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Abstract For an n-connected graph G, the n-wide diameter d,(G),
is the minimum integer m such that there are at least n internally disjoint
(di)paths of length at most m between any vertices z and y. For a given
integer !, a subset S of V(G) is called an (l,n)- dominating set of G if for
any vertex € V(G) — S there are at least n internally disjoint (di)paths
of length at most ! from S to z. The minimum cardinality among all (I, n)-
dominating sets of G is called the (I, n)-domination number. In this paper,
we obtain that the (l,w)-domination number of the d-ary cube network
C(d,n)is2 for 1 <w < nandd,(G)— f(d,n) <!<d,(G)—1ifd,n >4,
where f(d,n) = min{e(|n/2] + 1), [n/2]e'}.
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1 Introduction

This paper uses graphs to represent networks. The distance dg(z,y) from a
vertex z to another vertex y in a network G is the minimum number of edges
of a (di)path from z to y. The diameter d(G) is the maximum distance
from one vertex to another. The connectivity k(G) is the minimum number
of vertices whose removal results in a disconnected or trivial network.

In order to characterize the reliability of transmission delay in a real-
time parallel processing system, Hsu and Lyuu [6], Flandrin and Li [4]
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independently introduced n-wide diameter. For an n-connected graph G,
the distance with width n from z to y, denoted by d,(G;z,y), is the min-
imum number m for which there are n internally disjoint (z,y)-(di)paths
in G of length at most m. The n-wide diameter of G, i.e., the n-diameter,
denoted by d.(G), is the maximum of d,.(G;z,y) over all pairs (z,y) of
vertices of G.

Li and Xu [7] defined a new parameter (!, n)-domination number. This
motives us to generalize the definition to that of the digraph. Let G be an
n-connected digraph, S a nonempty and proper subset of V(G), x a vertex
in G — 8. For a given positive integer , z is (!, n)-dominated by S if there
are at least n internally disjoint (.5, z)-dipaths of length at most {. S is said
to be an (I, n)-dominating set of G if S can (I, n)-dominate any vertex in
G — S. The minimum cardinality among all (I, n)-dominating sets of G is
called the (I, n)-domination number, denoted by v,»(G).

The d-ary cube network C(d,n) is a digraph of d™ vertices, in which
any vertex T has the form (zn—1,Zn-2,...,%0) Where 0 < z; < d — 1 for
0 <i<n-1,and z is adjacent to (Tn-1,...,Zj+1,Zj + 1,Zj_1,...,%0)
for 0 € j < n — 1, where additions are taken modulo d. C(2,n) is the
n-dimensional binary hypercube Q,. It is clear that C(d,n) is vertex-
transitive and its diameter is n(d — 1). Hsu and Lyuu [6] proved that
dn(C(d,n)) = n(d—1) +1. Liaw and Chang (8] showed that d.,(C(d,n)) =
n(d—1) for 1 <w < n—1and d,(C(d,n)) = n(d—1) +1. Since y»(G) =
1 for I > da(G) and y,n(G) = 2 for | < dn(G), so it is of interest to
show some general properties and values of the (/,w)-domination numbers
of n-connected graphs for | < dn(G) and 1 < w < n (see, for example
n,2,5,7,9, 10,11, 12).

In this paper, we obtain 7, (C(d,n)) = 2 for 1 < w < n and d,(G) —
f(d,n) S,l < d,(G) — 1 if d,n > 4, where f(d,n) = min{e(|n/2] +
1),[n/2]e’}.

Terminologies and notations not defined here are referred to [3].

2 Preliminaries

Let c;(z) = z; denote the ith component of vertex z = (n_1, Tn—2,...,Zo).
For 0 < i < n — 1, the ith unit vector is the vector e} with c;(e?) =1 and
cj(e?) = 0 for 0 < j < n—1, with j # 4. The vertex set of C(d,n)
can be viewed as a module over Z4. So vertex z can also be written as

-1 ,
z = nz z;e?. Denote |d/2] and [d/2] by e and e, respectively. Let
i=0

f(d,n) = min{e({n/2) + 1), [n/2]€'} in this paper.
Suppose ag, 01, - - a, are positive integers and 0 < ip < <--- < i <
n—1for 0 <7 < n—1. Denote by << apel (0),a1€, (0),---,arel (0) >>
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-
the following dipath from vertex o = (0,0, ---,0) to vertex ), ajer:
j=0

0 —ej —2ep — - — apeq
— age}; + e, — aoe} +2€f, — - - — agel +are]]
)
r=1 r—1 r n
n - id T ;e
— ;)ajeg +el — 3 ajel, +2ef — - — ;)a_,e,j,
F= Jj= . I=

and by << aoe}, (v),a;€], (v),---,a,e{} (v) >> the following dipath from

vertex v = (e,e,---,e) to vertex v + 3 a,-e',-‘j:
=0
v —v+tel —v+2el — - —v+aee
— v + agel, + el — v + age}, + 2¢f; — o > v+ age] +ale}‘l
—_ ..
re1 r—1

.

n n T n - =}

—v+ .Zoajeij+e,-r—>v+. 0a,e,-j+2e,~'--> —v+ Zoa,e,-j.
=i = )=

3 Main results

Lemma 3.1 LetS = {o,v} be asubset of V(C(d, n)) with o = (0,0,---,0)
and v = (e,e,---,e), d,n > 4. Then there exists n internally disjoint di-
paths of length at most n(d — 1) — f(n,d) +1 from S to z € V(C(d,n)) - S
if vertex z has no zero components.

Proof Since the digraph is vertex-transitive, without loss of generality,
we consider the following cases for any vertex & with no zero components
in V(C(d,n)) - S:

Case 1. Vertex x has no components with value e.

n—j J
Assume z = (Tp_1,...,25,%j-1,...,%0) fore+1 < z,_y,...,z2; <d-1
and1<zj_1,...,z0<e—1.

Subcase 1a. [n/2] < j < n. Construct n internally disjoint dipaths
from o to z as follows:
P, :<< z€7(0), Te41€841(0), - -+, Tn-16}1_1 (0), Toeg(0), T1€7(0), - - -,
zi—yep (o) >> for0<t<n—1.
We can see that the length of each dipath is
n—1
Yz <jle-1)+(n—j)d—1) =n(d-1)—je <n(d-1)-[n/2]e.
=0
Subcase 1b. 0 < j £ [n/2] — 1. By vertex-transitive, we can construct
n internally disjoint dipaths from v to z in the same way as in Subcase 1a,
and the length of each dipath is
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S +m+ T @0 <id-D+n-i)E -1
= =j

=n(e — 1)+ je
<n(e' —1) +e([n/2] — 1)
=n(d-1) —e(|n/2] +1).
Case 2. Vertex = has some components with value e.
n—-j—k k Jj
e s, e e, st e,
Assume = (Tn—1,..,Zj4k1 €+ +,6Tj—1,...,%0) fore+l < zn_y,...,
zj4k <d—-land 1<z y,...,00<e—1, k21
Subcase 2a. [n/2] —1 < j < n. Construct the same dipaths from o to
z as in Subcase 1a. The length of each dipath is

j—1 n—1
S zmt+ke+ Yz <jle—1)+ke+(n—j—k)d-1)
=0 k

-
g =n(d—1)—je —k(e —1)
<n(d-1) - ([n/2] - 1)e' — (¢ - 1)
=n(d-1)—[n/2]e +1.

Subcase 2b. 0 < j < [n/2] — 2. Construct n internally disjoint dipaths
from v to z as follows: _

P :<< (€ +Te)ef(v), (€ +Teq1)eRy 1 (v), - (€ +z5-1)ef_1 (v), (Tjk—
€)ele(V), (Ziks1— €)1 (V) (Eno1 =€)y (v), (¢ +2o)ef (v), (€ +
1)t (W), -+, (€ + Tem1)ef (v) >> for0<t<j—1;

P, :<< (d=1)e} (v), (Z54—)efs(0), (T1thk+1- e ga (¥); -+ (Bmoa—
e)en_1(v), (¢ + zo)ef(v), (¢ + z1)ef(v), -+, (€ + zj—1)ef_ (v), €f (v) >>
forj<t<j+k-1;

P i<< (2 — e)ef(v), (Te41 — €)efyy (v), - (Tnm1 — e)en_1(v), (e +
o)e (v), (€ +21)eP(v), -, (€ +1)€f_1 (V), (Tj+k—€)eFy(V), (Tj4k+1—
e)ef ks1 (V) s (Te-1 —€)ep(v) >> forj+k<t<n-1

The length of each dipath is at most

i=1 , n=1
Slet+z)+ Y (zi—e)+d

=0 l=j+k
<jd-1)+(n—-j-k)e -1)+d
=n(e -1)+je—k(e —1)+d
<n(e -1)+([n/2] —-2)e—€ +1+d
=n(d—-1)—e(|n/2) +1)+1.

Summarizing cases 1 and 2, the length of each dipath is at most n(d —

1) - f(n,d) + 1.
|
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Lemma 3.2 Let S = {o,v} be a subset of V(C(d,n)) with o =
(0,0,---,0) and v = (e,e,---,¢e), d,n > 4. Then there exists n inter-
nally disjoint dipaths of length at most n(d — 1) — f(n,d) + 1 from S to
z € V(C(d,n)) — S if vertex = has some zero components.

Proof We consider the following cases:

Case 1.Vertex z has no components with value e.

n—i—j i i

Assume z = (Tp—, 7 1 Tigjs Tigjmlye- 323 0,...,0) for e+ 1 < zpn_y,
v Tigj Sd—land 1 <wiyjq,---,z:<e—1,1>1.

Subcase la. [n/2] +1 < i+ j < n. Construct n internally disjoint
dipaths from o to z in the samy way as in Subcase 2b of Lemma 3.1. The
length of each dipath is at most

Fotd <jle—1)+(n-i-i)d=1)+d

I=i
=n(d—1)-i(d—1)—je +d
<n(d-1)-id—1)—([n/2] +1—1i)e +d
=n(d—1)—i(e—1) —([n/2] + 1) +d
<n(d-1)-(e—1)—([n/2] +1)e +d
<n(d-1)-[n/2]e +1.

Subcase 1b. 0 < i+ j < [n/2]. Construct the same dipaths from v to
z as in Subcase 1b of Lemma 3.1. The length of each dipath B, is

» i4+j-1 , n—-1
ie+ ) (e +z)+ X (m—e)
I=i I=itj

Sie' +j(d=1)+(n—i—j)(e' —1)
=n(e —1)+i+je

<n(e —1)+i+([n/2] —i)e
=n(e —1) —i(e—1)+ [n/2]e
<n(e —1)—(e—1)+ [n/2]e
=n(d—1)—e([n/2) +1) +1.

Case 2. Vertex has some component with value e.

n—i—j—k k j i
P e — P P —
Assume T = (Tn-1,.- -, Titjtks €16, Titj1,...,25,0,...,0) for e +
1< Zh1, oy Tigjpk <d-1land1 LTitj-1,...,2:<e—-1,4,k>1.

Subcase 2a. [n/2] 4+ 1 < i+ j < n. Construct n internally disjoint
dipaths from o to z in the same way as in Subcase 2b of Lemma 3.1. So
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the length of each dipath is at most

n—1
Y o+d <jle—1)+ke+t(n—i—j—k)(d-1)+d

I=1
=n{d—1)—i(d—1) — je — k(e —1)+d
<n(d—1)—z(d—1)—(|’n/2'|+1—z)e —k(e -1)+d
=n(d—1)—i(e—1)— (Jn/2] +1)e —k(e' —1)+d
<n(d-1)=(e—1)—-([n/2] +1)e — (¢ —1)+d
=n(d—1)—e([n/2] +1) +2.

Subcase 2b. i+j = [n/2]. Construct n—i— j internally disjoint dipaths
from o to x and i + j internally disjoint dipaths from v to z as follows:

P, :<< 7:€}(0), Tiy1€041(0), -+, Tijm16P-1(0), Ze€} (0), Ter 16741 (0),

“+yZn-1€n_1(0), Tivjely;(0), Titrj+1€04;41(0), +, Te—16f_1(0) >> forit
jf<tL<n— l

P << (€' +2)ef(v), (€ + Tegr)ef1 (v), -+, (€ + Tinjm1)eR ;o1 (),
(Tirj+e—e)e z+3+k(”)’ (Titjth+1 _e)ea+3+k+1(v)v ooy (Tno1—e)en_1(v), (el+
7o)l (v), (¢ +11)efF(v), -+, (e +xe1)ef (V) >> for0<t<i+j-1.

n—1
The length of dipath P, fori+j <t <n—11is Y z; and the length of

l=t

t4j~1

dipath P, for 0 <t <i+j—1is 3 (¢ +z)+ Z (x1 — e). Noting
=0 l=it+j+k
itj-1
2 < Z (€ + )+ E (zi —e) for i + j = [n/2], so the length of
l=i+j+k

each dlpath P, is at most

+ -_—

E (e + ) + Z (x1—e)

l—0 l=i+j+k ,

Sie +j(d—1)+(n—i—j—k)(e - 1)
=nle —1)+i+je—k(e —1)

=n(e — 1) +i+([n/2] —i)e— k(e —1)
=n(e — 1)+ [n/2]e-i(e — 1) — k(e —1)
<n(e —1)+[n/2le-(e~1)— (e —1)
=n(d-1) - |n/2le—d+2.

Subcase 2c. i +j = [n/2] - 1. Construct the same dea.ths as in
+
Subcase 2b of Lemma 3.2. Similarly, ) (e + ) + Z (z1 —€) <

=0 I=i+j+k
n(d—1)— |n/2]le—d —e+2, and
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Yo <ile—1)+ket(n—i—j-k)d—1)

l=i
=n(d—1)—i(d—1) — je — k(' —1)
=n(d—1)—i(d—1) = ([n/2] =1 —i)e — k(e — 1)
=n(d—1)—ile—1)— ([n/2] = 1) — k(e —1)
Sn(d—1)=(e=1)—([n/2] = 1) — (¢ —1)
=n(d—-1)—e—[n/2]e +2.

Subcase 2d. 0 < i+ j < [n/2] — 2. Construct the same dipaths as in
Subcase 2b of Lemma 3.1. So the length of dipath is at most

i+j—1
ie + Z (e +z) + Z (mz—e)+d
l=itj+

<ie +J(d—1)+(n—z—g k)(e —1)+d

=nle —1)+i+je—k(e —1)+d

n(e —1)+i+([n/2] —2—-i)e—k(e' —1)+d
n(e' —1) —i(e —1) +([n/2] - 2)e — k(e — 1) +d
n(e —1)—(e—1)+([n/2] —=2)e— (¢ —1) +d
n(d—1) —e({n/2) +2) +2.

Summarizing cases 1 and 2, the length of each dipath is at most n(d —
1) - f(n,d) + 1.

A 1A

]
Finally, we can see that Lemma 3.1 and 3.2 yield the following theorem.

Theorem 3.3 Ifd,n > 4, then v,,(C(d,n)) = 2 for n(d—1)— f(n,d)+
1<i<n(d-1).
]

Lemma 3.4 Let S = {o,v} be a subset of V(C(d,n)) with o =
(0,0,.--,0) and v = (e,e,---,€), d,n > 4. For 1 < w < n — 1, there
exists w internally disjoint dipaths of length at most n(d—1) — f(n, d) from
S to x € V(C(d,n)) — S if vertex = has no zero components.

Proof We consider the following cases:

Case 1.Vertex z has no components with value e.

From the Case 1 of Lemma 3.1, the result follows.

Case 2. Vertex r has some component with value e.

n-j—k k

Assume = = (Tn_1, .. 1 Z54m 600181551, %0) for e + 1 < 2uy,
vosTjpk <d—land 1 <zj_y,...,50<e—-1,k>1

Subcase 2a. [n/2] < j < n. Construct the same w internally disjoint
dipaths as in Subcase 1a of Lemma 3.1, and we can easily see the length of
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each dipath is

3= n—1
sz + ke + Z z<n(d-1)—[n/2le +1-¢.
=0 l=j+k

The details are omitted here.

Subcase 2b. 0 < j < [n/2] —1.

If k = 1, construct the same w internally disjoint dipaths as P, for
0<t<j—1land j+1<t<n-—1in Subcase 2b of Lemma 3.1. Similarly,
the length of each dipath is

Z(e + )+ Z (z1—e) <n(d—1)—e(|n/2| +1)+1—¢.

I=j+1
Otherwise, k > 2. We consider the following cases:
For j = [n/2] — 1, the desired w internally disjoint dipaths are similar
to that in Subcase 1a of Lemma. 3.1, the length of each dipath is

j—1 n—1

Zzg +ke+ Z z<n(d-1) - fn/2]e' +2-¢.
=0 l=j+k

For j < [n/2] — 2, the desired w internally disjoint dipaths are similar
to that in Subcase 2b of Lemma 3.1, the length of each dipath is at most

j-1 n-1
Se+z)+ 3 (@m-e)+d<n(d-1)—e(|n/2] +1) +2-¢.
1=0 l=3+1

Lemma 3.5 Let S = {o,v} be a subset of V(C(d,n)) with o =
(0,0,---,0) and v = (e,e,---,€), d,n > 4. For 1 < w < n—1, there
exists w internally disjoint dipaths of length at most n(d —1) — f(n,d) from
S to xz € V(C(d,n)) — S if vertex x has some zero components.

Proof We consider the following cases:

Case 1. Vertex z has no components with value e.

ﬂ—l—]
Assume z = (rmn—l, axt+31$t+] 1) »xu e ) fore+1 L ZTp-y,
c s Titj Sd-—l andlSa:H., 1, :c,ge—l ‘LZ]

Subcase 1a. [n/2] +1 < i+ j < n. We can construct w internally
disjoint dipaths from o to z.

If i = 1, the length of each dipath is

nz_:l:cz <n(d-1)-[n/2]e +1—d.

l=i
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If i > 2, the length of each dipath is at most

n—1
Y m+d<nd—1)—[n/2]e +2-e.

=i

Subcase 1b. i+ j = [n/2]. If ¢ > 2, construct w internally disjoint

dipaths from v to z, the length of each dipath is

i4j—1 n—1
ie + JZ € +z)+ D (zi—e) <nd—1)—e(|n/2) +1) +2 e
=i l=i4j

If i = 1, it is similar to the case of i = 1 in Subcase 1a of Lemma 3.5.
The length of each dipath is

n—1

z_::cl <n(d-1)- [n/2]e +1—e.
=i

Subcase Ic. i+ j < [n/2] — 1. Construct w internally disjoint dipaths
from v to z, the length of each dipath is

i4+j—1 n—1
ie + i: (e +z)+ E (z1—e)<nd-1)—e(|n/2[]+1)+1-e.

=i l=itj

Case 2. Vertex z has some component with value e.
From the Case 2 of Lemma 3.2, the result follows. ]
Finally, we can see that Lemma 3.4 and 3.5 yield the following theorem.

Theorem 3.6 If d,n > 4, then 7,,(C(d,n)) =2forl Kw <n-1
andn(d—1)— f(n,d) <l<n(d-1)-1. ]
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