A necessary and sufficient condition for a graph to be E_2 -cordial

Qing Liu

School of Statistics and Research Center of Applied Statistics

Jiangxi University of Finance and Economics, Nanchang, 330013, P.R.China

qliu8310@gmail.com

Zhishan Liu

Department of Mathematics, Yang-en University, Quanzhou, 362014, P.R.China

Abstract In this paper, E_2 -coordiality of a graph G is considered. Suppose G contains no isolated vertex, it is shown that G is E_2 -coordial if and only if G is not of order 4n + 2.

Keywords E_2 -cordial, maximal matching

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For an integer k, an edge labelling $f: E \to \{1, 2, \dots, k-1\}$ induces the vertex labelling $f: V \to \{1, 2, \dots, k-1\}$ defined by $f(v) \equiv \sum_{x \in N(v)} f(vx) \pmod{k}$, where N(v) is the set of vertices adjacent to v and $f(v) \in \{0, 1, \dots, k-1\}$. The number of vertices(resp. edges) of G labelled with i under f will be denoted by $v_i(G)$ (resp. $e_i(G)$), $i = 0, 1, \dots, k-1$. A labelling f of G is said to be E_k -cordial if $|v_i(G) - v_j(G)| \le 1$ and $|e_i(G) - e_j(G)| \le 1$, $\forall i, j \in \{0, 1, 2, \dots, k-1\}$.

Definition. A graph G is said to be E_k -cordial if it admits an E_k -cordial labelling.

The notion of an E_k -cordial labelling was first introduced by Cahit and Yilmaz[1], who showed that the following graphs are E_3 -cordial: $P_n (n \geq 3)$, Stars S_n if and only if $n \not\equiv 1 \pmod{3}$, $K_n (n \geq 3)$, $C_n (n \geq 3)$, friendship graphs and fans $(n \geq 3)$. They also proved $S_n (n \geq 2)$ is E_k -cordial if and only if $n \not\equiv 1 \pmod{k}$ when k is odd or $n \not\equiv 1 \pmod{2k}$ when k is even and $k \neq 2$. Some further results see [2]-[5]. In this paper, the E_2 -cordiality of a

graph G is considered.

Suppose S is a vertex set or an edge set, we denote by |S| the number of elements of S and write $v_i(S)(e_i(S))$ to indicate the number of vertices(edges) labelled with i in S, i=0,1. Sometimes vertices(edges) labelled with i are called i-vertices(i-edges) for simplicity. We first introduce a necessary condition for a graph to be E_2 -cordial.

Lemma 1. If $|V(G)| \equiv 2 \pmod{4}$, then G is not E_2 -cordial.

Proof. Suppose f is an E_2 -cordial labelling of G. Since $|V(G)| \equiv 2 \pmod{4}$, we have $v_1(G) = v_0(G) = \frac{|V(G)|}{2}$. So $v_1(G)$ is odd. However, by $\sum_{x \in V(G)} f(x) \equiv 2 \sum_{uv \in E(G)} f(uv) \pmod{2}$, we have $v_1(G) = \sum_{x \in V(G)} f(x) \equiv 2 \sum_{uv \in E(G)} f(uv) \pmod{2}$, which implies that $v_1(G)$ is even, a contradiction.

In the following discussion, we assume G contains no isolated vertex. We shall prove that G is E_2 -cordial if $|V(G)| \not\equiv 2 \pmod{4}$.

2 M-W structure of a graph

Suppose $M = \{x_1y_1, x_2y_2, \dots, x_my_m\}$ is a maximal matching of a graph G, W is the set of vertices unsaturated. Then we have a partition $\{X, Y, W\}$ of V(G), where $X = \{x_1, x_2, \dots, x_m\}$, $Y = \{y_1, y_2, \dots, y_m\}$. Define $E_* = \{uv|uv \in E(G), \{u, v\} \subseteq X \cup Y\} - M$, $E^* = \{wu|wu \in E(G), w \in W, u \in X \cup Y\}$. Since M is a maximal matching, then $\{E_*, E^*, M\}$ is a partition of E(G). If an edge labelling $h: E_* \cup E^* \to \{0, 1\}$ induces a vertex labelling $h: V(G) \to \{0, 1\}$ by $h(v) \equiv \sum_{u \in N(v) \ vv \in M} h(uv) \pmod{2}$, then edges in M

fall into three groups, i.e., $E_{ii} = \{xy | xy \in M, h(x) = h(y) = i\}, i = 0, 1$ and $E_{01} = \{xy | xy \in M, |h(x) - h(y)| = 1\}$. For simplicity, let $e_{ij} = |E_{ij}|, 0 \le i \le j \le 1$. Note that the preceding notations will be adopted throughout the following discussion.

Lemma 2. Suppose M is a maximal matching of G. For any h defined above, $v_1(W)$ and e_{01} are of the same parity.

Proof. For any $h: E_* \cup E^* \to \{0,1\}$, we have $v_1(G) \equiv 2 \sum_{uv \in E_* \cup E^*} h(uv) \pmod{1}$

2). So $v_1(G)$ is even. It follows that $v_1(W)$ and $v_1(X \cup Y)$ are of the same parity. Since the number of 1-vertices generated by endpoints of edges in E_{00} and E_{11} is always even, then $v_1(X \cup Y)$ and e_{01} are of the same parity. Hence the conclusion follows.

3 G has a perfect matching

Theorem 1. If M is a perfect matching of G, then G is E_2 -coordial if and only if $|V(G)| \not\equiv 2 \pmod{4}$.

Proof. By Lemma 1, we need only to prove the sufficiency. Since M is a perfect matching and $|V(G)| \not\equiv 2 \pmod{4}$, then |M| is even. We distinguish three cases.

Case 1. $|E_*| = 0$. In this case, $G = (2n)K_2$. By assigning 0 to n edges and 1 to the other, we obtain an E_2 -cordial labelling of G.

Case 2. $|E_*| = 1$. In this case, $G = P_4 \cup (2n-2)K_2$. Edges of P_4 are labelled in order with 0, 0, 1; one half of the rest edges are labelled with 0 and the other with 1. One can check that the labelling of G defined above is E_2 -cordial.

Case 3. $|E_*| \ge 2$. We first label edges in E_* and then those in M. Once a labelling $h: E_* \to \{0,1\}$ is given, each $v \in V(G)$ gets a temporary label induced by $h(v) \equiv \sum_{u \in N(v), uv \in E_*} h(uv) \pmod{2}$ and M is partitioned into

 E_{00} , E_{11} and E_{01} . In order to obtain a labelling of G, we need further to label edges in M. Note that if an edge in M is labelled with 0, labels of its endpoints stay the same as their temporary labels; if an edge in M is labelled with 1, labels of its endpoints are both changed.

Subcase 3.1. $|E_*| = 2k$. Assign 0 to k edges in E_* and 1 to the other. It follows from Lemma 2 that e_{01} is even and e_{00} and e_{11} are of the same parity.

If $e_{01} > 0$, we can get an E_2 -cordial labelling of G as follows. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ edges in E_{11} and $\frac{e_{01}}{2}$ edges in E_{01} are labelled with 0 and others in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}+1}{2}$ edges in E_{00} , $\frac{e_{11}+1}{2}$ edges in E_{11} and $\frac{e_{01}}{2}-1$ edges in E_{01} are labelled with 0 and others in M with 1. Simple calculation shows that $e_0(M) = e_1(M)$, $e_0(G) = e_0(M) + k = e_1(M) + k = e_1(G)$, $v_0(G) = v_1(G)$. Therefore G is E_2 -cordial.

If $e_{01}=0$, by changing a 0-edge in E_* into a 1-edge, we get another labelling $h^{'}: E_* \to \{0,1\}$ under which $e_0(E_*)=e_1(E_*)-2$ and $e_{01}=2$. Next we shall label edges in M based on $h^{'}$. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ edges in E_{11} and 2 edges in E_{01} are labelled with 0 and others in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}+1}{2}$ edges in E_{00} , $\frac{e_{11}+1}{2}$ edges in E_{11} and 1 edge in E_{01} are labelled with 0 and others in M with 1. Similar discussion shows that $e_0(G)=e_1(G)$, $v_0(G)=v_1(G)$.

Subcase 3.2. $|E_*| = 2k + 1$. Assign 0 to k + 1 edges in E_* and 1 to others.

If $e_{01} > 0$, we can get an E_2 -cordial labelling of G as follows. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ edges in E_{11} and $\frac{e_{01}}{2} - 1$ edges in E_{01} are labelled with 0 and others in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}-1}{2}$ edges in E_{00} , $\frac{e_{11}-1}{2}$ edges in E_{11} and $\frac{e_{01}}{2}$ edges in E_{01} are labelled with 0 and others in M with 1. In either case, we have $e_0(G) = e_1(G) - 1$, $v_0(G) = v_1(G)$.

If $e_{01}=0$, by changing a 0-edge in E_* into a 1-edge, we get another labelling $h': E_* \to \{0,1\}$ under which $e_0(E_*)=e_1(E_*)-1$ and $e_{01}=2$. Next we shall label edges in M based on h'. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ in E_{11} and 2 in E_{01} are labelled with 0 and others in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}-1}{2}$ edges in E_{00} , $\frac{e_{11}-1}{2}$ in E_{11} and 1 in E_{01} are labelled with 0 and others in M with 1. In either case, we have $e_0(G)=e_1(G)+1$, $v_0(G)=v_1(G)$. Hence G is E_2 -cordial.

4 G has no perfect matching but $E_* \neq \Phi$

We give the E_2 -cordial labelling of G when |W| = 4m > 0, |W| = 4m + 1, |W| = 4m + 2 and |W| = 4m + 3 respectively. First we introduce a lemma.

Lemma 3. Suppose M is a maximal matching of G, $E_* \neq \Phi$ and |W| = 4m > 0. Then there is a labelling $h: E_* \cup E^* \to \{0,1\}$ under which $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2,-1,0\}$ and $v_1(W) = 2m$.

Proof. Assume $W = \{w_1, w_2, \dots, w_{4m}\}$. We take four steps to get the labelling desired.

- Step 1. Assign 1 to 2m edges incident with different w_i 's and 0 to others in $E_* \cup E^*$. Now we have $v_0(W) = v_1(W) = 2m$.
- Step 2. If there is a w_i with two 0 edges incident with it, change the two 0 edges into 1 edges. Then we also have $v_1(W) = 2m$ but $e_1(E_* \cup E^*) e_0(E_* \cup E^*)$ increases by 4. Repeat the process until each w_i has at most one 0 edge incident with it.
- Step 3. If there exist a 0-vertex and a 1-vertex in W each has a 0-edge incident with it, change the two 0-edge into 1-edges. Then we also have $v_1(W)=2m$ and $e_1(E_*\cup E^*)-e_0(E_*\cup E^*)$ increases by 4. Repeat the process until that there are at most 2m w_i' s each has one 0-edge incident with it. In this case, $e_1(E^*) \ge e_0(E^*)$ and $e_0(E_*) = |E_*|$.

Step 4. If $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ occurs during the process of step 2 or step 3, then the conclusion follows. If $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) = -3$ occurs during the process of step 2 and step 3, since $E_* \neq \Phi$, change a 0 - edge in E_* into a 1 - edge and we get a labelling $h: E_* \cup E^* \to \{0, 1\}$ under which $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) = -1$ and $v_1(W) = 2m$. If $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-3, -2, -1, 0\}$ has not occurred after step 3, we now have $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) < -3$. Since all the edges in E_* are labelled with 0 until now, change these 0 - edges into 1 - edges one by one and eventually we have $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \geq 1$. Observe that when a 0 - edge in E_* is changed into a 1 - edge, $e_1(E_* \cup E^*) - e_0(E_* \cup E^*)$ increases by 2. Then $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1\}$ occurs inevitably during the process. Hence the conclusion follows.

Theorem 2. Under the assumption of Lemma 3, G is E_2 -cordial if and only if $|V(G)| \not\equiv 2 \pmod{4}$.

Proof. By Lemma 1, we shall prove the sufficiency. It follows from Lemma 2 and Lemma 3 that e_{01} is even under the labelling h. Since |W| = 4m > 0 and $|V(G)| \not\equiv 2 \pmod{4}$, then |M| is even. So e_{00} and e_{11} are of the same parity. In order to get a labelling of G, we need further to label edges in M. According to Lemma 3, we distinguish three cases.

Case 1. $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) = -1$. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ in E_{11} and $\frac{e_{01}}{2}$ in E_{01} are labelled with 0 and others in M with 1. It is easy to show that $e_0(G) = e_1(G) + 1$, $v_0(G) = v_1(G)$. When e_{00} and e_{11} are both odd, then $\frac{e_{00}-1}{2}$ edges in E_{00} , $\frac{e_{11}-1}{2}$ edges in E_{11} and $\frac{e_{01}}{2}$ edges in E_{01} are labelled with 0 and others in M with 1. Similarly we have $e_0(G) = e_1(G) - 1$, $v_0(G) = v_1(G)$. In either case, G is E_2 -cordial.

Case 2.
$$e_1(E_* \cup E^*) - e_0(E_* \cup E^*) = -2$$
.

Subcase 2.1. $e_{01} > 0$. We can get an E_2 -cordial labelling of G as follows. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ in E_{11} and $\frac{e_{01}}{2} + 1$ in E_{01} are labelled with 0 and others in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}+1}{2}$ edges in E_{00} , $\frac{e_{11}+1}{2}$ in E_{11} and $\frac{e_{01}}{2}$ in E_{01} are labelled with 1 and others in M with 0. In either case, we have $e_0(G) = e_1(G)$, $v_0(G) = v_1(G)$.

Subcase 2.2. $e_{01}=0$. In this case, there exists a 0-edge in E_* . If not, we have $e_1(E_*\cup E^*)-e_0(E_*\cup E^*)\geq 1$, which is a contradiction. By changing a 0-edge in E_* into a 1-edge, we get another labelling $h':E_*\cup E^*\to\{0,1\}$ under which $e_0(E_*\cup E^*)=e_1(E_*\cup E^*)$ and $e_{01}=2$. Then we label edges in M based on h'. When e_{00} and e_{11} are both even, then one half of edges in E_{00} , E_{11} and E_{01} are labelled with 0 and the other in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}-1}{2}$ edges in E_{00} , $\frac{e_{11}-1}{2}$

in E_{11} and 2 in E_{01} are labelled with 0 and others in M with 1. In either case, we have $e_0(G) = e_1(G)$, $v_0(G) = v_1(G)$.

Case 3. $e_1(E_* \cup E^*) = e_0(E_* \cup E^*)$.

Subcase 3.1. $e_{01} > 0$. When e_{00} and e_{11} are both even, then one half of edges in E_{00} , E_{11} and E_{01} are labelled with 0 and the other in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}-1}{2}$ edges in E_{00} , $\frac{e_{11}-1}{2}$ in E_{11} and $\frac{e_{01}}{2} + 1$ in E_{01} are labelled with 0 and others in M with 1. In either case, we have $e_{0}(G) = e_{1}(G)$, $v_{0}(G) = v_{1}(G)$.

Subcase 3.2. $e_{01}=0$. By changing a 0-edge in E_* into a 1-edge, we get another labelling $h^{'}: E_* \cup E^* \to \{0,1\}$ under which $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) = 2$ and $e_{01}=2$. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ in E_{11} and 2 in E_{01} are labelled with 0 and the other in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}+1}{2}$ edges in E_{00} , $\frac{e_{11}+1}{2}$ in E_{11} and 1 in E_{01} are labelled with 0 and others in M with 1. In either case, we have $e_0(G)=e_1(G)$, $v_0(G)=v_1(G)$.

Lemma 4. Suppose M is a maximal matching of G, $E_* \neq \Phi$ and |W| = 4m+1. Then there are two labelling $h_1, h_2 : E_* \cup E^* \to \{0,1\}$ satisfying $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ and $v_1(W) = 2m+1$ under h_1 ; $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ and $v_1(W) = 2m$ under h_2 .

Proof. Assume $W = \{w_1, w_2, \dots, w_{4m+1}\}$. The proof is much similar to that of Lemma 3. We first take four steps to get h_1 .

- Step 1. Assign 1 to 2m+1 edges incident with different w_i 's and 0 to others in $E_* \cup E^*$.
- Step 2. If there is a w_i with two 0 edges incident with it, change the two 0 edges into 1 edges. Then repeat the process until each w_i has at most one 0 edge incident with it.
- Step 3. If there exist a 0 vertex and a 1 vertex in W each has a 0 edge incident with it, change the two 0 edges into 1 edges. Repeat the process until that there are at most 2m + 1 w_i 's each has one 0 edge incident with it.
- Step 4. If $e_1(E_* \cup E^*) e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ occurs during the process of step 2 or step 3, then the labelling desired is obtained; if $e_1(E_* \cup E^*) e_0(E_* \cup E^*) = -3$ occurs during the process of step 2 and step 3, change a 0 edge in E_* into a 1 edge; if $e_1(E_* \cup E^*) e_0(E_* \cup E^*) \in \{-3, -2, -1, 0\}$ has not occurred after step 3, change 0 edge in E_* into 1 edge one by one until we get the labelling desired.

The four steps we take to get h_2 are the same as above except that 2m+1 is replaced by 2m. So details are omitted.

Theorem 3. Under the assumption of Lemma 4, G is E_2 -cordial.

Proof. There are two cases.

Case 1. |M| is odd. In this case, we label edges in $E_* \cup E^*$ with h_1 . According to Lemma 4, we have $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ and $v_1(W) = 2m+1$. It follows that e_{01} is odd and e_{00} and e_{11} are of the same parity. No matter which value $e_1(E_* \cup E^*) - e_0(E_* \cup E^*)$ takes, we can label edges in M as follows. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ in E_{11} and $\frac{e_{01}-1}{2}$ in E_{01} are labelled with 0 and others in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}+1}{2}$ edges in E_{00} , $\frac{e_{11}+1}{2}$ in E_{11} and $\frac{e_{01}-1}{2}$ in E_{01} are labelled with 1 and others in M with 0. In any case above, we have $|e_0(G) = e_1(G)| \leq 1$, $v_1(G) = v_0(G) + 1$. Hence G is E_2 -cordial.

Case 2. |M| is even. In this case, we label edges in $E_* \cup E^*$ with h_2 . According to Lemma 4, we have $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ and $v_1(W) = 2m$. It follows that e_{01} is even and e_{00} and e_{11} are of the same parity. Observe that conditions above are the same as those in Theorem 2. So G can be proved to be E_2 -cordial if edges in M are labelled identically with Theorem 2. In fact, corresponding to cases of Theorem 2, equations of $e_1(G)$ and $e_0(G)$ stay the same but $v_1(G) = v_0(G) + 1$.

Theorem 4. Suppose M is a maximal matching of G, $E_* \neq \Phi$ and |W| = 4m + 2. Then G is E_2 -cordial if and only if $|V(G)| \not\equiv 2 \pmod{4}$.

Proof. We shall prove the sufficiency. It follows from |W| = 4m + 2 and $|V(G)| \not\equiv 2 \pmod{4}$ that |M| is odd. Suppose $W = \{w_1, w_2, \ldots, w_{4m+2}\}$. By labelling edges in $E_* \cup E^*$ with h_1 in Lemma 4, we have $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ and $v_1(W) = 2m + 1$. Then e_{01} is odd and e_{00} and e_{11} are of the same parity. No matter which value $e_1(E_* \cup E^*) - e_0(E_* \cup E^*)$ takes, we can label edges in M as follows. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} , $\frac{e_{11}}{2}$ in E_{11} and $\frac{e_{01}-1}{2}$ in E_{01} are labelled with 0 and others in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}+1}{2}$ edges in E_{00} , $\frac{e_{11}+1}{2}$ in E_{11} and $\frac{e_{01}-1}{2}$ in E_{01} are labelled with 1 and others in M with 0. In any case above, we have $|e_0(G) = e_1(G)| \leq 1$, $v_1(G) = v_0(G)$.

Theorem 5. Suppose M is a maximal matching of G, $E_* \neq \Phi$ and |W| = 4m + 3, then G is E_2 -coordial.

Proof. We shall prove the sufficiency. Suppose $W = \{w_1, w_2, \dots, w_{4m+3}\}$.

Case 1. |M| is odd. By labelling edges in $E_* \cup E^*$ with h_1 in Lemma 4, we have $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ and $v_1(W) = 2m + 1$. In order to get a labelling of G, we need further to label edges in M. No matter which value $e_1(E_* \cup E^*) - e_0(E_* \cup E^*)$ takes, edges in M can be labelled as follows. When e_{00} and e_{11} are both even, then $\frac{e_{00}}{2}$ edges in E_{00} ,

 $\frac{e_{11}}{2}$ in E_{11} and $\frac{e_{01}-1}{2}$ in E_{01} are labelled with 0 and others in M with 1; when e_{00} and e_{11} are both odd, then $\frac{e_{00}+1}{2}$ edges in E_{00} , $\frac{e_{11}+1}{2}$ in E_{11} and $\frac{e_{01}-1}{2}$ in E_{01} are labelled with 1 and others in M with 0. In any case above, we have $|e_0(G)| = e_1(G)| \le 1$, $v_1(G) = v_0(G) - 1$. Hence G is E_2 -cordial.

Case 2. |M| is even. Following the same steps as Lemma 4 except that 2m+1 is replaced by 2m+2, we obtain a labelling on $E_* \cup E^*$ under which $e_1(E_* \cup E^*) - e_0(E_* \cup E^*) \in \{-2, -1, 0\}$ and $v_1(W) = 2m+2$. Similar to case 2 of Theorem 3, G can be proved to be E_2 -cordial if edges in M are labelled the same as Theorem 2.

5 $E_{\star} = \Phi$

If $P_4 = P_{u_1u_2u_3u_4} \subseteq G$, then we can choose a maximal matching $M \supseteq \{u_1u_2, u_3u_4\}$, which implies that $u_2u_3 \in E_*$. Hence the condition $E_* \neq \Phi$ in Theorem 2-Theorem 5 is satisfied. If there is no $P_4 \subseteq G$, then branches of G must be C_3 or Stars. We first introduce two lemmas.

Lemma 5. Suppose G is E_2 -cordial. If G^* is obtained by one of the following transformations, then G^* is also E_2 -cordial. (1) $G^* = G \cup (4K_2)$; (2) $G^* = G \cup (4P_3)$; (3) $G^* = G \cup (4C_3)$; (4) $x \in V(G)$, G^* is obtained by merging four edges xu_1, xu_2, xu_3, xu_4 on x; (5) $\{x,y\} \subseteq V(G), G^*$ is obtained by merging xu_1, xu_2 on x and yu_3, yu_4 on y; (6) $\{x,y\} \subseteq V(G)$, G^* is obtained by merging xu_1, xu_2, xu_3 on x and yu_4 on y; (7) $\{x,y,z\} \subseteq V(G), G^*$ is obtained by merging xu_1, xu_2, yu_3 and zu_4 .

Proof. Since the proof is trivial, we just prove (3) and (7). Suppose f is an E_2 -cordial labelling of G. Then we extend the labelling f to G^* .

- (3) Assume $4C_3 = \bigcup_{i=1}^4 C_{x_i y_i z_i}$. Next we extend f to G^* as follows. Let $f(x_i y_i) = f(x_4 y_4) = f(y_4 z_4) = f(z_4 x_4) = 1$, $f(x_i z_i) = f(y_i z_i) = 0$, i = 1, 2, 3. Then f is an E_2 -coordial labelling of G^* .
- (7) We extend f to G^* as follows. Let $f(xu_1) = f(xu_2) = 1$, $f(yu_3) = f(zu_4) = 0$. Then f is an E_2 -cordial labelling of G^* .

Lemma 6. Suppose g is an E_2 -cordial labelling of G. If H satisfied one of the following conditions, then $G \cup H$ is E_2 -cordial. (1) there is a labelling of H under which $v_0(H) = v_1(H)$, $e_0(H) = e_1(H)$; (2) there are two labelling h_1, h_2 of H such that $v_0(H) = v_1(H)$, $e_0(H) = e_1(H) - 1$ under h_1 and $v_0(H) = v_1(H)$, $e_0(H) = e_1(H) + 1$ under h_2 .

Proof. (1) is easy to prove, we now prove (2). If the labelling g satisfies $|v_0(G)-v_1(G)| \leq 1$ and $0 \leq e_0(H)-e_1(H) \leq 1$, by combining g of G and h_1 of H, we obtain a labelling of $G \cup H$ which can be proved to be E_2 -cordial.

Similarly if g satisfies $|v_0(G) - v_1(G)| \le 1$ and $e_0(G) = e_1(G) - 1$, we can get an E_2 -cordial labelling of $G \cup H$ by combining g of G and h_2 of H.

Theorem 6. If $G = mC_3 \cup (\cup_i n_i S_i)$, where S_i is a Star of order i, then G is E_2 -cordial if and only if $|V(G)| \not\equiv 2 \pmod{4}$.

Proof. We shall make use of Lemma 5 and Lemma 6 to simplify the graph G, if the simplified graph is E_2 -cordial, so is the graph G. By (3) and (4) of Lemma 5, we only have to prove G is E_2 -cordial under the condition that $m \in \{0, 1, 2, 3\}$ and $i \le 5$.

If $n_5 > 0$, by (5) and (6) of Lemma 5, we can assume $n_5 = 1$ and $n_3 = n_4 = 0$. Since $S_5 \cup C_3$ satisfies (2) of Lemma 6, it suffices to show that $S_5 \cup (kP_2), k \in \{0, 1, 2, 3\}$ are E_2 -cordial, which are easy to prove. Hence the conclusion follows when $n_5 > 0$.

If $n_5=0$, by (6) and (7) of Lemma 5, we can assume $n_4\leq 1$ and $n_3\leq 1$ if $n_4=1$. Since $S_4\cup (2K_2)$ satisfied (2) of Lemma 6, we can further assume $n_2\leq 1$. In other words, if $n_4=1$, we have to prove $G=S_4\cup n_3S_3\cup n_2S_2\cup mC_3$ is E_2 -cordial when $n_3\in \{0,1\}, n_2\in \{0,1\}$ and $m\in \{0,1,2,3\}$. There are 16 cases in all. In any case, G can be proved to be E_2 -cordial.

Finally we shall prove $G = n_3 S_3 \cup n_2 S_2 \cup mC_3$ is E_2 -cordial. If $n_2 > 0$, since $K_2 \cup (2S_3)$ and $K_2 \cup (2C_3)$ satisfy (2) of Lemma 6, we may assume $m, n_3 \in \{0, 1\}$. So there are 12 cases in all. If $n_2 = 0$, there are 16 cases. In any case, one can check that G is E_2 -cordial.

Combining Theorem 1-Theorem 6, we have the following result.

Theorem 7. If a graph G contains no isolated vertex, then G is E_2 -cordial if and only if $|V(G)| \not\equiv 2 \pmod{4}$.

References

- [1] I. Cahit and R. Yilmaz, E₃-cordial graphs, Ars Combin., 54(2000), 119-127.
- [2] M.V. Bapat and N.B. Limaye, Edge-three cordial graphs arising from complete graphs, J. Combin. Math. Combin. comput., 56(2006), 147-169.
- [3] Rani R, Sridharan N. E_k -cordial labellings of graphs. preprint.
- [4] H.P. Wu and Z.S. Liu, The E_2 -coordinality of some graphs, Journal of Yanbian University (Natural Science), 36(2010), 7-10(in Chinese).
- [5] H.P. Wu, Z.S. Liu and Q. Liu, On the E_k -coordinality of some graphs, Ars Combin., preprint.