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Abstract In this paper, Es-cordiality of a graph G is considered. Suppose
G contains no isolated vertex, it is shown that G is Fj-cordial if and only
if G is not of order 4n + 2.
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1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For an
integer k, an edge labelling f : E — {1,2,...,k — 1} induces the vertex
labelling f : V — {1,2,...,k—1} defined by f(v) = 2 zeN(v) f(vz)(mod k),
where N(v) is the set of vertices adjacent to v and f(v) € {0,1,...,k—1}.
The number of vertices(resp. edges) of G labelled with i under f will he
denoted by v;(G)(resp. €;(G)), i = 0,1,...,k — 1. A labelling f of G
is said to be Ej-cordial if |v;(G) — v;(G)| < 1 and |e;(G) — ¢;(G)| < 1,
Vi,j € {0,1,2,...,k—1}.

Definition. A graph G is said to be Ex-cordial if it admits an Ej-cordial
labelling.

The notion of an Fy-cordial labelling was first introduced by Cahit and
Yilmaz(1], who showed that the following graphs are E3-cordial: P,(n > 3),
Stars S, if and only if n £ 1(mod3), K.(n > 3), Ca(n > 3), friendship
graphs and fans(n > 3). They also proved S,(n > 2) is Ei-cordial if and
only if n # 1(mod k) when k is odd or n # 1(mod2k) when k is even and
k # 2. Some further results see [2]-[5]. In this paper, the E;-cordiality of a
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graph G is considered.

Suppose S is a vertex set or an edge set, we denote by |S| the number
of elements of S and write v;(S)(e;(S)) to indicate the number of ver-
tices(edges) labelled with ¢ in § , ¢ = 0,1. Sometimes vertices(edges)
labelled with i are called i — vertices(i — edges) for simplicity. We first
introduce a necessary condition for a graph to be Ep-cordial.

Lemma 1. If |[V(G)| = 2(mod 4), then G is not Ez-cordial.

Proof. Suppose f is an E,-cordial labelling of G. Since |V(G)| = 2(mod

4), we have v1(G) = vo(G) = Mgll So v;(G) is odd. However, by
Y f(z) =2 YT f(uw)(mod 2), we have v)(G) = ) f(z) =

zeV(G) weE(G) zeV(G)

2 Y f(uv)(mod 2), which implies that v;(G) is even, a contradiction.
uwv€ B(G)

In the following discussion, we assume G contains no isolated vertex.
We shall prove that G is E,-cordial if |V(G)| £ 2(mod 4).

2 M-W structure of a graph

Suppose M = {z1y1,T2y2, .- -, TmYm } is & maximal matching of a graph G,
W is the set of vertices unsaturated. Then we have a partition {X,Y, W}
of V(G), where X = {z1,Z2,...,Zm}, Y = {y1,¥2,...,ym}. Define E, =
{wvluwv € E(G), {u,v} C XUY} - M, E* = {wulwu € E(G),w € W,u €
X UY}. Since M is a maximal matching, then {E., E*, M} is a partition
of E(G). If an edge labelling h : E,UE* — {0,1} induces a vertex labelling
h:V(G) — {0,1} by h(v) = > h(uv)(mod 2), then edges in M
u€N(v),uvgM

fall into three groups, i.e., E;; = {zy|lzy € M, h(z) = h(y) = i},i=0,1and
Eo = {zy|zy € M, |h(z) — h(y)| = 1}. For simplicity, let e;; = |Ey|, 0 <
i < j < 1. Note that the preceding notations will be adopted throughout
the following discussion.

Lemma 2. Suppose M is a maximal matching of G. For any h defined

above, v1 (W) and eq, are of the same parity.

Proof. Forany h: E.UE* — {0,1}, wehavev,(G)=2 ) h(uv)(mod
wweE . UE"

2). So v;(G) is even. It follows that v} (W) and v, (X UY) are of the same

parity. Since the number of 1 — vertices generated by endpoints of edges in

Ego and E), is always even, then v; (X UY') and eg are of the same parity.

Hence the conclusion follows.
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3 G has a perfect matching

Theorem 1. If M is a perfect matching of G, then G is E>-cordial if and
only if [V(G)| £ 2(mod 4).

Proof. By Lemma 1, we need only to prove the sufficiency. Since M is a
perfect matching and |V(G)| # 2(mod 4), then |[M| is even. We distinguish
three cases.

Case 1. |E,| = 0. In this case, G = (2n)K,. By assigning 0 to n edges
and 1 to the other, we obtain an E»-cordial labelling of G.

Case 2. |E.| = 1. In this case, G = P, U (2n — 2)K;. Edges of P, are
labelled in order with 0, 0, 1; one half of the rest edges are labelled with 0
and the other with 1. One can check that the labelling of G defined ahove
is E5-cordial.

Case 3. |E,| > 2. We first label edges in E, and then those in M. Once

a labelling h : E, — {0, 1} is given, each v € V(G) gets a temporary label

induced by h(v) = > h(uv)(mod 2) and M is partitioned into
u€EN(v),uv€E,

Eoo, E11 and Eyp;. In order to obtain a labelling of G, we need further to

label edges in M. Note that if an edge in M is labelled with 0, labels of
its endpoints stay the same as their temporary labels; if an edge in M is
labelled with 1, labels of its endpoints are both changed.

Subcase 3.1. |E.| = 2k. Assign O to k edges in E, and 1 to the other.
It follows from Lemma 2 that eg; is even and egy and ey; are of the same
parity.

If oy > 0, we can get an Es-cordial labelling of G as follows. When
ego and e;; are both even, then £ edges in Eqo, 4L edges in Epy and an
edges in Ep; are labelled with 0 and others in M with 1; when eg and
e)1 are both odd, then 5912""—1 edges in Eyg, -u— edges in En and £ —1
edges in Ey; are labelled with 0 and others in M with 1. Simple ca.lcula.tlon
shows that eo(M) = e;(M), eo(G) = eo(M) + k = e1(M) + k = €,(G),
vo{G) = v1(G). Therefore G is Ey-cordial.

If eoy = 0, by changing a 0—edge in E, into a 1 —edge, we get another
labelling &' : E, = {0,1} under which eo(Ey) = €1(E,) — 2 and e, = 2.
Next we shall label edges in M based on k'. When ego and e;; are both
even, then <§¢ edges in Eqo, <4t edges in E; and 2 edges in Ey; are labelled
with 0 and others in M with 1; when ego and e;, are both odd, then -‘mzﬁ
edges in Fyg, 3“;’—1 edges in E); and 1 edge in Ey; are labelled with 0
and others in M with 1. Similar discussion shows that eo(G) = €;(G),
w(G) = v1(G).
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Subcase 3.2. |E,| = 2k + 1. Assign O to k + 1 edges in E, and 1 to
others.

If eg; > 0, we can get an Es-cordial labelling of G as follows. When

eoo and ej; are both even, then -gﬂ edges in Ego, €4+ edges in Ey, and

— 1 edges in Ep; are labelled with 0 and others in M with 1; when ego

and ey are both odd, then 5‘19{—1 edges in Eqg, —l%— edges in E1; and £

edges in Ep; are labelled with 0 and others in M with 1. In either case, we
have 3(G) = €,(G) — 1, v(G) = v1(G).

If eq1 = 0, by changing a 0 —edge in E. into a 1 —edge, we get another
labelling A’ E — {0,1} under which eo(E.) = ei(E.) — 1 and eg; = 2.
Next we shall label edges in M based on h'. When egg and e, are hoth
even, then ¢ edges in Eqo, €2 in Eyy and 2 in Ey; are labelled with 0
and others i m M with 1; When ego and e;; are both odd, then 5992"—1 edges
in Egp, —*12— in Ey; and 1 in Ey; are labelled with 0 and others in M with
1. In either case, we have eo(G) = €1(G) + 1, vo(G) = v1(G). Hence G is
E,-cordial.

4 G has no perfect matching but E, # @

We give the E;-cordial labelling of G when |W| = 4m > 0,|W| = 4m +
1,|W| = 4m + 2 and |W| = 4m + 3 respectively. First we introduce a
lemma.

Lemma 3. Suppose M is a maximal matching of G, E. # ® and |W| =
4m > 0. Then there is a labelling h : E, U E* — {0,1} under which
ei(E.UE*) —eo(E.UE™) € {-2,-1,0} and v (W) = 2m.

Proof. Assume W = {w;,ws,...,wsm}. We take four steps to get the
labelling desired.

Step 1. Assign 1 to 2m edges incident with different w;s and O to others
in E, U E*. Now we have v (W) = v;(W) = 2m.

Step 2. If there is a w; with two 0 — edges incident with it, change
the two 0 — edges into 1 — edges. Then we also have v;(W) = 2m but
e1(E.UE*) —ey(E. UE") increases by 4. Repeat the process until each w;
has at most one 0 — edge incident with it.

Step 3. If there exist a 0 — vertez and a 1 — verter in W each has a
0 — edge incident with it, change the two 0 — edges into 1 — edges. Then
we also have v;(W) = 2m and e;(E. U E*) — eo(E. U E") increases by
4. Repeat the process until that there are at most 2m w;s each has one
0 — edge incident with it. In this case, 1 (E*) > eo(E") and eo( E.) = |EL|.
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Step 4. If e)(E. U E*) — eg(E. U E*) € {—2,—1,0} occurs during the
process of step 2 or step 3, then the conclusion follows. If e, (E. U E*) —
eo(E. U E*) = —3 occurs during the process of step 2 and step 3, since
E. # &, change a 0 — edge in E, into a 1 — edge and we get a labelling
h: E.UE* — {0,1} under which e;(E, U E*) — eo(E, U E*) = —1 and
v (W) = 2m. If e(E, U E*) — eo(E. U E*) € {-3,-2,—1,0} has not
occurred after step 3, we now have e;(E. U E*) — eo(E, U E*) < —3. Since
all the edges in E, are labelled with 0 until now, change these 0 —edges into
1—edges one by one and eventually we have e, (E,UE*)—¢ey(E,UE*) > 1.
Observe that when a 0—edge in E, is changed into a 1—edge, e;(E.UE*)—
eo( E. U E™) increases by 2. Then e;(E, U E*) — eo(E, U E*) € {-2,-1}
occurs inevitably during the process. Hence the conclusion follows.

Theorem 2. Under the assumption of Lemma 3, G is E,-cordial if and
only if |V(G)| £ 2(mod 4).

Proof. By Lemma 1, we shall prove the sufficiency. It follows from Lemma,
2 and Lemma 3 that eq; is even under the labelling h. Since |W| = 4m >0
and |V(G)| # 2(mod 4), then |M| is even. So egp and e;; are of the same
parity. In order to get a labelling of G, we need further to label edges in
M. According to Lemma 3, we distinguish three cases.

Case 1. e;(E, U E*) — eg(E, U E*) = —1. When egq and e;, are both
even, then £ edges in Ego, 2+ in Eq; and €1 in Ey; are labelled with
0 and others in M with 1. It is easy to show that eo(G) = ;(G) + 1,
v0(G) = v1(G). When eq and e, are both odd, then €= edges in Eqo,
ﬂlz-'—l edges in E)) and & edges in Eyp; are labelled with 0 and others in
M with 1. Similarly we have eo(G) = e1(G) — 1, vo(G) = v1(G). In either
case, G is Fy-cordial.

Case 2. )(EcUE*) —ey(E.UE*) = —

Subcase 2.1. eg; > 0. We can get an E,-cordial labellmg of G as
follows. When ego and ey; are both even, then €82 edges in Ego, &t in Ey
and %1 + 1 in Ep; are labelled with 0 and others in M with 1; when €00
and en are both odd, then 29l edges in Ego, #4+L in Ej; and % in
Eq, are labelled with 1 and others in M with 0. In either case, we have
eo(G) = el(G), Uo(G) =N (G)

Subcase 2.2. eg; = 0. In this case, there exists a 0 — edge in E,.
If not, we have e, (E, U E*) — eo(E, U E*) > 1, which is a contradiction.
By changing a 0 — edge in E, into a 1 — edge, we get another labelling
R : E,UE* - {0,1} under which eo(E.UE") = e;(E,UE") and eg; = 2.
Then we label edges in M based on h'. When ego and e;; are both even,
then one half of edges in Eyg, E;; and Ep; are labelled with 0 and the other
in M with 1; when egy and e;; are both odd, then 599{—1 edges in Fqp, Elzll
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in Ey; and 2 in Ep; are labelled with 0 and others in M with 1. In either
case, we have eo(G) = €,(G), vo(G) = n1(G).

Case 3. )(E. UE") = e(E.UE™).

Subcase 3.1. eg; > 0. When egp and e;; are both even, then one half
of edges in Eyg, E11 and Ey; are labelled w1th 0 and the other in M with
1; when ego and e;; are both odd, then 22=2 1 edges in Ego, 5112-— in Fyy
and £ 41 in Eo; are labelled with 0 and others in M with 1. In either

case, we have eo(G) = €1(G), vo(G) = v1(G).

Subcase 3.2. eg; = 0. By changing a 0 — edge in E, into a 1 — edge,
we get another labelling ' : E. U E* — {0, 1} under which e;(E. U E*) —
eo(E. U E*) = 2 and eg; = 2. When eg and ey are both even, then —gﬂ
edges in Ego, %% in Ey; and 2 in Ey; are labelled with 0 and the other in
M with 1; when ego and e;; are both odd, then —Qém edges in Ego, —1-‘2"'—1
in Eq; and 1 in Ep; are labelled with 0 and others in M with 1. In either
case, we have eg(G) = €1(G), v (G) = v1(G).

Lemma 4. Suppose M is a maximal matching of G, E, # ® and |W| =
4m + 1. Then there are two labelling h;, he : E. U E* — {0,1} satisfying
e1(E.UE*") —e(E.UE") € {-2,~-1,0} and v;(W) = 2m + 1 under hy;
e1(E.UE*) — eo(E, U E*) € {—2,-1,0} and v; (W) = 2m under ho.

Proof. Assume W = {w),ws,...,Wsm+1}. The proof is much similar to
that of Lemma 3. We first take four steps to get h;.

Step 1. Assign 1 to 2m + 1 edges incident with different w;s and 0 to
others in E. U E*.

Step 2. If there is a w; with two 0 — edges incident with it, change the
two 0 — edges into 1 — edges. Then repeat the process until each w; has at
most one 0 — edge incident with it.

Step 3. If there exist a 0 — vertez and a 1 — vertex in W each has a

— edge incident with it, change the two 0 — edges into 1 — edges. Repeat

the process until that there are at most 2m + 1 w;s each has one 0 — edge
incident with it.

Step 4. If ej(E. U E™) — eo(E. U E*) € {-2,-1,0} occurs during
the process of step 2 or step 3, then the labelling desired is obtained; if
e1(E. U E*) — eo(E. U E*) = —3 occurs during the process of step 2 and
step 3, change a 0—edge in E. into a 1—edge; if e;(E.UE*) —eo(E.UE*) €
{-3,-2,—1,0} has not occurred after step 3, change 0 — edges in E, into
1 — edges one by one until we get the labelling desired.

The four steps we take to get h, are the same as above except that
2m + 1 is replaced by 2m. So details are omitted.
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Theorem 3. Under the assumption of Lemma 4, G is Es-cordial.

Proof. There are two cases.

Case 1. |[M| is odd. In this case, we label edges in E, U E* with h;.
According to Lemma 4, we have e;(E. U E*) — eo(E. U E*) € {-2,-1,0}
and v (W) = 2m + 1. It follows that ep; is odd and ego and e;; are of the
same parity. No matter which value e; (£, U E*) — ¢o(E, U E*) takes, we
can lahel edges in M as follows. When egp and e;; are hoth even, then "
edges in Eoo, 4 in Eyy and 241 in Eo,; are labelled with 0 and others in
M with 1; when ego and ej; are both odd, then 2% edges in Ego, audtl
in Ey; and 24=1 in Ey; are labelled with 1 and others in M with 0. In any
case ahove, we have |eg(G) = €1(G)| £ 1, v1(G) = vo(G) + 1. Hence G is
Es-cordial.

Case 2. |M| is even. In this case, we label edges in E, U E* with h,.
According to Lemma 4, we have e;(E, U E*) — eg(E. U E*) € {-2,-1,0}
and vy (W) = 2m. It follows that e, is even and egg and e;; are of the same
parity. Observe that conditions above are the same as those in Theorem 2.
So G can be proved to he E,-cordial if edges in M are labelled identically
with Theorem 2. In fact, corresponding to cases of Theorem 2, equations
of e1(G) and eo(G) stay the same but v1(G) = vo(G) + 1.

Theorem 4. Suppose M is a maximal matching of G, E. # ® and |W| =
4m + 2. Then G is Es-cordial if and only if |V(G)| # 2(mod 4).

Proof. We shall prove the sufficiency. It follows from |W| = 4m + 2 and
[V(G)| # 2(mod 4) that |M| is odd. Suppose W = {wy,ws, ..., Wams2}-
By labelling edges in E, U E* with k) in Lemma 4, we have e;(E, U E*) —
eo( EL,UE*) € {-2,—1,0} and vy (W) = 2m+1. Then ep; is odd and ego and
e11 are of the same parity. No matter which value e, (E, UE*) —eo(E,.UE*)
takes, we can label edges in M as follows. When egg and e;; are both even,
then <02 edges in Eqgo, €4t in Ey; and _m—_ in Eg; are labelled with 0 and
others in M with 1; when egg and ey a.re both odd, then 599"'—1 edges in
Eqo, &1l in Ey; and 01=l in Eo; are labelled with 1 and others in M
with 0. In any case above, we have |eo(G) = €,(G)| < 1, v1(G) = vo(G).
Theorem 5. Suppose M is a maximal matching of G, E, # ® and |W| =
4m + 3, then G is Fs-cordial.

Proof. We shall prove the sufficiency. Suppose W = {wy,ws, ..., Wam43}.

Case 1. |M| is odd. By labelling edges in E, U E* with h; in Lemma
4, we have e;(E, U E*) —eo(EL.UE*) € {-2,-1,0} and (W) =2m + 1.
In order to get a labelling of G, we need further to label edges in M. No
matter which value e;(E. U E*) — eo( E\ U E*) takes, edges in M can be
labelled as follows. When egp and e;; are both even, then €2 edges in Eqo,
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&L in Eqy and 51“2—'11 in Eq; are labelled with 0 and others in M with 1;
when egp and e;; are both odd, then 5092"'—1 edges in Eqo, ﬂzil in E;; and
m{—‘- in Eg; are labelled with 1 and others in M with 0. In any case above,
we have |eg(G) = e1(G)| < 1, v1(G) = v(G) — 1. Hence G is E;-cordial.

Case 2. |M| is even. Following the same steps as Lemma 4 except that
2m +1 is replaced by 2m + 2, we obtain a labelling on E, U E* under which
e1(E,UE*) — eo(E.UE*) € {-2,-1,0} and vy(W) = 2m + 2. Similar to
case 2 of Theorem 3, G can be proved to be Ep-cordial if edges in M are
labelled the same as Theorem 2.

5 E. =0

If Py = P, ujusus C G, then we can choose a maximal matching M 2
{uyuz, uzuq}, which implies that upus € E.. Hence the condition E, # @
in Theorem 2-Theorem 5 is satisfied. If there is no P; C G, then branches
of G must be C3 or Stars. We first introduce two lemmas.

Lemma 5. Suppose G is Ej-cordial. If G* is obtained by one of the
following transformations, then G* is also Ep-cordial. (1) G* = GU (4K3);
(2) G* = GU (4P3); (3) G* = G U (4C3); (4) z € V(G), G* is obtained
by merging four edges ru;,zTus,zus,zus on z; (5) {z,y} C V(G), G* is
obtained by merging zu;,zu; on = and yus,yu4 on y; (6) {z,y} C V(G),
G* is obtained by merging zu;,Tuz, zu3 on z and yuq on y; (7) {z,y,2} C
V(G), G* is obtained by merging zu,;,Tus, yua and zuy.

Proof. Since the proof is trivial, we just prove (3) and (7). Suppose f is
an Es-cordial labelling of G. Then we extend the labelling f to G*.

(3) Assume 4C3 = U?_|C;,y..;. Next we extend f to G* as follows.
Let f(z:iy:) = f(zaya) = f(yaza) = fzaz4) = 1, f(ziz:) = f(yiz) = 0,
i=1,2,3. Then f is an Ej-cordial labelling of G*.

(7) We extend f to G* as follows. Let f(zu)) = f(zuz) = 1, f(yus) =
f(zuq) = 0. Then f is an Ep-cordial labelling of G*.

Lemma 6. Suppose g is an E,-cordial labelling of G. If H satisfied one of
the following conditions, then GUH is Ea-cordial. (1) there is a labelling of
H under which vo(H) = v1(H), eo( H) = e1(H); (2) there are two labelling
hi,hy of H such that vo(H) = vy (H),eo(H) = €;(H) — 1 under h, and
vo(H) = vi(H),eo( H) = e1(H) + 1 under ha.

Proof. (1) is easy to prove, we now prove (2). If the labelling g satisfies
[vo(G)—v1(G)| < 1and 0 < eo(H)—e1(H) < 1, by combining g of G and hy
of H, we obtain a labelling of GU H which can be proved to be E3-cordial.
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Similarly if g satisfies [vo(G) — v1(G)| £ 1 and e4(G) = ;(G) — 1, we can
get an Fs-cordial labelling of G U H by combining g of G and h; of H.
Theorem 6. If G = mC3 U (U;n;S;), where S; is a Star of order i, then G
is Es-cordial if and only if |V(G)| # 2(mod 4).

Proof. We shall make use of Lemma 5 and Lemma 6 to simplify the graph
G, if the simplified graph is E;-cordial, so is the graph G. By (3) and (4) of
Lemma 5, we only have to prove G is Ej-cordial under the condition that
m € {0,1,2,3} and i < 5.

If ng > 0, by (5) and (6) of Lemma 5, we can assume ns = 1 and
ng = ng = 0. Since S5 UCs satisfies (2) of Lemma 6, it suffices to show that
S5 U (kP2),k € {0,1,2,3} are Ej-cordial, which are easy to prove. Hence
the conclusion follows when ng > 0.

If ns = 0, by (6) and (7) of Lemma 5, we can assume ny < 1 and
ng < 1if ng = 1. Since S4 U (2K>) satisfied (2) of Lemma 6, we can
further assume ny < 1. In other words, if ny = 1, we have to prove
G = §4UnzS3UnyS,UmC} is Ep-cordial when ng € {0,1},n2 € {0,1} and
m &€ {0,1,2,3}. There are 16 cases in all. In any case, G can be proved to
be Ej-cordial.

Finally we shall prove G = n3Ss UnaSy UmCjs is Ea-cordial. If ny > 0,
since K3 U (253) and K3 U (2C3) satisfy (2) of Lemma 6, we may assume
m,n3 € {0,1}. So there are 12 cases in all. If ny = 0, there are 16 cases.
In any case, one can check that G is Ey-cordial.

Combining Theorem 1-Theorem 6, we have the following result.

Theorem 7. If a graph G contains no isolated vertex, then G is E,-cordial
if and only if |V(G)| # 2(mod 4).
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