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Abstract

Let k be a positive integer, and let G be a simple graph with
vertex set V(G). A function f : V(G) — {~1,1} is called a signed
k-dominating functionif 3° ¢y, f(u) 2 k for each vertex v € V(G).
A set {f1, fa2,..., fa} of signed k-dominating functions on G with the
property that 2:;1 fi(v) < 1 for each v € V(G), is called a signed
k-dominating family (of functions) on G. The maximum number
of functions in a signed k-dominating family on G is the signed k-
domatic number of G, denoted by dis(G). In this paper we initiate
the study of signed k-domatic numbers in graphs and we present
some sharp upper bounds for dixs(G). In addition, we determine the
signed k-domatic number of complete graphs.
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1 Introduction

In this paper, G is a finite simple graph with vertex set V' = V(G) and
edge set E = E(G). For a vertex v € V(G), the open neighborhood N (v)
is the set {u € V(G) | wv € E(G)} and the closed neighborhood N[v] is
the set N(v) U {v}. The open neighborhood N(S) of a set S C V is the
set |J,ecs NV (v), and the closed neighborhood N[S] of S is the set N(S)U S.
The minimum degree of a vertex of G is denoted by §(G). Consult {9] for
the notation and terminology which are not defined here.

For a real-valued function f : V(G) — R, the weight of f is w(f) =
Yey f(v). For § C V, we define f(S) = 3,5 f(v). So w(f) = f(V).
Let £ > 1 be an integer and let G be a graph with minimum degree at
least k — 1. A signed k-dominating function (SkD function) is a function
f:V(G) = {-1,1} satisfying 3, ey f(u) 2 k for every v € V(G). The
minimum of the values of Zvev(a) f(v) taken over all signed k-dominating
functions f is called the signed k-domination number and is denoted by
Yks(G). As the assumption §(G) > k — 1 is clearly necessary for a graph to
have a SkD function, we will always assume that when we discuss vxs(G),
all graphs involved satisfy 6(G) > k — 1. Then the function assigning +1
to every vertex of G is a SkD function, called the function ¢, of weight n.
Thus y:s(G) < n for every graph of order n with § > k — 1. Moreover,
the weight of every SkD function different from € is at most n — 2 and
more generally, 7xs(G) = n (mod 2). Hence yxs(G) = n if and only if ¢ is
the unique SkD function of G. In the special case when k = 1, 1s(G) is
the signed domination number investigated in [2] and has been studied by
several authors (see for example [1, 3]). The signed k-domination number
of graphs was introduced by Wang [8].

Observation 1. Let G be a graph of order n and minimum degree § >
k — 1. Then vxs(G) = n if and only if for each v € V, there exists a vertex
u € N[v] such that deg(u) = k — 1 or deg(u) = k (this condition implies
§ < k).

Proof. If for each v € V, there exists a vertex u € N[v] such that deg(u) =
k—1 or deg(u) = k, then for each v € V there exists a vertex u € N[v] such
that each SkD function satisfies f(z) = +1 for all z € N[u] and in particular
f(v) = +1. Therefore € is the unique SkD function and ks(G) = n.
Conversely, assume that yxs5(G) = n. If there exists a vertex v such that
deg(u) > k+1 for each u € N{v], then the function f defined by f(v) = -1
and f(zx) = 1 for  # v is a signed k-dominating function of weight n — 2,
a contradiction. This completes the proof. a

A set {f1, f2,-..,fa} of signed k-dominating functions on G with the
property that Z‘;l fi(v) < 1 for each v € V(G), is called a signed k-
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dominating family on G. The maximum number of functions in a signed
k-dominating family on G is the signed k-domatic number of G, denoted
by dis(G). The signed k-domatic number is well-defined and dx5(G) > 1
for all graphs G with 6(G) > k — 1 since the set consisting of any one SkD
function, for instance the function €, forms a SkD family of G. A dis-family
of a graph G is a SkD family containing dig(G) SkD functions. The signed
1-domatic number d;5(G) is the usual signed domatic number dg(G) which
was introduced by Volkmann and Zelinka in [7] and has been studied by
several authors (see for example (4, 5, 6]).

Observation 2. Let G be a graph of order n. If y,5(G) = n, then ¢ is the
unique SkD function of G and so dxs(G) = 1.

The following two observations are consequence of Observations 1 and
2.

Observation 3. If G is a graph of order n and k = n, then G is the
complete graph and thus v,,(G) = n and di, (G) = 1.

Observation 4. If G is a graph of order n and k = n—1, then 7x,(G) =n
and so di(G) = 1.

Proof. 1f G is the complete graph, then Proposition A implies that y,5(G) =
n and so dis(G) = 1. Thus we may assume that G is not the compete
graph. Let u,v € V(G) such uv € E(G). Since §(G) > n — 2, we have
deg(u) = deg(v) =n-—2, N[u] = V(G) — {v} and N[v] = V(G) — {u}. Let
f : V(G) = {~1,1} be a ;,(G)-function. Since Y cenpy f(@) 2 n -1,
we must have f(z) = 1 for each z € N[u]. Similarly, f (:z:) = 1 for each
z € N[v]. Thus f(z) = 1 for all vertices z € V(G). It follows that
Yks(G) = n and by Observation 2 we have di,(G) = 1. O

Corollary 5. If G is a r-regular graph and ¥ = r+1 or r, then v5(G) = n
and di,(G) = 1.

We first study basic properties and sharp upper bounds for the signed
k-domatic number of a graph. Some of them generalize the result obtained
for the signed domatic number. Then we determine the signed k-domatic
number of complete graphs.

In this paper we make use of the following results.

Proposition A. [8] Let k¥ > 1 be an integer. For any integer n > k, we

have
k if n =k (mod 2) (1)

Yes(Kn) = { k+1  otherwise.
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Proposition B. [7] If G = K, is the complete graph of order n, then

n if n is odd,
ds(Kpn)=4¢ p ifn=2p and pis odd (2)
p—1 ifn=2p and piseven.

2 Basic properties of the signed k-domatic
number

In this section we present basic properties of dis(G) and sharp bounds on
the signed k-domatic number of a graph.

Proposition 6. If k > p > 1 are integers, then d,s(G) > dis(G) for any
graph G.

Proof. Let {f1, f2,--.,fa} be a SkD family on G such that d = dis(D).
Then {f1, f,. .., fa} is also a SpD family on G and thus dps(G) 2 dis(G)-
a

Theorem 7. The signed k-domatic number of a graph is an odd integer.

Proof. Let G be an arbitrary graph, and suppose that d = dis(G) is even.
Let {f1, f2,.- -, f4} be a dks(G)—family. If u € V(G) is an arbitrary vertex,
then Ef=1 fi(u) < 1. But on the left-hand side of this inequality, a sum of
an even number of odd summands occurs. Therefore it is an even number,
and we obtain Zf=1 fi(u) <0 for each u € V(G). This forces

< Zi:l(%c- Zueﬁgv] f‘(u))
= %c- ZueN[v] Zi:l fi(w)
< 0
which is a contradiction. a

Theorem 8. If G is a graph of order n and §(G) > k — 1, then

5(G) +1 <%

1< des(G) < S

Moreover if dxs(G) = 5(G) +1 , then for each function of any dys—family
{f1, f2,+++ , fa} and for all vertices v of degree §(G), EueNM filu) =k
and 3%, fi(u) =1 for every u € N[v].
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Proof. Let {f1, f2,..., fa} be a SkD family of G such that d = dxg(G) and
let v be a vertex of minimum degree 6(G). Then |[N[v]| =6 + 1 and

Sl
21—1 k ZueN[u] f'(u)
7&' ZuGN[u] z;—-l fi (u

13 ZuGN[u]
8(G +1

1<d

| VAN [ VA

Ifdis(G) = 1(9,}'*—1, then the two inequalities occurring in the proof become
equalities, which gives the two properties given in the statement. a

The special case k = 1 in Theorems 7 and 8 can be found in [7]. The
next corollary is a consequence of Theorems 7 and 8.

Corollary 9. If G is a graph of minimum degree &, then dxs(G) =1 for
every integer k such that & <k <6+ 1.

In particular for a tree T and for a cycle Cy,, we have dys(T) = d25(T) =

1 and dag(Cr) = d3s(Cp) = 1.
Next we improve the bound given in Theorem 8 for some special cases.

Theorem 10. Let k¥ > 1 be an integer, and let G be a graph of order n
with 6(G) > k — 1. If k and 6(G) are odd or k and §(G) are even, then

5(G)+1
k+1 -

Proof. Let {fi, f2,...,fa} be a SkD family on G such that d = di5(G),
and let v be a vertex of minimum degree 6(G). Assume first that k and
deg(v) = 6(G) are odd. The definition yields to }__ N fi(z) 2 k for each
i € {1,2,...,d}. On the left hand side of this mequahty a sum of an even
number of odd summands occurs. Therefore it is an even number, and as
k is odd, we obtain erN[v] fi(z) > k+1 for each i € {1,2,...,d}. It
follows that

dks(G) <

d
Z T D filw)

d
d = Z
i=1 i=1 uGN[v]
d
- T 2 2
1 L _806) +1
S %Fi ; T ok+1
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and the desired bound is proved. Assume next that k& and deg(v) = §(G)
are even. Note that 3 ..y, fi(z) 2 k for each i € {1,2,...,d}. On
the left hand side of this inequality a sum of an odd number of odd sum-
mands occurs. Therefore it is an odd number, and as k is even, we obtain
YoseNp) fi(z) 2 k+1 for each i € {1,2,...,d}. Now the desired bound
follows as above, and the proof is complete. O

As an application of Theorems 8 and 10, we will prove the following
Nordhaus-Gaddum type results.

Proposition 11. Let G be a graph of order n, minimum degree 4(G),
maximum degree A(G), and let G be its complementary graph. Then

for every integer k < min{é + 1,n — A}. The equality drs(G) + drs(G) =
2+ implies that G is a regular graph.

Proof. Since 6(G) = n — A(G) — 1, it follows from Theorem 8 that

5G)+1 n—AG) n+6G)-AG)+1 _n+1
ot T % S5

If dis(G) + dis(G) = %, then §(G) = A(G) and G is regular. O

dis(G)+dis(G) <

Theorem 12. Let k¥ > 1 be an integer, and let G be a graph of order n
such that §(G) > k—1and 6(G) > k—1. If A(G) - 6(G) > 1 or k is even
or k and §(G) are odd or k is odd and §(G) and n are even, then

dis(G) +dus(@) < T (4

Proof. 1f A(G) — 6(G) > 1, then Theorem 11 implies the desired bound.
Thus assume now that G is §(G)-regular and so §(G) +6(G) =n — 1.

Case 1: Assume that k is even. If 6(G) is even, then the hypothesis
8(G) > k — 1 implies that §(G) = k. Therefore it follows from Theorems 8
and 10 that

5(G)+1  6(G) +1

dis(G) + dks(G) < PR 5
5(G)+1 , n—3§(C)
k+1 ko
< 7
—-— k’
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If 6(G) is odd, then n is even and thus J(G) =n—6(G) — 1 even. The
hypothesis §(G) > k — 1 implies that §(G) > k, and hence it follows from
Theorems 8 and 10 that

6(G)+1+6(§)+1

dis(G) + dis(G) <

k k+1
_ n=6@ 6@ +1
) k+1
< 2
= %

Case 2: Assume that k is odd. If §(G) is odd, then §(G) > k—1 implies
that 6(G) > k. Combining this with Theorems 8 and 10, we find that

— _6(G)+1 §G)+1 _n

drs(G) + dks(G) < Py t—— <3
If 5(G) and n are even, then §(G) = n — §(G) — 1 is odd, and we obtain
the desired bound as above. ]

Since d3s(Cs) = 1, we have
ron 1
d3s(Cs) + d3s(Cs) = 2d3s(Cs) =2 = "_;__

This example shows that Theorem 12 is not valid in general when k and n
are odd and 4(G) is even.

Theorem 13. Let G be a graph of order n and §(G) > k — 1 with signed
k-domination number ~x5(G) and signed k-domatic number dis(G). Then

7kS(G) . dks(G) < n.

Moreover, if Yxs(G) - di.s(G) = n, then for each dks-farmly {f1, fa,+-- , fa}
on G, each function f; is a ys-function and Z,_l fivy=1forallveV.

Proof. Let {f1, fa,..., fa} be a SkD family on G such that d = dis(G) and
let v € V. Then

21_1 Ys(G)
Zr—'l Eva fl 'U)
zvev Ez=1 fi(v)

veV 1
n.

d- ’Yks(G)

AT IA I

If vs(G) - dxs(G) = n, then the two inequalities occurring in the proof
become equalities. Hence for the dis-family {fy, f2,-+-, f4} on G and for
each 1, ZveV fi(v) = 1ks(G), thus each function f; is a vxs-function, and

5L fi(v) =1 for all v, 0
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Corollary 14 is a consequence of Theorems 13 and 7 and improves Ob-
servation 2.

Corollary 14. If v.s(G) > %, then dis(G) = 1.

The upper bound on the products vks(G) - di.s(G) leads to a bound on
the sum.

Corollary 15. If G is a graph of order n > 4 and k < § + 1, then
s(G) +dis(G) <n+1.

Equality yxs(G) + dis(G) = n+1 occurs if and only if G = K, with n odd
and k = 1, or for each v € V(G) there exists a vertex u € N[v] such that
deg(u) = k — 1 or deg(u) =

Proof. According to Theorem 13, we obtain

Yks(G) + dis(G) £ ——— + dis(G). (5)

d (G)
The bound resuits from the facts that the function g(z) = = + n/z is
decreasing for 1 < £ < /n and increasing for vn < z < n and that
1 < dis(G) < n by Theorem 8. Equality occurs if and only if drs(G) =n
and Ys(G) = 1 or dks(G) = 1 and vks(G) = n. The description of
the extremal graphs comes from Theorem 8 and Propositions B and A

when dis(G) = n and vs(G) = 1, and from Observations 1 and 2 when
’)'ks(G) =n and dks(G) =1. a

By Corollary 15, 1xs(G) + dxs(G) can be equal to n + 1 if 7s(G) =n
orlorifdis(G)=norl Butifl <ys(G)<norifl<dis(G)<nor
if min{yks(G),drs(G)} > 1, we can lower the upper bound n + 1.

Corollary 16. Let G be a graph of order n > 4. If 2 < y,s(G) <n—1lor
if 2 < dis(G) < n—1, then

Ys(G) + dks(G) < n—1.

Proof. By Corollary 15, vxs(G) + diks(G) < n+ 1. The result follows from
Theorem 7 and the fact that, as seen in the introduction, y,s(G) = n (mod
2).

Corollary 17. Let G be a graph of order n, and let k¥ > 1 be an integer.
If min{yks(G),drs(G)} 2 a, with2 <a < v/, then

Yes(G) + drs(G) < a + %
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Proof. Since min{y;s(G),drs(G)} = a > 2, it follows from Theorem 13
that 2 < dis(G) < g. Applying the inequality (5), we obtain

s (G) + dis(G) < drs(G) + d_kﬁT) <gla)=a+ g .

3 Complete graphs

In this section, we use Theorem 13 to determine the signed k-domatic num-
ber for complete graphs. The next result is a generalization of Proposition

B.
Theorem 18. Forn>2and 1<k <n,

] if n=k (mod 2) and |%] is odd
decl(K.) = [2]-1 if n=k (mod2)and [}] iseven
ks(n) =9 [Z2) if n=k+1(mod 2) and |27 is odd

5] —1 if n=k+1 (mod 2) and |£2;] is even.

Proof. Let V(K,) = {z0,Z1,...,Zn-1} be the vertex set of K,,. We con-
sider two cases.

Case 1. n = k (mod 2). By Proposition A, yxs(K,) = k. Let n = kq +r,
where ¢ is a positive integer and 0 < r < k — 1. By Theorems 13 and 7,
drs(Kn) < | 3] = q if g is odd and drs(K,) < ¢ — 1 if g is even.

Subcase 1.1 ¢ is odd. Then r is even. Define the functions fi,..., f,
as follows.

+1 if 0<i<Xatl g
flz) =9 -1 if Hetl << pg—1

(=1)"*! if r#0endkg<i<kg+r—1

and for 2<j <g,

fl(xi+2k(j—1) (mod kq)) if 0<i<kg-1
fi(zi) =

(=1)t+s if r#0andkg<i<kq+r-1.

Since for every j, the expression i + 2k(j — 1) (mod kq) takes the kq
consecutive values 0,1, .-, kg — 1, each function f; takes, as fi, kg';—l +5
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times the value +1 and kg—;—l + £ times the value —1. In the complete
graph G, Touenpy i(®) = Suev fi(w) = KL + 5 — (k52 +5) = k for
every vertex v. Hence every function f; is a SkD function.
Now we show that fy, f2,+- - , fg is a SkD family, that is that Z‘}:l fi(z:) <
1 for each vertex z;.
When kg < i < kg + 7 — 1 (in the case r # 0), we have }.7_, fi(z:) =
() =£1< 1
When 0 < i < kg—1, Y1, fi(z:) is equal to the number v; of indices j
such that f;(z;) = +1 minus the number of indices j such that f;(z:) = -1,
i. e., to 2v; — q. By the definition of f; and fi, f;j(z;) = +1 if and only if
0 < i+ 2k(j — 1) (mod kq) < k%, Hence

1
b= 1<j<qand0<i+2k(j—1)(mod ke) <k},
Adding —1 to the three members of the double inequality above shows that
v; = i for each i. Thus it is sufficient to prove that 2vp < g+ 1. Since
j < q, we have 2k(j — 1) < 2kq. Hence

vo = |{3]0<2k(i—1) < BB} + {5 | kg < 2k( - 1) < HG + k)|
{71026 -1) <2+ [{5 |9<20G ~1) < + )
G l1<i <=2 +1{ | B2 <i< 3

< ¢8} = ¢land [{j | B2 <)<
9‘—:1. Thus vo = 4L and 20y =g+ 1.
If g = 1(mod 4) then |{j | 1< j < )| =]{7] 1< < ) = 5 end
15| 92 <5< 38y = |{j | 42 <j <3P} =271 Thus o =
and 21 =g+ 1.

Hence {f1,..., fy} is a signed k-dominating family of K, and dis(Kn) 2 q.
Therefore dis(K»n) = g, as desired.

Subcase 1.2 giseven. Then r+k iseven. Define the functions fi,..., fo—1
as follows.

If g = 3(mod 4) then |{j | 1 < j
LEN =10 | 5 <5 < HFEY =

filz) =1 if 0<i<HED g1
filz)=-1 if &A1k <i<k(g-1)-1

andfor2<j<q—1and0<i<k(g-1)-1,
fi(z:) = fi-1(ziran),
where the sum is taken modulo k(g — 1). In addition,

fi(z) = (-1)"* for 1< j<qand k(g-1) Si<kg+r—L
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It is easy to see that f; is a signed k-dominating function of K, for each
1<j<q-1and{fi,...,fq-1} is a signed k-dominating family on K,.
Hence, drs(K,) > g—1 and so dxs(K,) = g — 1 as desired.

Case 2. n =k +1 (mod 2). Suppose that n = (k+ 1)g+r, where g is a
positive integer and 0 < r < k. By Proposition A, ys(K,) = k+1. Hence,
by Theorems 13 and 7, dis(K,) < ¢ if ¢ is odd and dks(K,) S g-1ifq
is even.

Subcase 2.1 ¢ is odd. Then r is even. Define the functions f,..., f,
as follows.

filz)=1 if 0<i<&lED g
filz)=-1 if GXE@D 41 <i<(k+1)g—1

and for2<j<gand 0<i< (k+1)g-1,
fi(z:) = fi-1(@iva(es1))s
where the sum is taken modulo (k + 1)q. In addition, if r > 0
fil)=(-1)*for1<j<gand (k+1)g<i<(k+1)g+7r—1.

It is easy to see that f; is a signed k-dominating function of G for each
1<j<gqand {fi,..., fy} is a signed k-dominating family of G. Hence,
" dks(Kn) 2 q. Therefore drs(K,) = g, as desired.

Subcase 2.2 g is even. Then r + k + 1 is even. Define the functions
J1,-+., fg—1 as follows.

fAlz)=1 if 0<i<&ileD g

and for 2<j<g-1and0<i<(k+1)(g—1)-1,
Fi(z:) = fim1(@ivogkrn)),
where the sum is taken modulo (k + 1)(g — 1). In addition,
filz) = (=1)"* for1<j<qand (k+1)(g-1)<i<(k+1)g+r—1
It is easy to see that f; is a signed k-dominating function of G for each

1<j<g-1and {f1,...,fq-1} is a signed k-dominating family of K,.
Hence, dis(K,) > g —1 and so drs(K,) = ¢ — 1, as desired. |
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4 The signed k-domatic number of K, ,

In this section, we apply Theorem 13 to determine the signed k-domatic
number for the complete bipartite graph K ».

Lemma 19. Let G = K, be the complete bipartite graph with the
partite sets X and Y . If {f1, fa,..., fa} is a signed k-dominating family
with d = drs(G) > 3, then, for each i € {1,2,...,d}, there exist at least
one vertex z € X and at least one vertex y € Y , such that fi(z) = ~1 and
fi(y) = —1, respectively.

Proof. Let, to the contrary, there exists a function f;, say fi, with the
property that fi(z) = 1 for each z € X. Since }_ Niz] fily) = k for

each £ € X, we observe that there are at most 2=£=1 vertices y € Y with

fi(y) = —1. Hence, the conditions "2, fi(v) < 1 for each v € V(G) and
ZueN[v] fi(u) > k for each v € V(G) and each i € {1,2,...,d}, lead to

Zyey Ezelel 1

Zye}' E:GN[y] Z;_l fi(z)

i1 Lyey Laenty f i(x)

Lyey uzenty N1(2) + Sie Lyey zzeN[y] fi(z)

ZyGY fl y) + Zyey EzEN(y) fl (IL') + Zz~‘2 EyEY k
(k—1) +n?+n(d - 1)k.

n(n+1)

AV

INRAV

This implies that d < 2, a contradiction to the hypothesis. Thus for each
i € {1,2,...,d}, there exist at least one vertex £ € X, such that fi(z) =
—1. Similarly, for each i € {1,2,...,d}, there exist at least one vertex
y €Y, such that f;(y) = —1. This completes the proof. a

Lemma 20. Let G = K, , and let k be an positive integer such that
k<n. Ifn=1,2, then dis(G) = 3. If n > 3, then

R R e

k%_ if n=k (mo an 7;"‘_5 is even
drs(G) < &) i n=k+1(mod2)and [F7] is odd

gl -1 if n=k+1 (mod 2) and |35 ] is even.

Proof. Let X and Y be the partite sets of G. Furthermore, let {f1, fo,..., fa}
is a signed k-dominating family with d = dis(G).

If n = 1,2, then Observations 3 and 4 lead to the desired result.

Now let n > 3. If we assume that d = dys(G) > 2, then Theorem 7
implies d > 3. Thus, according to Lemma 19, for each i € {1,2,...,d},
there exist at least one vertex u € X and at least one vertex v € Y, such
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that f;(u) = —1 and fi(v) = —1, respectively. Because of 3 __¢ y(, fi(z) 2
k for each w € V(G) and each i € {1,2,...,d}, we conclude that there are
at most "‘;“1 vertices z € X with fi(z) = —1 foreach ¢ = 1,2,...,d.
Thus, it follows for each : = 1,2,...,d that

> filz) > k+2if n=k (mod 2), (6)
zeX
and
3 fi@) 2 k+1ifn=k+1 (mod 2). (7)
zeX

In the case that n = k (mod 2), we deduce from (6) and the condition
2?21 fi(z) £ 1 for each z € V(G) that

Z:’i=1 (k + 2)
it szx fi(z)
zzex Zi:l fi(z)

zexl'—'n.

Therefore in the case d < | 35] if | gi5] isodd and d < | Z5] - 1if | 35 )
is even by Theorem 7.
In the case that » = k+1 (mod 2), we deduce from (7) and the condition

¢ | fi(x) < 1 for each = € V(G) that

D=1 sz{:x fi(z)
Z::::GX Ei:] fi(z)
x€X 1=n.
Thus in this case d < | 57] if [gfy] isodd and d < | gy ] — 1if [ 5] is
even by Theorem 7.

d(k + 2)

AN IA

d(k +1)

AN A I

O

Theorem 21. Let G = K, , and let k be an positive integer such that
k<n. Ifn> 3, then

lgxz] if n=k(mod2)and [fZ5] is odd
lefs) -1 if n=k (mod2)and |g%5] is even

leH if n=k+1 (mod?2)and [f;] is odd
lz51] =1 if n=k+1 (mod 2)and || is even.

drs(G) =

Proof. By Corollary 5 we may assume k < n—2. Let X = {z¢,Z1,...,Zn-1}
and Y = {yo,y1,...,Yn—1} be the partite sets of K,,. We consider two

cases.
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Case 1. n = k (mod 2). Suppose that n = (k +2)g + r, where g is a
positive integer and 0 < r < k+ 1. By Lemma 20, dxs(Kn,n) < qif g is
odd and dgs(Knn) < g—1if g is even.

Subcase 1.1 ¢ is odd. Then r is even. Define the functions fi,..., fg
as follows.

file) = Ay =1 if 0<i<{RED x4y
filz) = fly)=-1 if @D Lk 9<i<(k+2)g-1

andfor2<j<qgand0<i<(k+2)q-1,
fi(@i) = fi-1(zirar) and fi(yi) = fic1(Yizar),
where the sum is taken modulo (k + 2)q. In addition, if » > 0
fi(z:) = fi(w) = (1) for 1 < j<qand (k+2)g<i< (k+2)g+r—1.

It is easy to see that f; is a signed k-dominating function of G for each
1<j<gqand{f1,...,fq} is a signed k-dominating family of G. Hence
diks(Knn) = q. Therefore dxs(Knn) = g, as desired.

Subcase 1.2 gq is even. Then 7 + k is even. Define the functions
fi,.. ., fq-1 as follows.

Alzs) = fily) =1 if Osigﬁ"izlz!ﬂﬂ+k+1
flz) = flw)=-1 if EBED Lk 0<i<(k+2)(g-1)-1

and for2<j<g—-1and0<i<(k+2)(g—-1)-1,
fi(z:) = fi-1(ziv2x) and fi(ys) = fim1(Yivar),
where the sum is taken modulo (k + 2)(g — 1). In addition,
fi(@) = F(w) = (=1 for 1 < j < g and (k+2)(g—1) < i < (k+2)q+r—1.

It is easy to see that f; is a signed k-dominating function of G for each
1<j<g-1and {fi,...,fg-1} is a signed k-dominating family on G.
Hence, dirs(Knn) > ¢ — 1 and so dgs(Knn) =g — 1 as desired.
Case 2. n = k+ 1 (mod 2). Suppose that n = (k+ 1)g+r, where g is a
positive integer and 0 < r < k. By Lemma 20, dxs(Knn) < g if ¢ is odd
and df g(Knn) < g—1if qis even.

Subcase 2.1 g isodd. Then r is even. Define the functions fi,..., fg
as follows.

h(z) =) =1 if 0<i<&HE=D 4p
fi(z) = Aw) =-1 if EHED 4 p11<i<(k+1)g-1
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and for2<j<gand0<i< (k+1)¢—1,
fi(i) = fi-1(Tizop+ny) and fi(yi) = fic1(Yipae+1))s
where the sum is taken modulo (k¥ + 1)g. In addition, ifr > 0
filz)) = f(wi) =(-1)"*T for1<j<gand (k+1)g<i< (k+1)g+r-1.

It is easy to see that f; is a signed k-dominating function of G for each
1<j<gqand {f1,...,f,} is a signed k-dominating family of G. Hence,
drs(Knn) 2 q. Therefore dis(Knn) = g, as desired.

Subcase 2.2 g is even. Then r + k + 1 is even. Define the functions
f1,-+., Jq—1 as follows.

film) = fiw)=1 if 0<i< @D g
filz) = fily)=-1 if EED 4 k1 <i<(k+1)(g-1) -1

andfor2<j<g-—1and0<i<(k+1)(g—1)—1,
fi(®:) = fi—1(Tirok+1y) and fi(ys) = fic1(Yig2k+1))s
where the sum is taken modulo (k + 1)(g — 1). In addition,
fi(z:) = fi(yi) = (-1)"* for 1 < j < gand (k+1)(g—1) < i < (k+1)g+r—1.

It is easy to see that f; is a signed k-dominating function of G for each
1<j<qg-1and {fi,...,fg-1} is a signed k-dominating family of G.
Hence, dis(Kn,n) = ¢ — 1 and so dis(Kn,n) = g — 1, as desired. a
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