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Abstract

Let G be a finite abelian group of order n. The barycentric Ram-
sey number BR(H,G) is the minimum positive integer r such that
any coloring of the edges of the complete graph K, by elements of
G contains a subgraph H whose assigned edge colors constitute a
barycentric sequence, i.e., there exists one edge whose color is the
“average” of the colors of all edges in H. When the number of edges
e(H) = 0 (mod exp(G)), BR(H,G) are the well known zero-sum
Ramsey numbers R(H,G). In this work, these Ramsey numbers are
determined for some graphs, in particular, for graphs with five edges
without isolated vertices using G = Z,, where 2 < n < 4, and for
some graphs H with e(H) =0 (mod 2) using G = Z3.

Keywords: k-barycentric sequences, barycentric sequences, barycentric
Ramsey numbers, zero-sum Ramsey numbers, barycentric-sum, zero-sum,
classical Ramsey numbers.
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1 Introduction

Let G be an abelian group of order n and let exp(G) be the exponent of
G, i.e., the least positive integer such that exp(G)g = 0 for each g € G. It
is clear that exp(G) | n. The focus of this work are barycentric sequences
in G, i.e., sequences that contain one element which is the “average” of
all terms in the sequence. Formally, a barycentric sequence is defined as
follows:
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Definition 1 ([12]). Let aj, a2, - ,ax, where a; € G are elements not
necessarily distinct, be a k-sequence in G. This sequence is k-barycentric
or has a k-barycentric-sum if there exists a; such that ) +a2 + ... +
aj + ...+ ax = kaj. The element a; is called a barycenter. Moreover,
when ay,az, - ,ax is a set, the term k-barycentric set is used instead of
k-barycentric sequence. When the length of the sequence is unconstrained,
we will simply speak of a barycentric sequence or a barycentric sum.

Notice that when k& = 0 (mod exp(G)), k-barycentric sequences are
zero-sum sequences of length k. Zero-sum problem consider the existence
of a zero-sum k-subsequence in a given sequence; they were introduced by
Erd6s, Ginzburg and Ziv in [13] where they showed that every sequence of
length 2n — 1 in a finite abelian group of order n contains a zero-sum n-
subsequence with zero-sum. The state of the art for results, problems and
conjectures regarding zero-sum problems is covered in the nice and well
structured surveys of Caro [8] and Gao and Geroldinger [16]. Barycentric
sequences are introduced in [11, 12] inspired by a result of Hamidoune in
1995 [17]): any sequence of length » + k — 1 in a finite abelian group of
order n contains a k-barycentric sequence. The barycentric-sum problem
involves finding the smallest integer ¢ such that any t-sequence contains a
k-barycentric sequence for some given k. In [19] we give a survey on results
in barycentric-sum problems related to the group of integers modulo n.
Barycentric and zero-sum problems are an area of combinatorial number
theory.

Let H = (V(H),E(H)) be a graph with e(H) edges. The classical
Ramsey number R(H,n) is the smallest integer ¢ such that in any coloring
of the edges of K; with n colors there exists a monochromatic copy of H.

The barycentric Ramsey number BR(H,G), for the pair (H,G), is in-
troduced in [11]. It is defined as the minimum positive integer r such that
any coloring f : E(K,) — G of the edges of K, by elements of G contains
a subgraph H with an edge eg such that > f(e) = e(H)f(ep). In this

e€E(H)

case, H is called a barycentric graph. That BR(H, G) always exists is clear
since BR(H,G) < R(H,|G|). In the case that e(H) = 0 (mod ezp(G)),
the barycentric Ramsey numbers concide with the zero-sum Ramsey num-
bers R(H,G), i.e., the minimal positive integer s such that any coloring
f : B(K,) — G of the edges of K, by elements of G contains a subgraph
H with 3~ f(e) = 0, where 0 is the zero element of G. The necessity
ecE(H)
of the condition e(H) = 0 (mod exp(G)) for the existence of R(H,G) is
clear; it comes from the monochromatic coloration of the edges of H. The
zero-sum Ramsey numbers were introduced by Bialostocki and Dierker in
[2] when e(H) = n, and the concept was extended to e(H) = 0 (mod n) by
Caro in [9). 1t is clear that BR(H,G) > |V(H)| and, as indicated above,
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that BR(H,G) = R(H,G) when e(H) = 0 (mod exp(G)). Notice that
when e(H) = 0 (mod exp(G)), then R(H,G) < R(H,|G|); moreover when
e(H) = n, then R(H,2) < R(H, Zy,). If a graph H cannot be barycentric
with exactly two colors, then R(H,2) < BR(H,G).

In [8] Caro gives Table 1 as a survey of the known results for
R(H,Z,) and R(H,2) with H having at most four edges, based on results
given in [1, 2, 5, 6, 7, 9].

The notation for Table 1 is the following: K i are stars with k edges,
MK, j are modified k—stars, defined as the tree with k + 1 vertices, k
edges and degree sequences k£ — 1,2,1,...,1, P, are paths with k vertices
and & —1 edges, Cy are circuits with & vertices, mK, is an m matching and
C3 + ¢ is a graph with vertices a, b, ¢, d and edges ab, be, ca, bd. The graph
unions are disjoint.

Table 1: Classical Ramsey and zero-sum Ramsey numbers for graphs with
at most four edges

H R(H,2) R(H,Z2) R(H,Zs) R(H,Z.)_
K2 3 3
2K2. 5 5
Cs 6 11
P, 5 5
K3 6 6
Kl,z UK, 6 6
3K> 8 8
Cy 6 4 6
K4 7 5 7
Py 6 5 6
C3UK> 7 6 8
2K 2 7 6 7
P,UK; 8 6 8
Ki13UK, 7 7 8
K2 U2K, 9 7 9
4K, 11 9 11
MK, 6 5 6
Cis+e 7 4 7

In [11] the barycentric Ramsey numbers for stars BR(K , Zp) are stud-
ied and some values and bounds are given. Table 2 [11] summarizes the
values known at present for BR(K x,Z,) with p prime. In this table, n

denotes the order of G.
In [14] the authors give Table 3 with the barycentric Ramsey numbers

for graphs with at most four edges and Z,, with 2 <n <5.
In [8] Caro gives the following open problem:
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Table 2: Barycentric Ramsey numbers for stars

k G BR(K, x,G)
2 odd order n+2
even order n+1
k Z kE+1
k=0 (mod 3) Z3 k+3
k # 0 (mod 3) k+2
3 Zp, pprime > 5 < 2[E]+2
Zs 6
Z 8
Z11 10
Zy3 10
k Zy, <p+k
4<k<p-1 /8 <p+k-1
p-1 Zp, p prime > 5 2p—2
4 Z: 9
tp+4<k<tp+p-1 Z, pprime>5 <Lp+k-1
9 Zs 13
tp+1,t>0 Z, t+1)p
5t + 2 Zs 5(t+1)

Problem 2 ([8]). Let H be a graph and suppose n < m are integers which
both divide e(H). Is it true that R(H,Z,) < R(H,Z,)?.

For the classical Ramsey numbers, the monotonicity property is true in
the following two aspects:

- If G is a subgraph of H, then R(G, k) < R(H, k).

- If k < m, then R(G, k) < R(G,m).

There are examples of graphs G and H such that 2 | e(G),2 | e(H), G
is a subgraph of H and yet R(H,Z3) < R(G,Z) [5]. It is clear that the
Caro open problem is true in the case n | m. For the barycentric Ramsey
numbers, Table 3 shows several examples contradicting the monotonicity
property.

2 Results

The objective of our paper is to compute R(H,Z3) for some values of s
and graphs with e(H) = 0 (mod 2) and to compute BR(H,Z,) for the
following graphs with e(H) =5and 2 < n < 4.

Graphs with five edges: 5K»; Ki5; K12 U3K>; K13U2Ko;
2K, 2 U K3; PsU Kj; C3U2K>; C3U K 2; C4U Ko K 4 U Ky;
Cs + P5: vertices a, b, c, d, e and edges ab, be, ac, cd, de;
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Table 3: Barycentric Ramsey numbers for graphs with at most four edges
H BR(H,Z;) BR(H,Z3) BR(H,Z.) BR(H,Zs)
K2 5 5 7
2K
Cs
Py
K3
Ki2 UK,
3K2
Cy
Kia
Ps
C3 UK,
2K,2
PiU K,
KisUK>
Ki2U2K,
4K
MK, 4
Cs+e

8
(51, 126]
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Cs + K 2: vertices a,b, ¢, d, e and edges ab, be, ac, cd, ce;

Cy + e: vertices a, b, ¢, d, e and edges ab, be, cd, da, bd,

Cs + 2e: vertices a, b, ¢, d, e and edges ab, be, ca, bd, ce;

K, 3+ K 2: vertices a, b, ¢, d, e, f and edges ab, bc, bd, de, df;
K\,3 + Ps: vertices a, b, ¢, d, e, f and edges ab, be, bd, de, ef;
MKy,4U Ky; Pg; Cs; PyU2K; PyU Ky 2; Ky 3U Ky

Ps + e: vertices a, b, ¢, d, e, f and edges ab, be, cd, de, cf;

K4 — e: is the complete graph K, where some e € E(K}) is deleted;
(C3 + e) U K3 and tH denotes ¢ disjoint copies of H.

The results are summarized in the following two tables. Table 4 contains
the computed values of BR(H,G), for G = Z,, 2 < n < 4 and the graphs
listing in Graphs with five edges.

Some values of the table 4 are obtained directly from R(H,Z,), due
to the fact that BR(H,Z,) = R(H,Z,) when e(H) = 0 (mod ezp(G))
or from BR(H,Zs) using Remark 3 and Theorem 4. Table 5 contains the
values of R(H,G), with G = Z3 and for some graphs H with e(H) = 0
(mod 2). The upper bounds were computed manually by cases. Each
case with its particular degree of difficulty was treated using the lemmas
and Remarks given in Section 3. For the lower bounds, we use ad hoc
decomposition of a complete graph to color its edges.
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Table 4: Barycentric and zero-sum Ramsey numbers for graphs with
e(H) =0 (mod 2)

H BR(H,Z2) BR(H,Z3) BR(H,Z4)
11 11

6

(Ca+e)UKa
MKy U K>
Kl.d U Kg

8
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3 Tools

In this section, the more relevant processes used to compute some of the
values of Table 4 and Table 5 are summarized.
The following remark and theorem are used.

Remark 3. Let H be a graph and e(H) the number of its edges. Then
_ |[V(H)| if e(H) is odd
BR(H,Z,) = { R(H,Zy) if e(H) is even

Theorem 4 (Caro [5]). Let H be a graph on h vertices and an even number
of edges. Then
h+2 ifH=Kph=0,1 (mod 4)
h+1 ifH=K,UK, (8) + (] =0 (mod 2)
h+1 ifall the degrees in H are odd
h  otherwise.

R(H,Z,) =

We have the following results for stars and matchings.

Theorem 5 (Bialostocki and Dierker [2]).
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Table 5: Barycentric and zero-sum Ramsey numbers for graphs with five
edges

H BR(H,Z,) BR(H,Z3) BR(H,Z3)
2tKo 4 +1 4+2,t>2
2K, 5 7 2°+3
Cy 4 5
P 5 5
Kion 2n+1 2n+3
K2 3 5 2241
Ci+e 5 5
tKl,g 3t 3, t>2
H(K13 U Ka) 6t + 1 6t + 2
t(P, U K>) 6t 6t
n+2 >n+4

n
K,UKp,a>b>2 a+b+1 2a+b+3

2m  if mis odd

1. R(K1m;Zm) = R(K1,m,2) ={ 2m -1 ifm is even

2. R(ng, Zm) = R(ng, 2) =3m—1.

Theorem 6 (Caro [9]). Let K. be a star on m edges with m = 0
(mod n). Then
BR(Kym;Zn) = R(Kim,Zn)
m+n—1 ifm=n=0 (mod?2)
m+n  otherwise

Theorem 7 (Bialostocki and Dierker [3]). Let mK> be a matching on m
edges with m =0 (mod n). Then

BR(mK3,Z,) = R(mK2,Z,) =2m +n — 1.
We use the following lemmas:

Lemma 8 ([2]). If the edges of K., where n > 5, are colored by at least
three colors, then there exists a path on three edges each one colored differ-
ently.

Lemma 9 ([4]). If the edges of Ks are colored with any number of colors,
then Ks contains either a path of length 3 using only one color or a path
of length 3 using 8 different colors.
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Remark 10. Recalling the definition of Ramsey numbers, and since
R(C4,2) = 6, if the edges of K,, n > 6, are colored with exactly two

colors, then there exists a monochromatic Cy.

Throughout the paper, we use the convention that the letters a, b, ¢ and
d always represent distinct colors.

Lemma 11. If the edges of Ks are colored with at least three different
colors and contain a C4 using two colors, one of them repeated three times,
then there ezists a Cy using exactly three different colors.

Proof. Set f : E(Ks) — {a,b,c} and set C;4 = v1vovgvqv; in Ky with
f(v1v2) = band f(vovs) = f(vavs) = f(vav1) = a. If f(vovy) ¢ {a,b}, then
there will be a C; with exactly 3 colors. Therefore f(vovs) € {a,b}, and
now, if f(vav1) ¢ {a,b}, there will again be a C4 with exactly 3 colors. So
we see f(vavy) € {a,b}. Let v5 be the fifth vertex. If f(vsv1) ¢ {a, b}, then
we once more obtain a C,; with exactly 3 colors, so f(vsvi) € {a,b}. By
symmetry, this also shows f(vsv2) € {a, b}, and now, since f uses at least
three colors, we see that w.l.o.g (by symmetry) f(vsv4) ¢ {a,b}, in which
case vov4Usv; gives a Cyq with exactly 3 colors.

O

Lemma 12 ([10]). If the edges of Ks are colored with three or four colors,
then K5 contains a Cy4 with at least three colors.

Proof. Consider any K4 in Ks. If the edges of this K4 are covered by
at least three colors and do not contain a C4 with one or three colors,
then each two opposite edges have the same color. Notice that any Pj3 in
this K4 has two different colors. Hence, we can connected a new vertex vs
to K4 with an edge colored, say ¢, in order to form a P, with three different
colors. Therefore from this Py, we can derive a Cy with three or four colors.
Notice that there exists a K4 colored with at least three colors.

a

The following lemma. is useful to establish the barycentric Ramsey num-
bers for small graphs. Notice that barycentric sequences are invariant of
affine transformation and this greatly reduces the numbers of cases to be
checked in Table 6.

Lemma 13. Let H be a graph with 2 < e(H) < 5 colored by elements of
Zn (2 < n < 5). Table 6 can be seen as a matriz Max4 where each entry
M(e(H),Z,) is a set where its elements show all the different coloring for
E(H) in order to obtain a barycentric H. For example, in case e(H) =3
and edges are colored by elements of Zy, we have the following:

M(@3,Z,) = {a,b,c; a,a,a+2; a,a,a}, i.e., H is barycentric when edges
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Table 6: Barycentric graph colorings

C(H) z: Z3 Z4 75
2 a,a a,a a,a a,a
3 any coloring a,a,a a,a,a a,a,a
a,b,c a,a,a+2 a,b,c
a,b,c
4 e,a,e,a a,a,a,a Q,a,a,a a,a,a,a
a,a,b, b a,a,a,b a,a,a+1l,a+3 a,a,b,c
a,a,b,c a,a,a+2,a+2
5 any coloring a,a,aqa,a,a a,a,a,a,a a,a,qa,a,a
a,a,a,bb a,a,a,a,b a,a,a+1,a+2,a+2
a,a,a,b,c e,a,a,a+2,a 42 e,a,a+1l,e+1,a+3
a,a,b,b, ¢ a,a,b b, c a,a+ l,a+la+1l,a+2
a,a+l,e+1l,a+1l,ea4+2 a,a42,e+2,a4+2,a+4
a,a,b,¢c,d a,b,c,d e

are colored with three different colors a, b, c, or edges are colored by a, a,a+2
Jor any color a, or edges are colored by a,a,a for any color a.

From Lemma 13, we can formulate the following remark.
Remark 14.
1. Any 3-sequence with zero-sum in Zj3 is formed by aaa or abc.

2. InZs, any 3-sequence with zero-sum can be extended to a 5-barycentric
sequence adding any two elements, except for case aaa where ab can-
not be added.

3. In Z4, any 4-barycentric sequence can be extended to a 5-barycentric
sequence by adding any element of Z,.

4. Let H be a graph such that e(H) = 5 and let H, be a subgraph of H
with e(H1) = 4. Then BR(H,Z,) < max{BR(H.,Z,),|V(H)|}.

5. Any 5-barycentric sequence in Zs, except abcde, contains a 4-barycentric
subsequence,

6. BR(H,Z,) < BR(H,Zy), whenn < mand M(e(H),Z,) C M(e(H),Z,).
For example BR(H, Z3) < BR(H,Zs) for every H with e(H) = 4.

In the next theorem, we give a general method to obtain lower bounds
for R(H,Z3) for certain graphs H.

Theorem 15.
1. If e(Ky) =0 (mod 2), then R(K,,Z3) > n + 4.

2. Ifa>b2>2 and e(K, U Kp) =0 (mod 2), then
R(K,UK,23) >a+b+3.
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Proof.

1. Take A C V(Kpn43) with |A] =n -2 and B C V(Kp43) \ A such
that B = {v1,v2,v3,v4,vs}. Color all edges inside A and edges from
A to B with (0,0). Color all edges from v; to {vz,v3,v4,vs} by (1,1).
Color all edges from vy to {vs,vs,v5} by (1,0). Color all edges from
vs to {vg,vs} by (0,1) and color the edge from vq to vs by (0,1). It
is easy to check that no Ka, K3, K3, nor Ks in B is zero-sum. Hence
there is no zero-sum K, and R(K,,Z3) > n + 4.

2. Set n=a+b. Take A C V(Kp42) and B C V(Kny2) \ A such that
|A] = n — 3 and B = {v1,v2,vs,vs,vs}. Color all edges inside A and
edges from A to B with (0,0). Color all edges from v; to {v,v3,va, s}
by (1,1). Color all edges from va to {vs,vs,vs} by (1,0). Color all
edges from v3 to {v4,vs} by (0,1), color the edges from v4 to vs by
(0,1). Tt is easy to see that no Ko, K3, K4, Ks, K3U K2, nor K2UK?
in B is zero-sum. Hence R(K, U K, Z3) > a+b+3.

O
For the next theorem, we need the following definition

Definition 16. A sequence S = ay,- - ,ax in Z, is called a non-vanishing
k-sequence in Z., if, for every subsequence A of S , |A| =j € {1,2,--- ,k},
and for every r with 0 < 7 < j—@, we have ). a; # 7 (mod m).
ai€A

Remark 17. The concept of non-vanishing k-sequence is a hered-
itary property for any shorter subsequence. That is to say, a non-
vanishing k-sequence in Z, is by definition a non-vanishing j-sequence in
Zy forany 1<j <k '

Examples:

1) Every non-zero element is a non-vanishing 1-sequence in Zn,.

2) § = 1,1 is a non-vanishing 2-sequence in Zs.

3) S = 2,3,4 is a non-vanishing 3-sequence in Z, for every m 2> 10.
However, this is not true in Zg and Zg, since 2+3+4 = 9 and 2+3+4—-1 =8
(7 =1 in the Definition 16).

We need the following theorem.

Theorem 18. Let D be an abelian group and let G = D & Z,,. Let H
be a graph and let k be a positive integer such that every k—subset of the
degree sequence of H forms a non-vanishing k-sequence in Zpy. Then we
have R(H,G) > R(H,D) + k. In particular, if all degrees of H are odd,
then R(H,Z3) 2 \V(H)| +n.
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Proof. We consider the elements of G as pairs (z,y) with z € D and
Y € Zm. Consider the extremal coloring f of E(Kgr(y,p)—1) that avoids
a zero-sum copy of H (mod D), and add k vertices uj,- - ,ux so that we
have R(H, D) + k — 1 vertices. Color the edges between u,,- -+ ,u; and all
the edges from uy,- -+ ,ux to Ky, py-1 by the vector (0, 1), and color the
rest by the coloring f in the first coordinate and 0 in the second coordinate.
Clearly no zero-sum copy of H exists because, if some of {uy,--- ,ux} are
vertices of H, then, by hypothesis, the sum of the second coordinate is
not 0, and if we do not use any of {uj,- - ,ux}, then the sum of the first
coordinate on any copy of H in Kp(y,py—1 avoids a zero-sum copy of H by
the definition of f. Hence R(H,G) > R(H, D) + k.

If all degrees of H are odd (and e(H) =0 (mod 2)), then this is just a
case of a non-vanishing 1-sequence in Zg, and then R(H,Zy) > |V(H)|+1
(by Theorem 4); the rest follows by induction on n using the first part of

the theorem.
O

4 Some proofs and comments

The computation of the Ramsey number of a graph is not an easy task since
there are no specific techniques. In consequence, ad hoc methods must be
developed for each case. One of the most used methods is the proof by
case, being also the one that consumes the most computational effort.

Nevertheless, several techniques are shown in the Tools Section that
help to compute Tables 4 and 5. Most of the values of Table 4 have been
computed using known Ramsey numbers and Remark 14.

- From Remark 14(2), we obtain the following:

1.1. BR(CQ,UKLQ,Z3) =6: Set f : E(Kg) = Z3 and V(Ke) = {’01, -+, U}
Since BR(K,2 U K3,Z3) = 6, there exists in Kg a K;2U K>
= vivavzUvgvs that is barycentric, i.e., a-monochromatic or with
three colors. Hence, by Remark 14(2), we can derive in K a barycen-
tric C3U K] 2, except when K UK} is a-monochromatic and f(vsv;)
= b and f(vsvg) = a (or vice versa). If f(vqvs) = a, then
C3 U K 2 = v4v5v6v4 U vyvgus is a-monochromatic.
If f(vsve) € {b,c}, then C3U K 2 = v4v5v6v4 Uvov;vs is barycentric.

1.2. BR(C3+2e,Z3) = 5: Follows directly from the fact that BR(P,,Z3)
= 5 and Remark 14(2).

13. BR(K12 U 3K3,Z3) = 9: f: E(Kg) — Z3. Let us consider
V(Ko) = {v1,:++ ,v9}. Since R(K12 U Ky,Z3) = 6, there exists in
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Ko a zero-sum Ko UKy = vivguz Uwvgus. If K12 UKz is a-
monochromatic, then by Remark 14(2) we have the theorem, except
when f(vevr) = a and f(vsve) = b; in this case, for any values of
f(v1vg) and f(v7vs), we have the theorem except when f(vivg) = a
and f(vrvug) and vice versa. If f(vgvs) = a, we have a Ky 2 U3K;
that is a-monochromatic and, when f(vevs) € {b,c}, we also have the
theorem.

1.4. BR(2K12 U K2,Z3) = 8: Set f : E(Kg) — Z3 and consider now
V(Ks) = {v1, - ,vs}. Since R(K;2U K3,Z3) = 6, there exists in
Ks a K1 UK, = vjvuzUv,vs that is e-monochromatic or with three
different colors. By Remark 14(2), there exists a 2K o U K> barycen-
tric, except when K;2 U K3 is e-monochromatic and f(vev?) = b
and f(v7vg) = a (or vice versa). Then, for any color of f(vevs) = a,
we can derive a barycentric 2K 2 U K.

1.5. BR(PsUK3,Z3) = 7:Follows directly from the fact that BR(Py,Z3)
=5 and Remark 14(2).

1.6. BR(P4U2K>,Z3) = 8:Follows directly from the fact that BR(FPy,Z3)
= 5 and Remark 14(2).

1.7. BR(MK1,5,23) = 6: Since R(P4,Z3) = 5, for any f : E(Ks) - Za,
there exists a zero-sum Py = vyvav3vy in Kg with V(Kg)
= {v,--- ,ve}. Assuming P, is a-monochromatic, f(vsvs) # a and
f(vave) # a. Hence by Remark 14(2), we have the theorem. If
f(vsvus) = f(vave) = a, we have the theorem. Now let f(vsvs) = a
and f(vavg) = b. If f(vlvs) = f(vl'v5) = f(v;v4) = a then
M5 = v1vs,v196, V194, 01V2v3 is barycentric. Else, assume that
f(v1vs)

= b then M) 5 = v3vq,v3v4, V3Vs, V3Usv; is barycentric.

- From Remark 14(3), we obtain the following:

2.1. BR(Ps,Z,) =6: Follows directly using the fact that BR(Ps,Z,)
= 6 and Remark 14(3).

2.2. BR(P; U K, 2,Z,) = 7: Follows directly using the fact that BR(2K,2,Z4)
= 7 and Remark 14(2).

2.3. BR(K,2U3K>,Z,) = 9: Follows directly using the fact that
BR(K) 2 U2K3,Z4) =9 and Remark 14(3).

2.4. BR(2K,2U K3,Z4) = 9: Follows directly using the fact that
. BR(2K1‘2,Z4) = 7 and Remark 14(3).
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- From Remark 14(4), we obtain the following:

3.1.
3.2.

3.3.

BR(Ps, Z3) = max{BR(Py,Z3), |V (Ps)|} = 6.

BR(Ps U Kj,Z4) = T: It follows by Remark 14(4) that we have
BR(MK,5,Z4) = 6.

BR(MKl,s,Zq) = 6: Since BR(MK1,4,Z4) = 6 and MK1'4 is a
subgraph of M K 5 with 4 edges then by Remark 14 (4) we have that
BR(MK,5,Z4) = 6.

Theorem 19. BR(C3U K 2,Z,) = 6.

Proof. It is clear that BR(C3UK,3,Z4) 2 6. Since BR(Cs,Z,)

= 6,

for any f : E(Kg) — Z4, there exists a barycentric C3. Then its

edges are colored aaa, aaa + 2 or abc. Let vy, vs,v3,v4,v5 and ve be
vertices of Kg, and let C3 = vjvpvzvy and V(K3) = {vg4, vs,v6}. We have
the following cases:

1.

C3 is a-monochromatic. If there exists an edge in E(K3) colored by
a, then we have the theorem. Suppose that no side of E(K3) is col-
ored by a. If there exists in E(K3) exactly two edges with the same
color or the edges of E(Kj3) are colored with three different colors, or
K3 is a + 2-monochromatic , we have the theorem. Assume now
that K3 is b-monochromatic with b € {a + 1,a + 3}. Let K33 be the
bipartite graph from V(C3) to V(K3). Then we have the following
subcases:

1.1 There exists some edge in K33 colored by a + 2 or a + 3. If
K33 is a + 2-monochromatic or e + 3-monochromatic we have
the theorem. Assume w.l.o.g that f(v,v4) = e + 2. If we have
f(vnius) # f(vsve), we are done, else we have

o f(uyivs) = f(vavg) = a. If f(vovy) # a, we are done. If
f(v2v4) = a, then for any color of v3vs we have the theorem.

o f(v1vs) = f(vave) = a + 1. Then, for any color of f(vqvy),
we are done.

e f(vivs) = f(vavs) = a + 2. Hence f(vav4) = a + 2, else we
have the theorem. Therefore, for any color of f(vsvs), we
have the theorem.

e f(vivs) = f(vave) = a + 3. In this case, we also have the
theorem.
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1.2 All edges of K33 are colored by a or a + 1, with a € Z4. In this
case, Kg, is colored with two colors. If K3 3 is a-monochromatic
or a + 1-monochromatic we have the theorem. Assume w.l.o.g
that f(viv4) = a. Then

o If f(v1us) = f(vave) = a, we are done.

o f(vivs) = f(vavs) = a+ 1. If f(vavs) € {a,a + 1}, then
f(vsvz) = a + 1, otherwise we have the theorem; hence
f(vavg) = a + 1. Therefore, for any color of vavs we are

done.
e f(vivs) = a and f(vavg) = a + 1. If f(vovg) = a, then
f(vsvg) = a + 1. In consequence, f(vavg) = a + 1 and

f(vivg) = a, else we have the theorem. Hence, for any
color of vyus, we have the theorem. If f(vovs) = a+1, then
f(vsv3) = a and hence f(vavs) = a + 1, else we are done.
Hence, for any color of edge vovs, we have the theorem.

e f(vivs) =a+1 and f(vave) = a. Then f(vovy) = a+1, else
we are done, and now, for any color of edge v3vs, we have
the theorem.

2. C3 is colored by a,a,a+2 or a,b,c. Hence, for any color of edges of
K3, we have the theorem.

a

The computation of the values of Table 5 are more complex, and most
of the details are described in this section.

Theorem 20. Let G be an abelian group of ordern > 2. Then BR(2K,,G)
=n+ 3. In particular BR(2K>,Z3) = R(2K2,Z3) = 2° + 3.

Proof. The complete graph K2 can be decomposed into the edge-disjoint
union of n — 1 stars and one triangle K3, i.e., a complete graph with three
vertices. For the lower bound, we color each star K ; in K,42 by ¢;—; for
3<i<n+1 and the edges of K3 by ¢;.

For the upper bound, notice that the stars and triangles are the only
graphs that have no two independent edges. Hence, it is sufficient to show
that we cannot cover the edges of K, .3 with n colors using ¢ stars and
p triangles such that p + ¢ = n. The g stars cover completely at most
a K, and the remaining edges of the bipartite K, n43-4. So we have to
cover the edges of Kn4+3—4 by n— ¢ triangles. Counting edges, we find that
ﬁ?ﬂw edges must be covered by 3(n — g) edges of the triangle,

namely we must have the following expression: 3(n — q) > m’é"—”ﬂl
from which we get n2 — (1 + 2q)n + ¢®> + ¢ + 6 < 0. But this quadratic
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equation has no real root, showing that the left side is always greater than

0, a contradiction.
a

Theorem 21. BR(5K,,Z3) = 11.

Proof. Since R(3K3,Z3) = 8, for any f : E(K11) — Zs, there exists in K1,
a zero-sum 3K5. Let v; - - - v1; be the vertices of K; and set 3K,
= vy, v3V4, VsUs. By Remark 14(2), it is sufficient to study the case when
3K, is a-monochromatic and one of the values f(vrvs) or f(vouig) is a
and the other one is b. Assume that f(v7ug) = a and f(vevio) = b. Then,
in order to forbid a barycentric 5K, in Kj;, we must have w.l.o.g. that
f(vrve) = a, f(vsvio) = b, f(vsvg) = @ and f(v7v10) = b. Hence, for any
color of vgvy1, we have a barycentric 5K5. Therefore BR(5K>,Z3) < 11.
For the lower bound, let vy,--- ,v10 be the vertices of K19. Let Kg be
a complete graph in Ko with vertices v1,--- ,vs. Let Ky be the bipartite
complete graph with edges v;v; with 7 € {1,2,--- ,8} and j € {9,10}. Set
K, = vguy0. We color the edges of K3 by a, f(vive) = a and f(vivio) = b
for i € {1,.--,8} and f(vovi0) = b. Therefore any 5K, in Kjq is colored
by a,a,a,a,b and hence not barycentric in Z3. Therefore BR(5K?2,Z3)
> 11. a

Theorem 22. BR(5K5,Z4) = 11.

Proof. Since BR(4K3,Z4) = 11, it follows that, for any f : E(K1;1) = Z4,
there exists in K;; a barycentric 4K3. Let vq,--- ,v1; be the vertices of K7,
and let 4K, = v vz, v3v4, v5vg, v7vg be the barycentric graph. Hence, by
Remark 14(3), we find that 5K, = vjv2, U304, vsvs, V78, Vgu10 is barycen-
tric, so that BR(5K>3,Z4) < 11.

For the lower bound, let v;,---,v10 be the vertices of Ko and let
K; and K3 be two complementary complete graphs in Ko with vertices
{v1,-+ ,v7} and {vs,vg,v10}, respectively. Let K72 be the bipartite com-
plete graph with edges v;v; withi € {1,2,---,7} and j € {9,10}. We color
the edges of K7 by a, and the edges of K3 and K72 by a + 1, respectively.
It is easy to see that with this coloration a barycentric 5K, does not exist
in K19. Therefore BR(5K2,Z4) > 11.

O

Theorem 23. BR(2tK>,Z3) = R(2tK2,Z3) = 4t + 2 for t > 2.

Proof. By Theorem 20, we have R(2K>,Z3) = 7. Notice that we have the
following:

139



1. 2tKj3 is a graph on 4t vertices all with degree 1 (odd). Hence, by the
general lower bound given by Theorem 18, we have the following
R(2tK»,Z3) > 4t + 2.

2. Suppose we have proved R(4K5,Z3) = 10. Then, by induction for
t = 2, this is true (i.e. the case R(4K2,Z3) = 10). Assuming it holds
for t, let us prove it now for ¢ + 1 and consider a coloring by Z3 of
E(Ky(t4+1)+2)- Since 4(t+1)+2 > 7 and R(2K>,Z3) = 7, we know that
a zero-sum copy of 2K, exists. Take this copy of 2K> and consider
the complete graph that remains by deleting the 4 vertices of this
2K,. Now we have a coloring of E(K4:4+2) and, by induction, there
exists a zero-sum copy of 2tK,, which, together with the 2K, zero-
sum components we had before, gives a zero-sum copy of 2(t + 1) K>
proving the induction step.

To show that R(4K>,Z3) = 10, we need the following claim:
Claim: Consider a coloring of the edges of E(Kj) using at most 4 colors
such that there exist no two independent edges of the same color.

1. We must use 4 colors.

2. Three colors form a star and one color a triangle, and there are pre-
cisely two possible coloring up to change of colors:

Coloring A.

Color 1: f(vivz) = f(viva) = f(vive) = f(vivs) = f(v1ve).
Color 2: f(vavs) = f(v2vs) = f(v2us) = f(vave).

Color 3: f(v3vs) = f(vavs) = f(vave)-

Color 4: f(vqvs) = f(vave) = f(vsvs)-

In this case, we have three stars of orders 5,4 and 3 respectively and
Ks

Coloring B:

Color 1: f(viv3) = f(viva) = f(v1vs) = f(v1ve).
Color 2: f(vav1) = f(v2vs) = f(vous) = f(vave)-
Color 3: f(vovs) = f(vavs) = f(vsvs) = f(vave).
Color 4: f(vqvs) = f(vave) = f(vsve).

In this case, we have three stars of orders 4,4 and 4 respectively and
K3
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3. In coloring A, there is a 3K, colored with three colors for the triple
of colors (1,2,3),(1,2,4),(1,3,4) but no 3K, with three colors for
(2,3,4). In coloring B, there is a 3K> colored with three colors
for all the possible triples of colors (1,2,3), (1,2,4),(1,3,4),
(2,3,4).

Proof of the claim

Observe that the only graphs not having two independent edges are
stars of various orders and Kj3. So we must have all colors forming stars
and triangles, that is to say, K3. Consider a coloring of the 15 edges of K.

If all colors are stars, we have four vertices as the centers of these stars,
say v;, v, Vs, V4, but then vs and vg are not a center of star and edge vsvs
is not covered. So we need at least one triangle.

Suppose we have exactly two triangles, hence we have two cases.

The triangles are vertex-disjoint or the triangles have a vertex in com-
mon. In both cases, the graphs left to be covered by two stars E(Ks\2K3)
or E(Kg \ 2 * K3), where 2 * K3 denotes two triangles having a vertex in
common, have three independent edges and hence cannot be covered by
two stars.

Hence we finally get that we have precisely three stars and one triangle.
It is now routine to check that if there is a star of order 5, coloring A is
forced, and if we have three stars of degree 4, then coloring B is forced

Part 3 of the claim is trivially checked.

Hence the claim is proved.

Now, we show that R(4K,Z3) = 10.

The lower bound 10 comes from the fact that all degrees are odd and
by the general lower bound in Theorem 18.

Consider a coloring by Z3 of E(Ko).

Case 1: if there is 4K, with all edges of distinct colors, we are done.

Case 2: there is no 3K, with all edges of distinct colors.

But then in Ko there is a 5K colored by just one or two colors.

There are three possibilities: a,a,q,q,a ; q,q,aq,q,b; and a,a,a,b,b. In
all cases, we have a zero-sum 4Ko.

So the last case remains:

Case 3: by Case 1, all the edges between A are colored by a,b or ¢. If
there is a pair of independent edges in A colored distinctly, say by a and
b, then these edges, along with v,v2 and vav,, give the desired zero-sum
subgraph. So we may assume otherwise, and w.l.o.g. assume a occurs as
the color of two opposite edges. This gives a perfect matching M of K
with three edges having color a, say zyz2, 314 and z576, and the other
two of colors b and ¢, respectively. Remove the vertices =3, z4, z5 and
z¢ (corresponding to the vertices of two of the a-colored edges in M) and
apply the claim to the remaining 6 vertices. If there are two independent
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edges of the same color, then taking them along with the removed edges
gives a zero-sum 4Ks; if there are three independent edges colored with
exactly three colors, none of which is a, then taking these three edges along
with one of the two removed edges gives a zero-sum 4K5. Therefore, we see
by the claim that the proof is complete unless we have Coloring A with the
5-star being in color a, and thus the center of the 5-star is one of the two
vertices of the third a-colored edge from the matching M not removed, say
w.lo.g. ;. We conclude that the same holds whenever any two a-colored
edges of M are removed, and so assume w.l.0.g. z3 and x5 are the resulting
centers after each application. But now, regardless of the color of zpz4, we
find a zero-sum 4Kj.

O

Theorem 24. R(Ps,Z2) = BR(P;,Z3) =5.

Proof. Since BR(Cy4,Z3) = R(C4,Z%) = 5, it follows that, for any f :
E(K3s) — Z2, there exists a zero-sum Cy C Ks. Then its edges are colored
a,a,a,a, or a,a,b,b, ora,b,c,d with a,b,c,d € Z2. For the upper bound,
we consider the following cases:

1. C, is colored by a,a,a,a. Set f(v1v3) = f(vavs) = f(vzvs)

= f(viv4) = a. Then f(vivs) € {b,c,d}, else we have a zero-sum
Ps.  Without loss of generality, suppose that f(vivs) = b. Then
f(vavs) € {c,d}, as otherwise we have a zero-sum P; . Without loss
of generality, we may assume f(vous) = ¢. By a similar argument,
f(vavs) € {b,d}. If f(vavs) = b, then vovsvsv,v4 is a zero-sum Ps.
Thus f(vavs) = d, and now we see that f(vsvs) = c (since, as seen
above, any edge from vs to this C4 must be colored by one of b, c or
d and, moreover, one of which is not shared by either adjacent edge
from vs to C,;). But now vzvsvqv; is a zero-sum Ps.

2. Cy is colored by a, a,b,b. Then we have the following subcases:

2.1. Set f(viv2) = f(vava) = a; f(vsvs) = f(viva) = b. Then
f(vvs) € {c,d}, else we have a zero-sum Ps. Without loss of
generality, assume f(vjvs) = c¢. Then f(vovs) = b, else we have
a zero-sum Ps, whence f(v3vs) = ¢, and now, regardless of the
color of vyv4, we still find a zero-sum Ps.

2.2. Set f(viv2) = f(vave) = a; flvous) = f(vivg) = b. Then
f(v1vs) € {c,d}, else we have a zero-sum Ps. Without loss of
generality, set f(vivs) = c. Then f(vsva) = f(vsv3) = f(vsvs)
=c (as, for instance, f(vsv2) =d would mean wzvsv1UsV2
is a zero-sum Ps.
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3. C, is colored by a,b,c,d. Set f(vive) = a; f(vaus) =b; f(vavy) =¢;
f(vivg) = d. Then f(vvs) € {b,c}, otherwise we get a zero-sum P,
Set f(vivs) = b. Then, with any color of vovs, we have a zero-sum
Ps. Set f(vyvs) = c. Then, for any color of v4vs, a zero-sum Ps is

obtained.

The lower bound is obvious.
O

Theorem 25. BR(K}2n,22) = R(Ki,2n,23) = 2n + 3. In particular,
R(K1'4,Z%) =T.

Proof. Lower bound: We shall show a coloring of the edges of Ka,+2 by Z3
without a zero-sum K 2,. The chromatic index of Kap42 is 2n+1 [18] and
the edges can be decomposed into (2n + 1) 1-factors. We take (2n — 1) 1-
factors colored by (0,0), one 1-factor colored (1,0) and one 1-factor colored
(0,1). Clearly no zero-sum K 2, exists.

Upper bound: For n = 1, we have R(K}2,Z2) = R(K1.2,4) = 5. So
assume n > 2. By a result of Gao [15], every sequence of length 6 in Z3
contains a zero-sum subsequence of length 4. Thus, given a sequence from
Z3 of length 2n +2 > 6, we can repeatedly remove zero-sums of length four
until we are left with a subsequence T of size less than 6. Since 2n + 2
is even, this subsequence either has size 2 or 4. If [T'| = 2, then we will
have again found a zero-sum of length 2n. We proceed to show a zero-sum
subsequence of length 2n also exists in the case |T'| = 4. Indeed, if |T| = 4,
then we will have found again a zero-sum of length 2n unless T consists
of the four distinct elements from Z3, in which case it is itself a zero-sum
subsequence. Thus the entire sequence has sum zero, and as it has length
2n + 2 > 4, the pigeonhole principle guarantees a 2-term zero-sum, and,
consequently, a 2n-term zero-sum. In summary, we see that any sequence
of length 2n + 2 from Z2 contains a 2n-term zero-sum.

Hence if any vertex v of Kan..3 is considered, its degree is 2n + 2 and it
is the center of a zero-sum K 3,,. This completes the proof showing that
indeed R(K1,2s,28) =2n+3 and, in particular, R(K;4,2Z3)=T1.

O

Theorem 26. BR(K,2,Z§) = R(Ki12,Z§) = 2° + 1. In particular,
R(K12,73) =5.

Proof. The chromatic index of Ks,, is 2m — 1 (well known). Hence, in
particular, K, (¢ = 2°) can be colored using ¢t — 1 distinct colors, each of
the colors forming a matching; in particular, no K 5 exists with both edges
of the same color, showing that R(K} 2,Z3) > 2°.

On the other hand, the chromatic index of Kom4y is 2m + 1 (well
known Vizing class 2 graphs). Hence, in particular, K; (¢ = 2° — 1) cannot
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be colored using t distinct colors each forming a matching, so a K 2 exists
with both edges of the same color, which implies a zero-sum in Z3 ( for

every element z in Z3 we have 2z = 0.)
a

Theorem 27. BR(tK,2,Z%) = R(tK) 2,Z%) = 3t unless t = 1, in which
case BR(K12,23%) = (K1 2,23) =5.

Proof. We already proved R(K 2,Z3) = 5. We will prove R(2K,, 2,Z3) =
Notice that:
1. tK) 2 is a graph on 3t vertices, and hence 3t is a trivial lower bound.

2. Suppose we proved R(2K 1,2,Z%) = 6. Then, by induction for ¢ = 2,
this is true, i.e., R(2K} 2,2Z3) = 6. Assummg it holds for t, let us prove it
now for ¢t + 1. Con51der a coloring by Z3 of E(K3(3+1))- Smce 3(t+1) > 5,
we know that a zero-sum copy of K 2 exists by the result R(K 2, Z3) = 5.
Take this copy of K2 and consider the complete graph that remains by
deleting the 3 vertices of this Kj2. Now we have a coloring of E(Ka;)
and, by the induction hypothesis, there exists a zero-sum copy of tKj 2
which, together with the K 2 zero-sum components obtained before, gives
a zero-sum copy of (t + 1)K} 2, proving the induction step.

Now, we show that: R(2K 1.2,Z3) = 6. Consider a Z} coloring of
E(Kg). We have several observations

A: First let us show that if v;v2 and v v3, are edges of the same color,
say a, then vovs is also of color a. To see this, let v4, vs and vg
be the remaining three vertices in Kg. The triangle they form must
be colored by exactly 3 colors, else we obtain a zero-sum 2K, 2. But
now, if vovs is not of color a, then we can find a zero-sum 2K 5 from
among the edges of these two triangles. This shows the claim.

B: Since R(Kj2,Z3) = 5 < 6, there exists a monochromatic triangle in
view of the above Observation A, say v;vovs with all edges colored
a. Let vg, vs and vs be the three remaining vertices of Kg. Note
that all three edges of the triangle v4vsve must be colored by three
distinct colors, else we find a zero-sum 2K, » among the edges of both
triangles.

By Observation A, we see that every connected, monochromatic com-
ponent of Kg is a clique. Let H be a maximal cardinality connected,
monochromatic component. Thus H has at least three vertices as seen
above. If H has more than three vertices, then it must be the entire
K, as otherwise, taking any vertex v outside H, the pigeonhole prin-
ciple would guarantee two edges from v to H of the same color (as the
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C:

maximality of H ensures that no edge from v to H is the same as that
of an edge in H), and now these two edges, along with a disjoint K2
from H, give a zero-sum 2K 2. However, if K¢ were monochromatic,
then we would also clearly have a zero-sum 2K 2. Consequently, we
conclude that a maximal cardinality monochromatic clique has size
3.

In particular, no edge between {v4,vs,vs} and {v;,vs,v3} is of color
a.

We divide the proof into two cases based on whether or not a occurs as
a color in the triangle v4usvg.

Case 1:

Case 2:

f(vqus) = b, f(vsvg) = ¢ and f(vevs) = d are all distinct from a:
if f(vsv1) = b, then f(vgv1) = b and f(vev1) = ¢ (by Observations
A, B and C). Then f(vgv;) = f(vsvs) = ¢ and Observation A imply
f(vivq) = ¢, a contradiction. Thus f(vsv;) # b, and by symme-
try f(vsv;) # b for ¢ = 1,2,3. Hence, in view of Observation C, we
conclude that f(vsvy) = ¢. By symmetry, this argument also shows
f(vsv2) = ¢, whence Observation A implies f(vqv;) = ¢ # @, a con-
tradiction.

wlo.g. f(vavs) = b, f(vsvg) = ¢ and f(vevs) = a. By Observa-
tion A and C, each of the three edges from vs to the triangle vyvaus
must be of a distinct color and none of them is equal to a. Thus
w.lo.g. f(usv1) =b, f(vsve) =c and f(vsvs) = d. Then f(vqvs) = b,
f(vsv1) = b and Observation A together imply f(vv4) = b. But now
vq1v2 and vavsvg form a zero-sum 2K 2, completing the proof.

a

Theorem 28. BR(C3 + e,Z3) = R(Ks + e,Z2) = 5.

Proof. Lower bound: color E(K,) with three colors (elements of ZZ) such
that each color appears on two independent edges. No zero-sum Cj3 + e
exists.

Upper bound:

Case 1

There is a C3 colored with three colors, say f(viv2) =a, f(vovs)
=b, f(nvs) =c. Consider the edges (viv4), (v2vs), (vavy).
The only possible way to extend the C; to this K4 without a zero-
sum Cj3 + e is by coloring f(vivg) = b, f(vavs) = ¢, f(v3vs) = a. Now
consider the edges (vyvs), (v2us), (vaus). As before, the only way to
extend (vy, v2, v3)U(vs) to a K4 without zero-sum Cs+e is by coloring
f(vivs) = b, f(ve,vs) = ¢, f(vavs) = a. Now consider the edge (v4vs).
No matter how it is colored, a zero-sum Cj + e appears.
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Case 2 : No Cj has three colors but there is a C3 with 2 colors, say f(v1v2)
= f(vous) = a, f(vivs) =b. Consider the edges (viv4), (v2va),
(vavg). The only way to color them without a zero-sum Cj + e or
without forming a Cj3 with three colors is by coloring f(viv4) = a,
f(vavq) = cord, f(vsvg) = a. Consider the edges (v1vs), (v2vs), (v3vs).
As before, the only way to color them without a zero-sum C3 + e or
without forming a C3 with three colors is by coloring f(v1vs) = a,
f(vaus) = c or d,f(vsvs) = a. But observe that if f(vovs) = f(v2vs),
then a zero-sum C3 + e is formed by (v4, v2, vs, v3, v2), hence assume
f(vavq) = c and f(vevs) = d. Now consider f(v4vs): no matter how
it is colored, a zero-sum Cj3 + e appears.

Case 3 : All C3 are monochromatic, but then all edges are colored the same
and clearly every copy of Cs + e is a zero-sum.

O
Theorem 29. BR(t(Ky 3 U K),Z2) = R(t(Ky,3 U Kz), Z2) = 6t +2.

Proof. Lower bound: this graph has all degrees are odd, and hence by the
general lower bound Theorem 18, we have that R(t(K1 3UK?),Z3) > 6t+2.

Upper bound: it is sufficient to prove it for K; 3U K> as the rest follows
by simple induction. So consider a coloring of E(K3s) with elements of Z3.
Then we have the following:

1. If there is a star of 4 edges with 4 distinct colors, say f(vive) = a,
f(vivz) = b, f(viva) = ¢, f(vivs) = d, then consider f(vevr). If
f(vevr) = f(v1v;) for some i = 2,3,4,5 (and it must hold for one of
these possibilities), then delete edge (v,v;) and add edge (vsv7), and
the resulting K 3 U K> is zero-sum.

2. There is a vertex, say v;, incident with exactly three colors. Then,
for any coloring of f(vyvs), a zero-sum K 3 U K» is obtained.

3. Every vertex is adjacent with at most two colors. If every vertex is
adjacent with one color, then this is a monochromatic coloring, and
every copy of K 3U K> is zero-sum. So assume we have a vertex with
exactly two colors on the edges incident with it. We have three basic
possibilities for the distribution of the colors:

3.1. f(uiv2) = f(viva) = f(niva) = f(nivs) = f(vive) = f(vave)
= a, f(vivg) = b : If we color f(vpus) either a or b, we have a
zero-sum K 3 U K3. So assume without loss of generality that
f(vavs) = c. Since no vertex has three colors and there is no zero-
sum in K 3U Ky, it follows that f(vsvs) = f(vavs) = f(vsve)
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= f(vev7) = f(vrus) = c is forced. Now no matter how f(vov4)
is colored, a zero-sum K; 3 U K> is obtained.

3.2. f(nve) = f(vivz) = f(viva) = f(v1vs) = f(v1ve) = a,
f(v1v7) = f(vivg) = b : If we color f(vqvs3) either a or b, we have
a zero-sum K 3 U K>. So assume without loss of generality that
f(vavs) = c. Since no vertex has three colors and there is no zero-
sum in K 3 U Kb, it follows that f(vsvs) = f(vs,vs) = f(vsve)
= f(vevr) = f(vrvs) = c is forced. Now, no matter how f(vavs)
is colored, you get a zero-sum K 3 U Ks.

3.3. f(n1v2) = f(v1v3) = f(v1va) = f(v1vs) = @, f(v1v6) = f(v1v7)
= f(v,vs) = b. If we color f(vg,vs) either a or b, we have a
zero-sum K 3 U K». So assume without loss of generality that
f(vevs) = c. Since no vertex has three colors and there is no zero-
sum in K 3 U Kj, it follows that f(vsvs) = f(vavs) = f(vsve)
= f(vevr) = f(vsus) = c is forced. Now, no matter how f(vov,)
is colored, a zero-sum K 3 U K3 is obtained.

Hence R(t(K, 3 U K3),Z2) = 6t + 2. a

Theorem 30. BR(t(P; U K>),Z2) = R(t(P; U K3), Z3) = 6t.

Proof. Clearly, it is enough to prove R(P; U K,,Z2) = 6 (the rest follows
by a simple induction). Let f : E(Ks) — Z2 be any coloring of edges of
K¢ with {a,b,¢,d}.

We consider two main cases.

Case 1: There is a path of length three colored with three colors.

We have two basic subcases :

Case A: f(v1v2) = a, f(vovs) = b, f(vsvs) = c and f(vsve) = a.

Case B: f(viv2) = a, f(vavs) = b, f(vavs) = c and f(vsvg) = b.

Case A:

We must have f(v,v4) = a, and then there are just two possibilities
: f(vivs) = a or f(vivs) = d. All other possibilities create a zero-sum
Py U K.

Suppose f(viv3) = a. Then we are forced to have f(vovy) = d, and
in consequence, we have f(vovs) = a, but then no matter how we color
f(vavg), we have a zero-sum Py U K.

Suppose now that f(vjvs) = d. Then we have f(vovs4) = @, and in
consequence, also f(v2vs) = a, but then no matter what the color f(vsvs)
is, we have a zero-sum P; U K.

Case B:

We must have f(viv4) = b. Then we have two basic cases: Bl, where
f(viv3) = a, and B2, where f(v1u3) = c.
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Case Bl:

We must have f(v2v4) = ¢, and now either f(vzvs) = a and f (vave) = ¢,
or f(’vg‘vs) = c and f('U3‘U6) =a.

In both cases, it follows that f(vyv5) = ¢ and f(v4ve) = a (by symme-
try), and now there is a zero-sum Py U K».

Case B2:

We must have f(vovs) = a. Then we have four possible cases:

1) f(vovs) = a and f(vsvg) = a, but then vsuavave and vyv4 give 2
zero-sum Py U Ko.

2) f(vavs) = a and f(vavs) = ¢; hence f(vive) = ¢ and f(v4vs) = q,
and now there is a zero-sum Py U Kb.

Note that 1) and 2) show f(vevs) = c. By symmetry, this also shows
f(vsvg) = a.

3) f(vous) = cand f(v3vug) = a, but then regardless of the color f(v4vs),
a zero-sum P, U K> is obtained.

Hence Case 1 is completed.

If no path of length two has two colors, then clearly the coloring is
monochromatic and every copy of Py U K is zero-sum. Hence it remains
to consider Case 2 below.

Case 2: there is no path of three edges colored with three colors but
there is a path of two edges colored with two colors.

We have two basic possibilities.

Case A: f(vlvg) = f(‘vz'u:;) = a and f(v3114) =b.
Case B: f(v1v2) = a, f(vovs3) = b and f(vavs) = a.

Case A: We must have either f(v4vs) = a or f(vqvs) = b.

If f(vqvs) = a, then we are forced to have f(vsvg) = a, but then no mat-
ter what the color f(vave) is, we have a zero-sum P, U K». If f(vqvs) = b,
then f(vavs) = a or b, but in both cases, regardless of the color f(vsve),
we have a zero-sum Py U K.

Case B:

If f(vqvs) = a, then f(vive) = a, implying f(v2v) = @, and now, for
any color f(vsug), we have a zero-sum Py U Kj.
If f(vqvs) = b, then f(vive) = b, implying f(vsvs) = a (else either Case A
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completes the proof or we find a 3-color P;), and now, regardless of f(vovs),

we find a zero-sum P, U K>. Hence the proof is complete.
O

5 Conclusion

The combinatorial arguments used in this paper are really elementary. Hav-
ing in mind a possible automation, we have detailed some of them. The
method used most often in filling up Tables 4 and 5 was an exhaustive
enumeration of alternative cases, driving the manual computation of each
one of the values. Nevertheless, in the Tools Section, the identification and
categorization of the most used techniques is one of the contributions of this
work. We believe that this will facilitate future work. The computation
of BR(H,Z,), n 2 5, for the graphs given in Table 4, and the completion
of Table 5 are open problems; we expect that their degree of difficulty will
increase, as in case of the computation of the classic Ramsey numbers and
the zero-sum Ramsey numbers involving many colors.
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