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Abstract: The Harary index is defined as the sum of reciprocals of
distances between all pairs of vertices of a connected graph and named in
honor of Professor Frank Harary. For a connected graph G = (V, E) with
edge connectivity A(G) > 2, and an edge v;v; € E(G), G — v;v; is the
subgraph formed from G by deleting the edge v;v;. Denote the Harary
index of G and G — v;v; by H(G) and H(G — v;v;). Xu and Das [K.X.
Xu, K.C. Das, On Harary index of graphs, Dicrete Appl.Math. 159 (2011)
1631-1640] obtained lower and upper bounds on H(G + v;u;) — H(G) and
characterize the equality cases in those bounds. We find that the equality
case in lower bound is not true and we correct it. In this paper, we give
lower and upper bounds on H(G) — H(G — v;v;), and give some graphs
to satisfy the equality cases in these bounds. Furthermore, we extend the
Harary index to the directed graphs and get similar conclusions.
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1 Introduction

All graphs (digraphs) considered in this paper are finite and simple
(strict). Let G = (V, E) be a graph, where V(G) is the vertex set of G and
E(G) is the edge set of G. The degree of a vertex v in a graph G, denoted
by dg(u), is the number of edges of G incident with v, each loop counting
as two edges. In particular, if G is a simple graph,dz(u) is the number of
neighbours of v in G. The minimum degree of G is §(G)=min{dg(u)|u €
V}, and the maximum degree of G is A(G)=max{dg(u)lu € V}. The

*This research is supported by NSFC (10671165) and NSFCXJ(2010211A08).
tCorresponding author. E-mail addresses: hnjiangsd®163.com (H. Jiang).

ARS COMBINATORIA 123(2015), pp. 115-124



distance from a vertex u to a vertex v in G, denoted by dg(u, v), is the
length of a shortest path joining u to v. The diameter of G is D(G) =
max{dg(u, v) | u, v € V(G)}. An edge set F of a connected graph G is
called an edge-cut if G — F is disconnected. The edge connectivity of a
graph G, denoted by A(G), is the minimum cardinality over all edge-cuts
of G.

Let X = (V, A) be a digraph, where V(X) is the vertex set of X and
A(X) is the arc set of X, thus A(X) is a set of ordered pairs (u,v) € V xV
such that u # v. The elements of V(X)) are called the vertices of X and the
elements of A(X) are called the arcs of X. An arc (u, v) is said to be an
outarc of u and an inarc of v. If u is a vertex of X, then the outdegree of u
in X is the number d% (u) of arcs of X originating at » and the indegree of
u in X is the number dx (u) of arcs of X terminating at ». The minimum
outdegree of X is 6+(X ) = min{d}(u)lu € V}, the minimum indegree
of X is 67 (X) = min{dx(u)lu € V}. we denote by §(X) the minimum
of 57 (X) and §+(X). Respectively, the maximum indegree and outdegree
of X are denoted by A~(X) and A~(X), and we denote by A(X) the
maximum of A~(X) and A*(X). The distance from vertex u to vertex v
in X, denoted by dx (u, v), is the length of a shortest directed path joining
u to v. The vertex u is the tail of this shortest directed path, and the vertex
v its head. The diameter of X is D(X) = max{dx(u, v) | u, v € V(X)}.
Clearly, a directed graph has finite diameter if and only if it is strongly
connected. The reverse digraph of digraph X = (V, A) is the digraph
X = (V {(v, u)|(u, v) € A}). Digraph X = (V, A) is symmetric if
A=A Q.

The distance matrix D of G is an n x n matrix (D;;), where Dy; is just
the distance between the vertices v; and vj in G, denoted by dg(vi, vj) [2].
The reciprocal distance matrix RD of G is an n x n matrix (RD;;) such

that i
_{ p; Hi#
RD;; {0 if i = 4.

Recall the definition of the Harary index of G, denoted by H(G),

HG) =5 ZZRD,,

r-'l =1
When G is an undirected graph,
H(G)=) RDj;.
i<j
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When X is a directed graph,

H(X)= %ZZRD,-,-.

i=1 j=1

The term )7, d? is known as the first Zagreb index of G, denoted by
M(G). The union of simple graphs G and H is the graph G U H with
vertex set V(G) U V(G) and edge set E(G)U E(H). For terminologies not
given here, we refer to [3].

A few years after the two initial publications on Harary indez, it
has been extended to heterosystems [4] and the hyper — Harary index
was introduced [5]. Its modification has also been proposed [6]. The
Harary index and related molecular descriptors have shown a modest suc-
cess in structure-property correlations [7-10], but their use in combination
with other molecular descriptors improves the correlations [11].

Theorem 1.1. ([12]) Let G be o connected graph with n > 2 vertices, m
edges and diameter D. If there exist two nonadjacent vertices v; and v; in

G, then
n(n—l)——2m-—2(l_l)

2 2 D”
With equality on the left hand side if and only if dg(v;) = de(v;) =

1 and dg(vi,v;) = 2 in G, and equality on the right hand side if and
only if G is isomorphic to a graph of diameter 2.

5 S H(G+uwy) ~HG) < (1-5) +

Xu and Das characterize the equality case in left bound. We give a graph
K4 — e to explain that this equality case is false. Because there exist two
vertices u,v € V(K4 — e) such that dg(u) = dg(v) = 2 and dg(u,v) = 2,
but H(G + uv) ~ H(G) = 1.

2 Bounds on H(G) — H(G — v;v;) of a graph G

Lemma 2.1. Let G be a graph with edge connectivity \(G) > 2. Suppose
G* =G — wv,where uv € E(G), then

D(G*) £ 2D(G).
Proof. Let D(G*) = t. We choose a path in G* and denote this path

ToZy -+ - Ty—1Y0, We denote V; = {v|d(zo, v) = 4, v € V(G)} for i =
1,2---t. We consider two cases in the following proof.
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Case 1. If u, v belong to the different V,-'s. Without loss of generality,
ueV;, veV; i#j We choose T[agays

I

dg- (o, Yo) dg- (o, x[i_;q) +dc—(2[%1], o)

il

do(zo, z(igi)) +do (@44 Yo)
D(G) + D(G)
2D(G).

A

Case 2. If u, v belong to the same V; s. Without loss of generality, u,v € V.
We choose z;,

dg-(zo, o) = dg-(Zo, i) +da-(zi, Yo)
= dg(Zo, ;) +dc(zi, Yo)
< 2D(G).

o

For a graph G with edge connectivity A(G) > 2 and any edge v;v; €
E(G) of G. By using the similar method as [12], we give upper and lower
bounds on H(G) — H(G — v;v;) and obtain some graphs to satisfy the
equality cases in these bounds.

Theorem 2.2. Let G be a graph with edge connectivity \(G) = 2 with n
vertices, m edges and diameter D. Then for any edge viv; € E(G), we
have

1 -1-2m,1 1
+n(n )—2m 1

%5H(G)—H(G—v,~v,—)5(1—m) s (5-35)- O

Proof. Denote by dg-(vr, vs) the distance of two vertices v, and v, in
G* = G — v;v;. We have

1 1
H(G) - H(G —vv;) = -
©-HEG=vww) = 3 Gafor )~ dalorr 99

1 _ 1
dg(vi, v;) dg-(vi, vj)
T e L)@

1<r<s<n dc(vr’ Us) dG‘(U'I‘) US)
(r. 8)#(i. )

118



Since dg(vi, v;)=1 and dg-(v;, v;) 2 2,
de(vr, vs) < dg-(vr, vs) for {r, s} # {i, j}, we have

1 _ 1
dG (vis vj) dG' (vi » vj)

1
>-v
-2

and

1 1
— >0.
dG('Ury vs) dG‘('Ur, 'Us) -

From (2), we get the lower bound in (1).
By Lemma 2.1, we get dg-(vi, v;) < 2D, then
1 1 1

— <1— —
Bo(on 5;)  do(un, ) =T 2D

and

1 1 1 1

- <z-— i, j .) > 2.
dotor 03 do(or 0 ~273D for{r, s} # {i, j} and dg(vy, vs) > 2

We get the upper bound in (1)

HE)-HG-vw) < (-55)+((5) - (m=1-1G - 31

_ 1 nn-1)-2m, 1 1
= U=gp)t 7= — G~ 3p)

O

We can describe graphs to satisfied the equality cases in the left bound.
We need G be a chordal graph with edge connectivity A(G) > 2. Arbitrarily
delete any edge e=v;v;, dg-(vs, v;) = 2, then any edge in a triangle. But
if exist two of maximal cliques have a common vertex, such graphs do not
satisfy the equality cases in the left bound. Let e;, = v;v;, e; = vjvi. If ¢
belong to maximal cliques V;, (i=1,2). V; NV, = v;. Then dg(v;, vc) = 2.
But if we delete e, dg(vi, vk) > 2. For example, let K5 be the graph with
vertex set v;, v, V3, V4, V. We construct G from Ky by adding two vertices
vg and vz, such that vg is adjacent to v, and vz, and v7 is adjacent to v,
and vs. Then H(G) - H(G - ’011)4) = -;-

We know that the complete graph K, satisfies the equality in the right
hand side of (1).
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Theorem 2.3. Let G be a triangle-free and quadrangle-free graph with edge
connectivity A(G) > 2, n vertices, m edges, diameter D and the mazimum
degree A(G). Then for any edge v;v; € E(G),

% < H(G)-H(G—-vvj) <(1- 2%)
RUES B HORLCRLT S B

Proof. Since G is a triangle-free and quadrangle-free graph, then

dg- (vi, vs) 2 4 and gty — Tooey 2 §- From (2), we get the lower
bound in (3). Again since the number of vertex pairs in G* at distance 1
is m — 1 and the number of vertex pairs in G* at distance 2 is

Z (dG(vk)) —(dg(vi)+dg(v;)—2) = %Ml(G)-—‘m—(dG(vi)+dG(vj)—2)’

k=1 2
then
(5) - m=1=1-[5M(@) ~m — (do () + o) ~2)
< (;) -m-— %M1(G) +m+ A(G) + A(G) -2
= (Z) —m- %Ml(G) +m +2A(G) - 2.
From (2), we get the right hand side of (3). a

3 Bounds on H(X +v;v;) — H(X) of a digraph
X

Theorem 3.1. Let X be a strongly connected digraph with n vertices, m
arcs, and diameter D. If there exist two nonadjacent vertices v; and vj,
then

L <HX +uw) - HX) (1= )+ (2 —n-m-D(5 -5 @

with equality on the right hand side if and only if X is isomorphic to a
digraph of diameter 2.
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Proof. Denote by dxo(vr, vs) the distance of two vertices v, and v, in
X + ('Ui, 'Uj).

1 1
H(X +vv;)—H(X) = -
(g =
dxo(vi, vj) dx(vi, v;)
1 1
+ - )
IS;Sn (dX°("-’r: vs) dx(vr, U’)) ©
(r AT 5)
Since 1 _ 1 S l
dxo (v;, ‘Uj) dx (vi, vj) -2
and

dxo(vr, vs) < dx(vr, vs) for (r, 5) # (3, ),
from(5), we get the lower bound in (4).

Again since
1 1 1
- <1——
dxo(vi, v;) dx(vi, v;) = D
and
: - - <l ‘l—fo”'('f‘ 8) # (3, 7) and dx (vr, vs) > 2
dXO(vr; vs) dX(v‘m Us) =97 D ) » J X\VUry, Vg) Z 4,

there are 2(}) vertex pairs (at lest 1) in X. The number of vertex pairs in
X at distance 1 is m. From (5), we get the right hand side of (4).

Now suppose that the right hand side equality holds in (4). Then

1 1,1
dxo(vi, v;) dx(vi, v;) - D

and

1 _ 1 _1
dxo (v‘ry Ug) dX('U‘r, 'U,) T2

that is, dg(vi, v;) = D. By contradiction we show that X is isomorphic to
a digraph of diameter 2. For this we assume that X is a graph of diameter

— 5 for (1, 8) # iy 3) and dx (ur, v,) 2 2,
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3 or more. Then there exists a vertex v, adjacent to the vertex v; such that
de(vi, ve) = D — 1. Then

r ot 11 11
dxo(vi, ) dx(v;, %) -2 D-1-2" D

a contradiction. Hence X is isomorphic to a digraph of diameter 2.

Conversely, one can see easily that the left hand side equality holds in (4)
for dg(v:)t > 1, do(v;)* 2 1, de(vi,v;) = 2, dg(v:)~ =0, dg(v;)* =0
and equality on the right hand side if and only if X is isomorphic to a
digraph of diameter 2. |}

Theorem 3.2. Let X be a strongly connected digraph with n vertices, m
arcs, diameter D, the mazimum degree A(X), and the minimum degree
0(X). Its underlying graph is triangle- and quadrangle-free. If there exist
two nonadjacent vertices v; and vj, then

2 < H(X +vivg) - HX) < (1= 5) + (n(n — 1 - 8%(X)

FA(X)) - m)(5 ~ ) Q

with equality on the right hand side if and only if X is isomorphic to a
digraph of diameter 2.

Proof. The proof of left hand side of (6) is same as Theorem 3.1.

The number of vertex pairs at distance 2 which simultaneously belongs
to X +vv; and X is

n

Z(d}(vi)d} (vi) — &) —¢,

i=1
where
0 if dc(vi, ’UJ') > 2.
and ¢; is the number of directed cycles of length 2 that contain v;. Then

2(2) —1—(Z(d (vi)d% (vi) — &) — €)

i=1

= { 1 if dc,'(’vi, ‘Uj) = 2,

=2(’2‘) —1—Z(d+ (vi)dx v,)+Zel+s

i=1
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2
=n(n—1-0%X) + A(X)) —m.

Moreover, the equality holds in right hand side if and only if X is isomorphic
to a digraph of diameter 2. O

52(") —m—1-ns%X) +nA(X) +1
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