*) = D_3 \cup D_4$. By Claim 1, $|D_3| = l \le 8$. Then $2|E(G^*)| = 3l + 4(n^* - l) = 4n^* - l \ge 4n^* - 8$. So by Lemma 2.3(iv), $F(G^*) = 2|V(G^*)| - |E(G^*)| - 2 \le 2$. Since G^* is 3-edge-connected, G^* isn't contractible to a K_2 or a $K_{2,t}$ for some integer $t \ge 1$. By Lemma 2.5, G^* is collapsible. By Lemma 2.6, G^* is A-connected with |A| = 4. This proves Claim 3.

Claim 4. $|D_3| = 6$.

Proof of Claim 4. By Claim 2, $V(G^*)=D_3\cup D_4$. Since there are even number of the vertices of odd degree, D_3 is even. Thus by Claim 1, $|D_3|=6$ or 8. Assume that $|D_3|=8$. By Lemma 3.5, $n\geq \sum_{i\geq 4}|D_i|+5|D_3|-20=|D_4|+20$. Since $n\leq 24$, $|D_4|\leq 4$. It follows that $n^*\leq 12$. By Lemma 2.8, G^* is A-connected with $|A|\geq 5$. We conclude by Claim 3, that G^* is A-connected with $|A|\geq 4$, a contradiction. Therefore, $|D_3|=6$. This proves Claim 4.

Claim 5. $17 \le n^* \le 20$ and $|W_1| = 5$.

Proof of Claim 5. By Claim 4, $|D_3|=6$. By Claim 2, $n^*=|D_3|+|D_4|$. Suppose that $|D_4|\leq 10$. Then $n^*\leq 16$. By Claim 2, $\Delta(G^*)=4$. Then by Lemma 2.8, G^* is A-connected for every abelian group A with $|A|\geq 5$. By Claim 3, G^* is A-connected with |A|=4. So G^* is A-connected with $|A|\geq 4$. a contradiction. Therefore, $|D_4|\geq 11$. By Lemma 3.5, $n\geq \sum_{i\geq 4}|D_i|+5|D_3|-20=|D_4|+10$. Thus, $|D_4|\leq 14$. It follows that $17\leq n^*\leq 20$.

By Lemma 3.3, $|W_1| \le 5$. Suppose that $|W_1| \le 4$. By Lemma 3.5, $n \ge \sum_{i \ge 4} |D_i| + 5|D_3| - 4|W_1| \ge 11 + 5 \times 6 - 4 \times 4 = 25$, contrary to that $n \le 24$. Therefore, $|W_1| = 5$. This proves Claim 5.

Claim 6. $g(G^*) = 5$.

Proof of Claim 6. By Lemma 2.3(i), $g(G^*) \geq 4$. Assume that $g(G^*) \geq 6$. By Claim 2, $\Delta(G^*) = 4$. We suppose that $d_{G^*}(u) = 4$. Assume first that there are at least three vertices of degree 3 in $N_{G^*}(u)$. By Claims 4 and 5, $|D_3| = 6$ and $|W_1| = 5$. This implies that there is only one vertex of degree 3 not in W_1 . Then there are at least two vertices in $N_{G^*}(u) \cap W_1$. By Claim 5, $|W_1| = 5$. By Lemma 3.3, the subgraph induced by W_1 is a 5-cycle. Then the distance between any two vertices in W_1 is at most 2. It follows that $g(G^*) \leq 5$, contrary to that $g(G^*) \geq 6$. Therefore, there are at most two

Assume that $g(G^*)=4$. Let L_1 be a 4-cycle in G^* . Suppose first that there is at least one vertex of degree 4 in L_1 . Let $G_1 = G^*/L_1$. Then, $\Delta(G_1) \geq 5$. By Claim 5, $|V(G_1)| \leq 20 - 3 = 17$. If G_1 is a simple graph, then by Lemma 2.8, G_1 is A-connected with $|A| \geq 5$. If G_1 is multigraph, then we repeatedly contract these multiple edges such that the resulting graph G_2 is a simple graph. It follows that either $|V(G_2)| = 16$ and $\Delta(G_2) \geq 4$ or $|V(G_2)| \leq 15$. By Lemma 2.8, G_2 is A-connected with $|A| \geq 5$. By Lemma 2.1, G_1 is A-connected with $|A| \geq 5$. It follows by Lemma 2.1 that G^* is A-connected with $|A| \geq 5$. By Claim 3, G^* is A-connected with $|A| \geq 4$, a contradiction. Thus, each vertex in L_1 is of degree 3. Since the subgraph induced by W_1 is a 5-cycle in G^* , there are three vertices in $W_1 \cap V(L_1)$. Let $G^1 = G^*/L_1$. Then this 5-cycle is contracted into a 3-cycle in G^1 . Contracting this 3-cycle and repeatedly contracting all cycles of length less than 5 generated in process, we obtain the resulting graph G^2 . By Claim 5, $|V(G^2)| \leq 20 - 5 = 15$. Since the edge connectivity will not decrease under contraction, G^2 is still 3-edge-connected. By Lemma 2.8, G^2 is A-connected with $|A| \geq 5$. By repeatedly using Lemma 2.1, G^* is A-connected with $|A| \geq 5$. It follows by Claim 3 that G^* is A-connected with $|A| \geq 4$, a contradiction. Therefore, $g(G^*) = 5$. Claim 6 is proved.

By Claims 5 and 6, G^* satisfies the hypothesis of Lemma 3.2. Thus, G^* is A-connected with $|A| \ge 5$. By Claim 3 that G^* is A-connected with |A| = 4. Therefore, G^* is A-connected with $|A| \ge 4$, a contradiction.

Proof of Theorem 1.4 Let c=6. In the case when $19 \le n \le 24$, G is A-connected with $|A| \ge 4$ by Lemma 3.6. It sufficient to show our theorem for the case when $n \ge 25$. In this case, n/6 > 4. By Lemma 3.4, $|D_3| + |D_4| \le 10$. Let $H^* = G^* - D_3 - D_4$. Then $|V(G^*)| = |D_3| + |D_4| + |V(H^*)|$ and $2|E(G^*)| = \sum_{v \in V(G^*)} d(v) \ge 3|D_3| + 4|D_4| + 5|V(H^*)|$. Thus, $2|V(G^*)| - |E(G^*)| \le \frac{1}{2}(|D_3| - |V(H^*)|)$. By Lemma 2.3, $2|V(G^*)| - |E(G^*)| \ge 3$. It follows that $|V(H^*)| \le |D_3| - 6 \le 4$. So, $|V(G^*)| \le 14$.

Assume that $|V(G^*)| \leq 11$. By Theorem 2.7, G^* is A-connected with $|A| \geq 4$ or G^* is the Petersen graph. Thus by Lemma 2.1, G is A-connected with $|A| \geq 4$ or G can be T-reduced to the Petersen graph.

Therefore, we assume that $|V(G^*)| \ge 12$. This implies that $|V(H^*)| \ge 2$. So $F(G^*) = 2|V(G^*)| - |E(G^*)| - 2 \le \frac{1}{2}(|D_3| - |V(H^*)|) - 2 \le \frac{1}{2}(10 - 2) - 2 = 2$. Since the edge connectivity will not decrease under contraction, G^* is still 3-edge-connected. Therefore, G^* isn't contractible to a K_2 or a $K_{2,t}$ for some integer $t \ge 1$. By Lemma 2.5, G^* is collapsible. By Lemma 2.6, G^* is A-connected with |A| = 4. By Lemma 2.8, G^* is A-connected with $|A| \ge 5$. It follows that G^* is A-connected with $|A| \ge 4$. So far, we complete our proof. \blacksquare

References

- J. A. Bondy and U.S.R. Murty, Graph Theory with Application, North-Holland, New York, 1976.
- [2] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory, 12 (1988) 29-45.
- [3] P. A. Catlin, Z. Y. Han, H. J. Lai, Graphs without spanning closed trails, Discrete Math., 160 (1996) 81-91.
- [4] J. Chen, E. Eschen and H. J. Lai, Group connectivity of certain graphs, Ars Combin., 89 (2008) 141-158.
- [5] G. Fan, C. Zhou, Degree sum and nowhere-zero 3-flows, *Discrete Math.*, 24 (2008) 6233-6240.
- [6] G. Fan, C. Zhou, Ore-condition and nowhere-zero 3-flows, SIAM J. Discrete Math., 22 (2008), 288C294
- [7] F. Jaeger, N. Linial, C. Payan and M. Tarsi, Group connectivity of graphsa nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory, Ser B, 56 (1992) 165-182.
- [8] M. Huang and X. Li, A note on Z₅-connectivity in 3-edge-connected graphs, Ars Combin. 113 (2014), 241-255
- [9] H. J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs and Combin., 16 (2000), 165-176.
- [10] H. J. Lai, Extending partial nowhere zero 4-flow, J. Graph Theory, 30 (1999) 277-288.
- [11] X. Li, H. J. Lai and Y. Shao, Degree condition and Z₃-connectivity, Discrete Math., 312 (2012) 1658–1669.
- [12] R. Luo, R. Xu, J. Yin and G. Yu, Ore-condition and Z₃-connectivity, European J. Combin., 29 (2008) 1587-1595.
- [13] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math., 6 (1954), 80-91.
- [14] W. T. Tutte, On the algebraic theory of graph colourings, J. Combin. Theory, 1 (1966), 15-50.

- [15] J. J. Watkins and R. J. Wilson, A survey of snarks, Graph Theory, Combinatorics, and Applications, Vol. 2., Wiley, New York (1991), 1129-1144.
- [16] J. Yan, Contractible configurations on 3-flows in graphs satisfying the Fan-condition, European J. Combin., 34 (2013) 892-904.
- [17] X. Yao, X. Li and H. J. Lai, Degree conditions for group connectivity, Discrete Math., 310 (2010) 1050-1058.
- [18] F. Yang and X. Li, Degree sum of 3 independent vertices and Z₃-connectivity, Discrete Math., 313 (2013) 2493-2505.
- [19] F. Yang and X. Li, Group connectivity in 3-edge-connected graphs, Graphs and Combin., 28 (2012) 743-750.
- [20] X. Zhang and X. Li, Maximum Degree Condition and Group connectivity, Graphs and Combin., 30 (2014) 1055-1063.
- [21] X. Zhang, M. Zhang, R. Xu, Y. Shao and X. Li, Degree sum condition for Z₃-connectivity in graphs, Discrete Math., 310 (2010) 3390-3397.