Signed k-domatic numbers of graphs

¹O. Favaron, ^{2*†} S.M. Sheikholeslami and ³L. Volkmann

¹Univ Paris-Sud and CNRS, LRI, UMR 8623 Orsay, F-91405, France Odile.Favaron@lri.fr

²Department of Mathematics Azarbaijan University of Tarbiat Moallem Tabriz, I.R. Iran s.m.sheikholeslami@azaruniv.edu

> ³Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany volkm@math2.rwth-aachen.de

Abstract

Let k be a positive integer, and let G be a simple graph with vertex set V(G). A function $f:V(G)\longrightarrow \{-1,1\}$ is called a signed k-dominating function if $\sum_{u\in N[v]}f(u)\geq k$ for each vertex $v\in V(G)$. A set $\{f_1,f_2,\ldots,f_d\}$ of signed k-dominating functions on G with the property that $\sum_{i=1}^d f_i(v)\leq 1$ for each $v\in V(G)$, is called a signed k-dominating family (of functions) on G. The maximum number of functions in a signed k-dominating family on G is the signed k-domatic number of G, denoted by $d_{kS}(G)$. In this paper we initiate the study of signed k-domatic numbers in graphs and we present some sharp upper bounds for $d_{kS}(G)$. In addition, we determine the signed k-domatic number of complete graphs.

Keywords: signed k-domatic number, signed k-dominating function, signed k-domination number

MSC 2000: 05C20, 05C69, 05C45

^{*}Corresponding author

[†]Research supported by the Research Office of Azarbaijan University of Tarbiat Moallem

1 Introduction

In this paper, G is a finite simple graph with vertex set V = V(G) and edge set E = E(G). For a vertex $v \in V(G)$, the open neighborhood N(v) is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood N[v] is the set $N(v) \cup \{v\}$. The open neighborhood N(S) of a set $S \subseteq V$ is the set $\bigcup_{v \in S} N(v)$, and the closed neighborhood N[S] of S is the set $N(S) \cup S$. The minimum degree of a vertex of G is denoted by S(G). Consult [9] for the notation and terminology which are not defined here.

For a real-valued function $f:V(G)\longrightarrow \mathbb{R}$, the weight of f is w(f)= $\sum_{v \in V} f(v)$. For $S \subseteq V$, we define $f(S) = \sum_{v \in S} f(v)$. So w(f) = f(V). Let $k \geq 1$ be an integer and let G be a graph with minimum degree at least k-1. A signed k-dominating function (SkD function) is a function $f: V(G) \to \{-1,1\}$ satisfying $\sum_{u \in N[v]} f(u) \ge k$ for every $v \in V(G)$. The minimum of the values of $\sum_{v \in V(G)} f(v)$ taken over all signed k-dominating functions f is called the signed k-domination number and is denoted by $\gamma_{kS}(G)$. As the assumption $\delta(G) \geq k-1$ is clearly necessary for a graph to have a SkD function, we will always assume that when we discuss $\gamma_{kS}(G)$, all graphs involved satisfy $\delta(G) \geq k-1$. Then the function assigning +1 to every vertex of G is a SkD function, called the function ϵ , of weight n. Thus $\gamma_{kS}(G) \leq n$ for every graph of order n with $\delta \geq k-1$. Moreover, the weight of every SkD function different from ϵ is at most n-2 and more generally, $\gamma_{kS}(G) \equiv n \pmod{2}$. Hence $\gamma_{kS}(G) = n$ if and only if ϵ is the unique SkD function of G. In the special case when k = 1, $\gamma_{kS}(G)$ is the signed domination number investigated in [2] and has been studied by several authors (see for example [1, 3]). The signed k-domination number of graphs was introduced by Wang [8].

Observation 1. Let G be a graph of order n and minimum degree $\delta \ge k-1$. Then $\gamma_{ks}(G)=n$ if and only if for each $v \in V$, there exists a vertex $u \in N[v]$ such that $\deg(u)=k-1$ or $\deg(u)=k$ (this condition implies $\delta \le k$).

Proof. If for each $v \in V$, there exists a vertex $u \in N[v]$ such that $\deg(u) = k-1$ or $\deg(u) = k$, then for each $v \in V$ there exists a vertex $u \in N[v]$ such that each SkD function satisfies f(x) = +1 for all $x \in N[u]$ and in particular f(v) = +1. Therefore ϵ is the unique SkD function and $\gamma_{ks}(G) = n$.

Conversely, assume that $\gamma_{kS}(G) = n$. If there exists a vertex v such that $\deg(u) \geq k+1$ for each $u \in N[v]$, then the function f defined by f(v) = -1 and f(x) = 1 for $x \neq v$ is a signed k-dominating function of weight n-2, a contradiction. This completes the proof.

A set $\{f_1, f_2, \dots, f_d\}$ of signed k-dominating functions on G with the property that $\sum_{i=1}^d f_i(v) \leq 1$ for each $v \in V(G)$, is called a signed k-

dominating family on G. The maximum number of functions in a signed k-dominating family on G is the signed k-domatic number of G, denoted by $d_{kS}(G)$. The signed k-domatic number is well-defined and $d_{kS}(G) \geq 1$ for all graphs G with $\delta(G) \geq k-1$ since the set consisting of any one SkD function, for instance the function ϵ , forms a SkD family of G. A d_{kS} -family of a graph G is a SkD family containing $d_{kS}(G)$ SkD functions. The signed 1-domatic number $d_{1S}(G)$ is the usual signed domatic number $d_{S}(G)$ which was introduced by Volkmann and Zelinka in [7] and has been studied by several authors (see for example [4, 5, 6]).

Observation 2. Let G be a graph of order n. If $\gamma_{kS}(G) = n$, then ϵ is the unique SkD function of G and so $d_{kS}(G) = 1$.

The following two observations are consequence of Observations 1 and 2.

Observation 3. If G is a graph of order n and k = n, then G is the complete graph and thus $\gamma_{ks}(G) = n$ and $d_{ks}(G) = 1$.

Observation 4. If G is a graph of order n and k = n - 1, then $\gamma_{ks}(G) = n$ and so $d_{ks}(G) = 1$.

Proof. If G is the complete graph, then Proposition A implies that $\gamma_{ks}(G) = n$ and so $d_{ks}(G) = 1$. Thus we may assume that G is not the compete graph. Let $u, v \in V(G)$ such $uv \notin E(G)$. Since $\delta(G) \geq n-2$, we have $\deg(u) = \deg(v) = n-2$, $N[u] = V(G) - \{v\}$ and $N[v] = V(G) - \{u\}$. Let $f: V(G) \to \{-1, 1\}$ be a $\gamma_{ks}(G)$ -function. Since $\sum_{x \in N[u]} f(x) \geq n-1$, we must have f(x) = 1 for each $x \in N[u]$. Similarly, f(x) = 1 for each $x \in N[v]$. Thus f(x) = 1 for all vertices $x \in V(G)$. It follows that $\gamma_{ks}(G) = n$ and by Observation 2 we have $d_{ks}(G) = 1$.

Corollary 5. If G is a r-regular graph and k = r + 1 or r, then $\gamma_{ks}(G) = n$ and $d_{ks}(G) = 1$.

We first study basic properties and sharp upper bounds for the signed k-domatic number of a graph. Some of them generalize the result obtained for the signed domatic number. Then we determine the signed k-domatic number of complete graphs.

In this paper we make use of the following results.

Proposition A. [8] Let $k \ge 1$ be an integer. For any integer $n \ge k$, we have

$$\gamma_{kS}(K_n) = \begin{cases} k & \text{if } n \equiv k \pmod{2} \\ k+1 & \text{otherwise.} \end{cases}$$
 (1)

Proposition B. [7] If $G = K_n$ is the complete graph of order n, then

$$d_S(K_n) = \begin{cases} n & \text{if } n \text{ is odd,} \\ p & \text{if } n = 2p \text{ and } p \text{ is odd} \\ p - 1 & \text{if } n = 2p \text{ and } p \text{ is even.} \end{cases}$$
 (2)

2 Basic properties of the signed k-domatic number

In this section we present basic properties of $d_{kS}(G)$ and sharp bounds on the signed k-domatic number of a graph.

Proposition 6. If $k > p \ge 1$ are integers, then $d_{pS}(G) \ge d_{kS}(G)$ for any graph G.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a SkD family on G such that $d = d_{kS}(D)$. Then $\{f_1, f_2, \ldots, f_d\}$ is also a SpD family on G and thus $d_{pS}(G) \ge d_{kS}(G)$.

Theorem 7. The signed k-domatic number of a graph is an odd integer.

Proof. Let G be an arbitrary graph, and suppose that $d = d_{kS}(G)$ is even. Let $\{f_1, f_2, \ldots, f_d\}$ be a $d_{kS}(G)$ -family. If $u \in V(G)$ is an arbitrary vertex, then $\sum_{i=1}^d f_i(u) \leq 1$. But on the left-hand side of this inequality, a sum of an even number of odd summands occurs. Therefore it is an even number, and we obtain $\sum_{i=1}^d f_i(u) \leq 0$ for each $u \in V(G)$. This forces

$$d = \sum_{i=1}^{d} 1 \\ \leq \sum_{i=1}^{d} (\frac{1}{k} \sum_{u \in N[v]} f_i(u)) \\ = \frac{1}{k} \sum_{u \in N[v]} \sum_{i=1}^{d} f_i(u) \\ \leq 0$$

which is a contradiction.

Theorem 8. If G is a graph of order n and $\delta(G) \geq k-1$, then

$$1 \le d_{kS}(G) \le \frac{\delta(G) + 1}{k} \le \frac{n}{k}.$$

Moreover if $d_{kS}(G) = \frac{\delta(G)+1}{k}$, then for each function of any d_{kS} -family $\{f_1, f_2, \dots, f_d\}$ and for all vertices v of degree $\delta(G)$, $\sum_{u \in N[v]} f_i(u) = k$ and $\sum_{i=1}^d f_i(u) = 1$ for every $u \in N[v]$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a SkD family of G such that $d = d_{kS}(G)$ and let v be a vertex of minimum degree $\delta(G)$. Then $|N[v]| = \delta + 1$ and

$$\begin{array}{rcl} 1 \leq d & = & \sum_{i=1}^{d} 1 \\ & \leq & \sum_{i=1}^{d} \frac{1}{k} \sum_{u \in N[v]} f_i(u) \\ & = & \frac{1}{k} \sum_{u \in N[v]} \sum_{i=1}^{d} f_i(u) \\ & \leq & \frac{1}{k} \sum_{u \in N[v]} 1 \\ & = & \frac{\delta(G) + 1}{k}. \end{array}$$

If $d_{kS}(G) = \frac{\delta(G)+1}{k}$, then the two inequalities occurring in the proof become equalities, which gives the two properties given in the statement.

The special case k=1 in Theorems 7 and 8 can be found in [7]. The next corollary is a consequence of Theorems 7 and 8.

Corollary 9. If G is a graph of minimum degree δ , then $d_{kS}(G) = 1$ for every integer k such that $\frac{\delta+1}{3} < k \le \delta+1$.

In particular for a tree T and for a cycle C_n , we have $d_{1S}(T) = d_{2S}(T) = 1$ and $d_{2S}(C_n) = d_{3S}(C_n) = 1$.

Next we improve the bound given in Theorem 8 for some special cases.

Theorem 10. Let $k \geq 1$ be an integer, and let G be a graph of order n with $\delta(G) \geq k - 1$. If k and $\delta(G)$ are odd or k and $\delta(G)$ are even, then

$$d_{kS}(G) \le \frac{\delta(G) + 1}{k + 1}.$$

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a SkD family on G such that $d = d_{kS}(G)$, and let v be a vertex of minimum degree $\delta(G)$. Assume first that k and $\deg(v) = \delta(G)$ are odd. The definition yields to $\sum_{x \in N[v]} f_i(x) \ge k$ for each $i \in \{1, 2, \ldots, d\}$. On the left hand side of this inequality a sum of an even number of odd summands occurs. Therefore it is an even number, and as k is odd, we obtain $\sum_{x \in N[v]} f_i(x) \ge k + 1$ for each $i \in \{1, 2, \ldots, d\}$. It follows that

$$d = \sum_{i=1}^{d} 1 \le \sum_{i=1}^{d} \frac{1}{k+1} \sum_{u \in N[v]} f_i(u)$$

$$= \frac{1}{k+1} \sum_{u \in N[v]} \sum_{i=1}^{d} f_i(u)$$

$$\le \frac{1}{k+1} \sum_{u \in N[v]} 1 = \frac{\delta(G)+1}{k+1},$$

and the desired bound is proved. Assume next that k and $\deg(v) = \delta(G)$ are even. Note that $\sum_{x \in N[v]} f_i(x) \ge k$ for each $i \in \{1, 2, ..., d\}$. On the left hand side of this inequality a sum of an odd number of odd summands occurs. Therefore it is an odd number, and as k is even, we obtain $\sum_{x \in N[v]} f_i(x) \ge k + 1$ for each $i \in \{1, 2, ..., d\}$. Now the desired bound follows as above, and the proof is complete.

As an application of Theorems 8 and 10, we will prove the following Nordhaus-Gaddum type results.

Proposition 11. Let G be a graph of order n, minimum degree $\delta(G)$, maximum degree $\Delta(G)$, and let \overline{G} be its complementary graph. Then

$$d_{kS}(G) + d_{kS}(\overline{G}) \le \frac{n + \delta(G) - \Delta(G) + 1}{k} \le \frac{n+1}{k}$$
(3)

for every integer $k \leq \min\{\delta+1, n-\Delta\}$. The equality $d_{kS}(G) + d_{kS}(\overline{G}) = \frac{n+1}{k}$ implies that G is a regular graph.

Proof. Since $\delta(\overline{G}) = n - \Delta(G) - 1$, it follows from Theorem 8 that

$$d_{kS}(G)+d_{kS}(\overline{G})\leq \frac{\delta(G)+1}{k}+\frac{n-\Delta(G)}{k}=\frac{n+\delta(G)-\Delta(G)+1}{k}\leq \frac{n+1}{k}.$$

If
$$d_{kS}(G) + d_{kS}(\overline{G}) = \frac{n+1}{k}$$
, then $\delta(G) = \Delta(G)$ and G is regular.

Theorem 12. Let $k \geq 1$ be an integer, and let G be a graph of order n such that $\delta(G) \geq k-1$ and $\delta(\overline{G}) \geq k-1$. If $\Delta(G) - \delta(G) \geq 1$ or k is even or k and $\delta(G)$ are odd or k is odd and $\delta(G)$ and n are even, then

$$d_{kS}(G) + d_{kS}(\overline{G}) \le \frac{n}{k}. (4)$$

Proof. If $\Delta(G) - \delta(G) \geq 1$, then Theorem 11 implies the desired bound. Thus assume now that G is $\delta(G)$ -regular and so $\delta(G) + \delta(\overline{G}) = n - 1$.

Case 1: Assume that k is even. If $\delta(G)$ is even, then the hypothesis $\delta(G) \geq k-1$ implies that $\delta(G) \geq k$. Therefore it follows from Theorems 8 and 10 that

$$\begin{array}{rcl} d_{kS}(G) + d_{kS}(\overline{G}) & \leq & \frac{\delta(G) + 1}{k + 1} + \frac{\delta(\overline{G}) + 1}{k} \\ & = & \frac{\delta(G) + 1}{k + 1} + \frac{n - \delta(G)}{k} \\ & \leq & \frac{n}{k}. \end{array}$$

If $\delta(G)$ is odd, then n is even and thus $\delta(\overline{G}) = n - \delta(G) - 1$ even. The hypothesis $\delta(\overline{G}) \geq k - 1$ implies that $\delta(\overline{G}) \geq k$, and hence it follows from Theorems 8 and 10 that

$$\begin{array}{rcl} d_{kS}(G) + d_{kS}(\overline{G}) & \leq & \frac{\delta(G) + 1}{k} + \frac{\delta(\overline{G}) + 1}{k + 1} \\ & = & \frac{n - \delta(\overline{G})}{k} + \frac{\delta(\overline{G}) + 1}{k + 1}. \\ & \leq & \frac{n}{k}. \end{array}$$

Case 2: Assume that k is odd. If $\delta(G)$ is odd, then $\delta(G) \geq k-1$ implies that $\delta(G) \geq k$. Combining this with Theorems 8 and 10, we find that

$$d_{kS}(G) + d_{kS}(\overline{G}) \le \frac{\delta(G) + 1}{k + 1} + \frac{\delta(\overline{G}) + 1}{k} \le \frac{n}{k}.$$

If $\delta(G)$ and n are even, then $\delta(\overline{G}) = n - \delta(G) - 1$ is odd, and we obtain the desired bound as above.

Since $d_{3S}(C_5) = 1$, we have

$$d_{3S}(C_5) + d_{3S}(\overline{C_5}) = 2d_{3S}(C_5) = 2 = \frac{n+1}{3}.$$

This example shows that Theorem 12 is not valid in general when k and n are odd and $\delta(G)$ is even.

Theorem 13. Let G be a graph of order n and $\delta(G) \geq k-1$ with signed k-domination number $\gamma_{kS}(G)$ and signed k-domatic number $d_{kS}(G)$. Then

$$\gamma_{kS}(G) \cdot d_{kS}(G) \leq n.$$

Moreover, if $\gamma_{kS}(G) \cdot d_{kS}(G) = n$, then for each d_{kS} -family $\{f_1, f_2, \dots, f_d\}$ on G, each function f_i is a γ_{kS} -function and $\sum_{i=1}^d f_i(v) = 1$ for all $v \in V$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a SkD family on G such that $d = d_{kS}(G)$ and let $v \in V$. Then

$$d \cdot \gamma_{kS}(G) = \sum_{i=1}^{d} \gamma_{kS}(G)$$

$$\leq \sum_{i=1}^{d} \sum_{v \in V} f_i(v)$$

$$= \sum_{v \in V} \sum_{i=1}^{d} f_i(v)$$

$$\leq \sum_{v \in V} 1$$

$$= n.$$

If $\gamma_{kS}(G) \cdot d_{kS}(G) = n$, then the two inequalities occurring in the proof become equalities. Hence for the d_{kS} -family $\{f_1, f_2, \dots, f_d\}$ on G and for each i, $\sum_{v \in V} f_i(v) = \gamma_{kS}(G)$, thus each function f_i is a γ_{kS} -function, and $\sum_{i=1}^d f_i(v) = 1$ for all v.

Corollary 14 is a consequence of Theorems 13 and 7 and improves Observation 2.

Corollary 14. If $\gamma_{kS}(G) \geq \frac{n}{2}$, then $d_{kS}(G) = 1$.

The upper bound on the products $\gamma_{kS}(G) \cdot d_{kS}(G)$ leads to a bound on the sum.

Corollary 15. If G is a graph of order $n \geq 4$ and $k \leq \delta + 1$, then

$$\gamma_{kS}(G) + d_{kS}(G) \le n + 1.$$

Equality $\gamma_{kS}(G) + d_{kS}(G) = n+1$ occurs if and only if $G = K_n$ with n odd and k = 1, or for each $v \in V(G)$ there exists a vertex $u \in N[v]$ such that $\deg(u) = k - 1$ or $\deg(u) = k$.

Proof. According to Theorem 13, we obtain

$$\gamma_{kS}(G) + d_{kS}(G) \le \frac{n}{d_{kS}(G)} + d_{kS}(G). \tag{5}$$

The bound results from the facts that the function g(x) = x + n/x is decreasing for $1 \le x \le \sqrt{n}$ and increasing for $\sqrt{n} \le x \le n$ and that $1 \le d_{kS}(G) \le n$ by Theorem 8. Equality occurs if and only if $d_{kS}(G) = n$ and $\gamma_{kS}(G) = 1$ or $d_{kS}(G) = 1$ and $\gamma_{kS}(G) = n$. The description of the extremal graphs comes from Theorem 8 and Propositions B and A when $d_{kS}(G) = n$ and $\gamma_{kS}(G) = 1$, and from Observations 1 and 2 when $\gamma_{kS}(G) = n$ and $d_{kS}(G) = 1$.

By Corollary 15, $\gamma_{kS}(G) + d_{kS}(G)$ can be equal to n+1 if $\gamma_{kS}(G) = n$ or 1 or if $d_{kS}(G) = n$ or 1. But if $1 < \gamma_{kS}(G) < n$ or if $1 < d_{kS}(G) < n$ or if $\min\{\gamma_{kS}(G), d_{kS}(G)\} > 1$, we can lower the upper bound n+1.

Corollary 16. Let G be a graph of order $n \ge 4$. If $2 \le \gamma_{kS}(G) \le n-1$ or if $2 \le d_{kS}(G) \le n-1$, then

$$\gamma_{kS}(G) + d_{kS}(G) \le n - 1.$$

Proof. By Corollary 15, $\gamma_{kS}(G) + d_{kS}(G) < n+1$. The result follows from Theorem 7 and the fact that, as seen in the introduction, $\gamma_{kS}(G) \equiv n \pmod{2}$.

Corollary 17. Let G be a graph of order n, and let $k \geq 1$ be an integer. If $\min\{\gamma_{kS}(G), d_{kS}(G)\} \geq a$, with $2 \leq a \leq \sqrt{n}$, then

$$\gamma_{kS}(G) + d_{kS}(G) \le a + \frac{n}{a}$$
.

Proof. Since $\min\{\gamma_{kS}(G), d_{kS}(G)\} \geq a \geq 2$, it follows from Theorem 13 that $2 \leq d_{ks}(G) \leq \frac{n}{a}$. Applying the inequality (5), we obtain

$$\gamma_{kS}(G) + d_{kS}(G) \le d_{kS}(G) + \frac{n}{d_{kS}(G)} \le g(a) = a + \frac{n}{a}$$
.

3 Complete graphs

In this section, we use Theorem 13 to determine the signed k-domatic number for complete graphs. The next result is a generalization of Proposition В.

Theorem 18. For $n \geq 2$ and $1 \leq k \leq n$,

$$d_{kS}(K_n) = \left\{ \begin{array}{ll} \left\lfloor \frac{n}{k} \right\rfloor & \text{if} \quad n \equiv k \; (\bmod{\; 2}) \; \text{and} \; \left\lfloor \frac{n}{k} \right\rfloor \; \text{is odd} \\ \left\lfloor \frac{n}{k} \right\rfloor - 1 & \text{if} \quad n \equiv k \; (\bmod{\; 2}) \; \text{and} \; \left\lfloor \frac{n}{k} \right\rfloor \; \text{is even} \\ \left\lfloor \frac{n}{k+1} \right\rfloor & \text{if} \quad n \equiv k+1 \; (\bmod{\; 2}) \; \text{and} \; \left\lfloor \frac{n}{k+1} \right\rfloor \; \text{is odd} \\ \left\lfloor \frac{n}{k+1} \right\rfloor - 1 & \text{if} \quad n \equiv k+1 \; (\bmod{\; 2}) \; \text{and} \; \left\lfloor \frac{n}{k+1} \right\rfloor \; \text{is even}. \end{array} \right.$$

Proof. Let $V(K_n) = \{x_0, x_1, \dots, x_{n-1}\}$ be the vertex set of K_n . We consider two cases.

Case 1. $n \equiv k \pmod{2}$. By Proposition A, $\gamma_{kS}(K_n) = k$. Let n = kq + r, where q is a positive integer and $0 \le r \le k-1$. By Theorems 13 and 7, $d_{kS}(K_n) \leq \lfloor \frac{n}{k} \rfloor = q$ if q is odd and $d_{kS}(K_n) \leq q-1$ if q is even.

Subcase 1.1 q is odd. Then r is even. Define the functions f_1, \ldots, f_q as follows.

$$f_1(x_i) = \begin{cases} +1 & \text{if} \quad 0 \le i \le \frac{k(q+1)}{2} - 1 \\ -1 & \text{if} \quad \frac{k(q+1)}{2} \le i \le kq - 1 \\ (-1)^{i+1} & \text{if} \quad r \ne 0 \text{ and } kq \le i \le kq + r - 1 \end{cases}$$

and for $2 \le j \le q$,

and for
$$2 \le j \le q$$
,
$$f_j(x_i) = \begin{cases} f_1(x_{i+2k(j-1) \pmod kq}) & \text{if} \quad 0 \le i \le kq - 1 \\ \\ (-1)^{i+j} & \text{if} \quad r \ne 0 \text{ and } kq \le i \le kq + r - 1. \end{cases}$$

Since for every j, the expression $i + 2k(j-1) \pmod{kq}$ takes the kqconsecutive values $0, 1, \dots, kq-1$, each function f_j takes, as $f_1, k^{\frac{q+1}{2}} + \frac{r}{2}$

times the value +1 and $k\frac{q-1}{2}+\frac{r}{2}$ times the value -1. In the complete graph G, $\sum_{u\in N[v]}f_j(u)=\sum_{u\in V}f_j(u)=k\frac{q+1}{2}+\frac{r}{2}-(k\frac{q-1}{2}+\frac{r}{2})=k$ for every vertex v. Hence every function f_j is a SkD function.

Now we show that f_1, f_2, \dots, f_q is a SkD family, that is that $\sum_{j=1}^q f_j(x_i) \le 1$ for each vertex x_i .

When $kq \le i \le kq + r - 1$ (in the case $r \ne 0$), we have $\sum_{j=1}^q f_j(x_i) = \sum_{j=1}^q (-1)^{i+j} = \pm 1 \le 1$.

When $0 \le i \le kq - 1$, $\sum_{j=1}^{q} f_j(x_i)$ is equal to the number ν_i of indices j such that $f_j(x_i) = +1$ minus the number of indices j such that $f_j(x_i) = -1$, i. e., to $2\nu_i - q$. By the definition of f_j and f_1 , $f_j(x_i) = +1$ if and only if $0 \le i + 2k(j-1) \pmod{kq} < k^{\frac{q+1}{2}}$. Hence

$$\nu_i = |\{j \mid 1 \le j \le q \text{ and } 0 \le i + 2k(j-1) \pmod{kq} < k\frac{q+1}{2}\}|.$$

Adding -1 to the three members of the double inequality above shows that $\nu_i = \nu_0$ for each i. Thus it is sufficient to prove that $2\nu_0 \le q + 1$. Since $j \le q$, we have 2k(j-1) < 2kq. Hence

$$\begin{array}{lll} \nu_0 & = & |\{j \mid 0 \leq 2k(j-1) < \frac{k(q+1)}{2}\}| + |\{j \mid kq \leq 2k(j-1) < \frac{k(q+1)}{2} + kq\}| \\ & = & |\{j \mid 0 \leq 2(j-1) < \frac{q+1}{2}\}| + |\{j \mid q \leq 2(j-1) < \frac{q+1}{2} + q\}| \\ & = & |\{j \mid 1 \leq j < \frac{q+5}{4}\}| + |\{j \mid \frac{q+2}{2} \leq j < \frac{3q+5}{4}\}|. \end{array}$$

If $q \equiv 3 \pmod{4}$ then $|\{j \mid 1 \le j < \frac{q+5}{4}\}| = \frac{q+1}{4}$ and $|\{j \mid \frac{q+2}{2} \le j < \frac{3q+5}{4}\}| = |\{j \mid \frac{q+3}{2} \le j \le \frac{3q+3}{4}\}| = \frac{q+1}{4}$. Thus $\nu_0 = \frac{q+1}{2}$ and $2\nu_0 = q+1$.

If $q \equiv 1 \pmod{4}$ then $|\{j \mid 1 \le j < \frac{q+5}{4}\}| = |\{j \mid 1 \le j \le \frac{q+3}{4}\}| = \frac{q+3}{4}$ and $|\{j \mid \frac{q+2}{2} \le j < \frac{3q+5}{4}\}| = |\{j \mid \frac{q+3}{2} \le j \le \frac{3q+1}{4}\}| = \frac{q-1}{4}$. Thus $\nu_0 = \frac{q+1}{2}$ and $2\nu_0 = q+1$.

Hence $\{f_1, \ldots, f_q\}$ is a signed k-dominating family of K_n and $d_{kS}(K_n) \geq q$. Therefore $d_{kS}(K_n) = q$, as desired.

Subcase 1.2 q is even. Then r+k is even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$f_1(x_i) = 1$$
 if $0 \le i \le \frac{k(q-2)}{2} + k - 1$
 $f_1(x_i) = -1$ if $\frac{k(q-2)}{2} + k \le i \le k(q-1) - 1$

and for $2 \le j \le q-1$ and $0 \le i \le k(q-1)-1$,

$$f_j(x_i) = f_{j-1}(x_{i+2k}),$$

where the sum is taken modulo k(q-1). In addition,

$$f_j(x_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $k(q-1) \le i \le kq + r - 1$.

It is easy to see that f_j is a signed k-dominating function of K_n for each $1 \leq j \leq q-1$ and $\{f_1,\ldots,f_{q-1}\}$ is a signed k-dominating family on K_n . Hence, $d_{kS}(K_n) \geq q-1$ and so $d_{kS}(K_n) = q-1$ as desired.

Case 2. $n \equiv k+1 \pmod 2$. Suppose that n=(k+1)q+r, where q is a positive integer and $0 \le r \le k$. By Proposition A, $\gamma_{kS}(K_n) = k+1$. Hence, by Theorems 13 and 7, $d_{kS}(K_n) \le q$ if q is odd and $d_{kS}(K_n) \le q-1$ if q is even.

Subcase 2.1 q is odd. Then r is even. Define the functions f_1, \ldots, f_q as follows.

$$f_1(x_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{(k+1)(q-1)}{2} + k$$

$$f_1(x_i) = -1 \quad \text{if} \quad \frac{(k+1)(q-1)}{2} + k + 1 \le i \le (k+1)q - 1$$

and for $2 \le j \le q$ and $0 \le i \le (k+1)q-1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+1)}),$$

where the sum is taken modulo (k+1)q. In addition, if r>0

$$f_j(x_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+1)q \le i \le (k+1)q + r - 1$.

It is easy to see that f_j is a signed k-dominating function of G for each $1 \leq j \leq q$ and $\{f_1, \ldots, f_q\}$ is a signed k-dominating family of G. Hence, $d_{kS}(K_n) \geq q$. Therefore $d_{kS}(K_n) = q$, as desired.

Subcase 2.2 q is even. Then r + k + 1 is even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$f_1(x_i) = 1$$
 if $0 \le i \le \frac{(k+1)(q-2)}{2} + k$
 $f_1(x_i) = -1$ if $\frac{(k+1)(q-2)}{2} + k + 1 \le i \le (k+1)(q-1) - 1$

and for $2 \le j \le q - 1$ and $0 \le i \le (k+1)(q-1) - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+1)}),$$

where the sum is taken modulo (k+1)(q-1). In addition,

$$f_j(x_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+1)(q-1) \le i \le (k+1)q + r - 1$.

It is easy to see that f_j is a signed k-dominating function of G for each $1 \leq j \leq q-1$ and $\{f_1,\ldots,f_{q-1}\}$ is a signed k-dominating family of K_n . Hence, $d_{kS}(K_n) \geq q-1$ and so $d_{kS}(K_n) = q-1$, as desired.

4 The signed k-domatic number of $K_{n,n}$

In this section, we apply Theorem 13 to determine the signed k-domatic number for the complete bipartite graph $K_{n,n}$.

Lemma 19. Let $G = K_{n,n}$ be the complete bipartite graph with the partite sets X and Y. If $\{f_1, f_2, \ldots, f_d\}$ is a signed k-dominating family with $d = d_{kS}(G) \geq 3$, then, for each $i \in \{1, 2, \ldots, d\}$, there exist at least one vertex $x \in X$ and at least one vertex $y \in Y$, such that $f_i(x) = -1$ and $f_i(y) = -1$, respectively.

Proof. Let, to the contrary, there exists a function f_i , say f_1 , with the property that $f_1(x)=1$ for each $x\in X$. Since $\sum_{y\in N[x]}f_1(y)\geq k$ for each $x\in X$, we observe that there are at most $\frac{n-k-1}{2}$ vertices $y\in Y$ with $f_1(y)=-1$. Hence, the conditions $\sum_{i=1}^d f_i(v)\leq 1$ for each $v\in V(G)$ and $\sum_{u\in N[v]}f_i(u)\geq k$ for each $v\in V(G)$ and each $i\in\{1,2,\ldots,d\}$, lead to

$$n(n+1) = \sum_{y \in Y} \sum_{x \in N[y]} 1$$

$$\geq \sum_{y \in Y} \sum_{x \in N[y]} \sum_{i=1}^{d} f_{i}(x)$$

$$= \sum_{i=1}^{d} \sum_{y \in Y} \sum_{x \in N[y]} f_{i}(x)$$

$$= \sum_{y \in Y} \sum_{x \in N[y]} f_{1}(x) + \sum_{i=2}^{d} \sum_{y \in Y} \sum_{x \in N[y]} f_{i}(x)$$

$$\geq \sum_{y \in Y} f_{1}(y) + \sum_{y \in Y} \sum_{x \in N(y)} f_{1}(x) + \sum_{i=2}^{d} \sum_{y \in Y} k$$

$$\geq (k-1) + n^{2} + n(d-1)k.$$

This implies that $d \leq 2$, a contradiction to the hypothesis. Thus for each $i \in \{1, 2, ..., d\}$, there exist at least one vertex $x \in X$, such that $f_i(x) = -1$. Similarly, for each $i \in \{1, 2, ..., d\}$, there exist at least one vertex $y \in Y$, such that $f_i(y) = -1$. This completes the proof.

Lemma 20. Let $G = K_{n,n}$ and let k be an positive integer such that $k \le n$. If n = 1, 2, then $d_{kS}(G) = 3$. If $n \ge 3$, then

$$d_{kS}(G) \leq \left\{ \begin{array}{ll} \left\lfloor \frac{n}{k+2} \right\rfloor & \text{if} \quad n \equiv k \pmod{2} \text{ and } \left\lfloor \frac{n}{k+2} \right\rfloor \text{ is odd} \\ \left\lfloor \frac{n}{k+2} \right\rfloor - 1 & \text{if} \quad n \equiv k \pmod{2} \text{ and } \left\lfloor \frac{n}{k+2} \right\rfloor \text{ is even} \\ \left\lfloor \frac{n}{k+1} \right\rfloor & \text{if} \quad n \equiv k+1 \pmod{2} \text{ and } \left\lfloor \frac{n}{k+1} \right\rfloor \text{ is odd} \\ \left\lfloor \frac{n}{k+1} \right\rfloor - 1 & \text{if} \quad n \equiv k+1 \pmod{2} \text{ and } \left\lfloor \frac{n}{k+1} \right\rfloor \text{ is even.} \end{array} \right.$$

Proof. Let X and Y be the partite sets of G. Furthermore, let $\{f_1, f_2, \ldots, f_d\}$ is a signed k-dominating family with $d = d_{kS}(G)$.

If n = 1, 2, then Observations 3 and 4 lead to the desired result.

Now let $n \geq 3$. If we assume that $d = d_{kS}(G) \geq 2$, then Theorem 7 implies $d \geq 3$. Thus, according to Lemma 19, for each $i \in \{1, 2, ..., d\}$, there exist at least one vertex $u \in X$ and at least one vertex $v \in Y$, such

that $f_i(u) = -1$ and $f_i(v) = -1$, respectively. Because of $\sum_{x \in N[w]} f_i(x) \ge k$ for each $w \in V(G)$ and each $i \in \{1, 2, ..., d\}$, we conclude that there are at most $\frac{n-k-1}{2}$ vertices $x \in X$ with $f_i(x) = -1$ for each i = 1, 2, ..., d. Thus, it follows for each i = 1, 2, ..., d that

$$\sum_{x \in X} f_i(x) \ge k + 2 \text{ if } n \equiv k \pmod{2}, \tag{6}$$

and

$$\sum_{x \in X} f_i(x) \ge k + 1 \text{ if } n \equiv k + 1 \pmod{2}. \tag{7}$$

In the case that $n \equiv k \pmod{2}$, we deduce from (6) and the condition $\sum_{i=1}^{d} f_i(x) \leq 1$ for each $x \in V(G)$ that

$$\begin{array}{rcl} d(k+2) & = & \sum_{i=1}^{d} (k+2) \\ & \leq & \sum_{i=1}^{d} \sum_{x \in X} f_i(x) \\ & = & \sum_{x \in X} \sum_{i=1}^{d} f_i(x) \\ & \leq & \sum_{x \in X} 1 = n. \end{array}$$

Therefore in the case $d \leq \lfloor \frac{n}{k+2} \rfloor$ if $\lfloor \frac{n}{k+2} \rfloor$ is odd and $d \leq \lfloor \frac{n}{k+2} \rfloor - 1$ if $\lfloor \frac{n}{k+2} \rfloor$ is even by Theorem 7.

In the case that $n \equiv k+1 \pmod 2$, we deduce from (7) and the condition $\sum_{i=1}^{d} f_i(x) \leq 1$ for each $x \in V(G)$ that

$$\begin{array}{rcl} d(k+1) & = & \sum_{i=1}^{d} (k+1) \\ & \leq & \sum_{i=1}^{d} \sum_{x \in X} f_i(x) \\ & = & \sum_{x \in X} \sum_{i=1}^{d} f_i(x) \\ & \leq & \sum_{x \in X} 1 = n. \end{array}$$

Thus in this case $d \leq \lfloor \frac{n}{k+1} \rfloor$ if $\lfloor \frac{n}{k+1} \rfloor$ is odd and $d \leq \lfloor \frac{n}{k+1} \rfloor - 1$ if $\lfloor \frac{n}{k+2} \rfloor$ is even by Theorem 7.

Theorem 21. Let $G = K_{n,n}$ and let k be an positive integer such that $k \leq n$. If $n \geq 3$, then

$$d_{kS}(G) = \left\{ \begin{array}{ll} \left\lfloor \frac{n}{k+2} \right\rfloor & \text{if} \quad n \equiv k \pmod{2} \text{ and } \left\lfloor \frac{n}{k+2} \right\rfloor \text{ is odd} \\ \left\lfloor \frac{n}{k+2} \right\rfloor - 1 & \text{if} \quad n \equiv k \pmod{2} \text{ and } \left\lfloor \frac{n}{k+2} \right\rfloor \text{ is even} \\ \left\lfloor \frac{n}{k+1} \right\rfloor & \text{if} \quad n \equiv k+1 \pmod{2} \text{ and } \left\lfloor \frac{n}{k+1} \right\rfloor \text{ is odd} \\ \left\lfloor \frac{n}{k+1} \right\rfloor - 1 & \text{if} \quad n \equiv k+1 \pmod{2} \text{ and } \left\lfloor \frac{n}{k+1} \right\rfloor \text{ is even.} \end{array} \right.$$

Proof. By Corollary 5 we may assume $k \leq n-2$. Let $X = \{x_0, x_1, \ldots, x_{n-1}\}$ and $Y = \{y_0, y_1, \ldots, y_{n-1}\}$ be the partite sets of $K_{n,n}$. We consider two cases.

Case 1. $n \equiv k \pmod{2}$. Suppose that n = (k+2)q + r, where q is a positive integer and $0 \le r \le k+1$. By Lemma 20, $d_{kS}(K_{n,n}) \le q$ if q is odd and $d_{kS}(K_{n,n}) \le q-1$ if q is even.

Subcase 1.1 q is odd. Then r is even. Define the functions f_1, \ldots, f_q as follows.

$$f_1(x_i) = f_1(y_i) = 1$$
 if $0 \le i \le \frac{(k+2)(q-1)}{2} + k + 1$
 $f_1(x_i) = f_1(y_i) = -1$ if $\frac{(k+2)(q-1)}{2} + k + 2 \le i \le (k+2)q - 1$

and for $2 \le j \le q$ and $0 \le i \le (k+2)q-1$,

$$f_j(x_i) = f_{j-1}(x_{i+2k})$$
 and $f_i(y_i) = f_{i-1}(y_{i+2k}),$

where the sum is taken modulo (k+2)q. In addition, if r>0

$$f_i(x_i) = f_i(y_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+2)q \le i \le (k+2)q+r-1$.

It is easy to see that f_j is a signed k-dominating function of G for each $1 \leq j \leq q$ and $\{f_1, \ldots, f_q\}$ is a signed k-dominating family of G. Hence $d_{kS}(K_{n,n}) \geq q$. Therefore $d_{kS}(K_{n,n}) = q$, as desired.

Subcase 1.2 q is even. Then r + k is even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$f_1(x_i) = f_1(y_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{(k+2)(q-2)}{2} + k + 1$$

$$f_1(x_i) = f_1(y_i) = -1 \quad \text{if} \quad \frac{(k+2)(q-2)}{2} + k + 2 \le i \le (k+2)(q-1) - 1$$

and for $2 \le j \le q - 1$ and $0 \le i \le (k+2)(q-1) - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2k})$$
 and $f_i(y_i) = f_{i-1}(y_{i+2k})$,

where the sum is taken modulo (k+2)(q-1). In addition,

$$f_j(x_i) = f_j(y_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+2)(q-1) \le i \le (k+2)q+r-1$.

It is easy to see that f_j is a signed k-dominating function of G for each $1 \leq j \leq q-1$ and $\{f_1,\ldots,f_{q-1}\}$ is a signed k-dominating family on G. Hence, $d_{kS}(K_{n,n}) \geq q-1$ and so $d_{kS}(K_{n,n}) = q-1$ as desired.

Case 2. $n \equiv k+1 \pmod{2}$. Suppose that n=(k+1)q+r, where q is a positive integer and $0 \leq r \leq k$. By Lemma 20, $d_{kS}(K_{n,n}) \leq q$ if q is odd and $d_{kS}^t(K_{n,n}) \leq q-1$ if q is even.

Subcase 2.1 q is odd. Then r is even. Define the functions f_1, \ldots, f_q as follows.

$$f_1(x_i) = f_1(y_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{(k+1)(q-1)}{2} + k$$

$$f_1(x_i) = f_1(y_i) = -1 \quad \text{if} \quad \frac{(k+1)(q-1)}{2} + k + 1 \le i \le (k+1)q - 1$$

and for $2 \le j \le q$ and $0 \le i \le (k+1)q - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+1)})$$
 and $f_i(y_i) = f_{i-1}(y_{i+2(k+1)}),$

where the sum is taken modulo (k+1)q. In addition, if r>0

$$f_j(x_i) = f_j(y_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+1)q \le i \le (k+1)q+r-1$.

It is easy to see that f_j is a signed k-dominating function of G for each $1 \leq j \leq q$ and $\{f_1, \ldots, f_q\}$ is a signed k-dominating family of G. Hence, $d_{kS}(K_{n,n}) \geq q$. Therefore $d_{kS}(K_{n,n}) = q$, as desired.

Subcase 2.2 q is even. Then r + k + 1 is even. Define the functions f_1, \ldots, f_{q-1} as follows.

$$f_1(x_i) = f_1(y_i) = 1 \quad \text{if} \quad 0 \le i \le \frac{(k+1)(q-2)}{2} + k$$

$$f_1(x_i) = f_1(y_i) = -1 \quad \text{if} \quad \frac{(k+1)(q-2)}{2} + k + 1 \le i \le (k+1)(q-1) - 1$$

and for $2 \le j \le q - 1$ and $0 \le i \le (k + 1)(q - 1) - 1$,

$$f_j(x_i) = f_{j-1}(x_{i+2(k+1)})$$
 and $f_i(y_i) = f_{i-1}(y_{i+2(k+1)}),$

where the sum is taken modulo (k+1)(q-1). In addition,

$$f_j(x_i) = f_j(y_i) = (-1)^{i+j}$$
 for $1 \le j \le q$ and $(k+1)(q-1) \le i \le (k+1)q+r-1$.

It is easy to see that f_j is a signed k-dominating function of G for each $1 \leq j \leq q-1$ and $\{f_1,\ldots,f_{q-1}\}$ is a signed k-dominating family of G. Hence, $d_{kS}(K_{n,n}) \geq q-1$ and so $d_{kS}(K_{n,n}) = q-1$, as desired. \square

References

- [1] E.J. Cockayne, C.M. Mynhardt, On a generalisation of signed dominating functions of a graph, Ars Combin. 43 (1996), 235-245.
- [2] J. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics, and Applications, Vol. 1, Wiley, New York, 1995, 311-322.
- [3] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), 287-293.
- [4] D. Meierling, L. Volkmann and S. Zitzen, The signed domatic number of some regular graphs, Discrete Appl. Math. 157 (2009), 1905-1912.
- [5] L. Volkmann, Signed domatic numbers of the complete bipartite graphs, Util. Math. 68 (2005), 71-77.

- [6] L. Volkmann, Some remarks on the signed domatic number of graphs with small minimum degree, Applied Math. Lett. 22 (2009), 1166-1169.
- [7] L. Volkmann and B. Zelinka, Signed domatic number of a graph, Discrete Appl. Math. 150 (2005), 261-267.
- [8] C.P. Wang, The signed k-domination numbers in graphs, Ars Combin. (to appear).
- [9] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.