On the (l, ω) -domination number of the cube network *

Xin Xie^{a†} Jun-Ming Xu^b

^aDepartment of Mathematics, Huangshan University

Huangshan, 245041, China

^bDepartment of Mathematics, University of Science and Technology of China

Hefei, 230026, China

Abstract For an n-connected graph G, the n-wide diameter $d_n(G)$, is the minimum integer m such that there are at least n internally disjoint (di)paths of length at most m between any vertices x and y. For a given integer l, a subset S of V(G) is called an (l,n)-dominating set of G if for any vertex $x \in V(G) - S$ there are at least n internally disjoint (di)paths of length at most l from S to x. The minimum cardinality among all (l,n)-dominating sets of G is called the (l,n)-domination number. In this paper, we obtain that the (l,ω) -domination number of the d-ary cube network C(d,n) is 2 for $1 \le \omega \le n$ and $d_{\omega}(G) - f(d,n) \le l \le d_{\omega}(G) - 1$ if $d,n \ge 4$, where $f(d,n) = \min\{e(\lfloor n/2 \rfloor + 1), \lceil n/2 \rceil e'\}$.

Keywords: Cube network, Domination number, Wide diameter, Combinatorial problems

MR Subject Classification: 05C40 68M10 68M15 68R10

1 Introduction

This paper uses graphs to represent networks. The distance $d_G(x, y)$ from a vertex x to another vertex y in a network G is the minimum number of edges of a (di)path from x to y. The diameter d(G) is the maximum distance from one vertex to another. The connectivity k(G) is the minimum number of vertices whose removal results in a disconnected or trivial network.

In order to characterize the reliability of transmission delay in a realtime parallel processing system, Hsu and Lyuu [6], Flandrin and Li [4]

^{*}The work was supported by NNSF of China (No.11071233) and Foundation of Huangshan University.

[†] Corresponding author: xiexin@hsu.edu.cn

independently introduced n-wide diameter. For an n-connected graph G, the distance with width n from x to y, denoted by $d_n(G; x, y)$, is the minimum number m for which there are n internally disjoint (x, y)-(di)paths in G of length at most m. The n-wide diameter of G, i.e., the n-diameter, denoted by $d_n(G)$, is the maximum of $d_n(G; x, y)$ over all pairs (x, y) of vertices of G.

Li and Xu [7] defined a new parameter (l,n)-domination number. This motives us to generalize the definition to that of the digraph. Let G be an n-connected digraph, S a nonempty and proper subset of V(G), x a vertex in G-S. For a given positive integer l, x is (l,n)-dominated by S if there are at least n internally disjoint (S,x)-dipaths of length at most l. S is said to be an (l,n)-dominating set of G if S can (l,n)-dominate any vertex in G-S. The minimum cardinality among all (l,n)-dominating sets of G is called the (l,n)-domination number, denoted by $\gamma_{l,n}(G)$.

The d-ary cube network C(d,n) is a digraph of d^n vertices, in which any vertex x has the form $(x_{n-1},x_{n-2},\ldots,x_0)$ where $0 \le x_i \le d-1$ for $0 \le i \le n-1$, and x is adjacent to $(x_{n-1},\ldots,x_{j+1},x_j+1,x_{j-1},\ldots,x_0)$ for $0 \le j \le n-1$, where additions are taken modulo d. C(2,n) is the n-dimensional binary hypercube Q_n . It is clear that C(d,n) is vertextransitive and its diameter is n(d-1). Hsu and Lyuu [6] proved that $d_n(C(d,n)) = n(d-1)+1$. Liaw and Chang [8] showed that $d_\omega(C(d,n)) = n(d-1)$ for $1 \le \omega \le n-1$ and $d_n(C(d,n)) = n(d-1)+1$. Since $\gamma_{l,n}(G) = 1$ for $l \ge d_n(G)$ and $\gamma_{l,n}(G) \ge 2$ for $l < d_n(G)$, so it is of interest to show some general properties and values of the (l,ω) -domination numbers of n-connected graphs for $l < d_n(G)$ and $1 \le \omega \le n$ (see, for example [1, 2, 5, 7, 9, 10, 11, 12]).

In this paper, we obtain $\gamma_{l,\omega}(C(d,n)) = 2$ for $1 \le \omega \le n$ and $d_{\omega}(G) - f(d,n) \le l \le d_{\omega}(G) - 1$ if $d,n \ge 4$, where $f(d,n) = \min\{e(\lfloor n/2 \rfloor + 1), \lceil n/2 \rceil e'\}$.

Terminologies and notations not defined here are referred to [3].

2 Preliminaries

Let $c_i(x) = x_i$ denote the *i*th component of vertex $x = (x_{n-1}, x_{n-2}, \dots, x_0)$. For $0 \le i \le n-1$, the ith unit vector is the vector e_i^n with $c_i(e_i^n) = 1$ and $c_j(e_i^n) = 0$ for $0 \le j \le n-1$, with $j \ne i$. The vertex set of C(d,n) can be viewed as a module over Z_d . So vertex x can also be written as $x = \sum_{i=0}^{n-1} x_i e_i^n$. Denote $\lfloor d/2 \rfloor$ and $\lfloor d/2 \rfloor$ by e and e', respectively. Let $f(d,n) = \min\{e(\lfloor n/2 \rfloor + 1), \lceil n/2 \rceil e'\}$ in this paper.

Suppose $a_0, a_1, \dots a_r$ are positive integers and $0 \le i_0 \le i_1 \le \dots \le i_r \le n-1$ for $0 \le r \le n-1$. Denote by $<< a_0 e_{i_0}^n(o), a_1 e_{i_1}^n(o), \dots, a_r e_{i_r}^n(o) >>$

the following dipath from vertex $o = (0, 0, \dots, 0)$ to vertex $\sum_{j=0}^{r} a_j e_{i_j}^n$:

$$\begin{array}{ll} o & \to e_{i_0}^n \to 2e_{i_0}^n \to \cdots \to a_0 e_{i_0}^n \\ & \to a_0 e_{i_0}^n + e_{i_1}^n \to a_0 e_{i_0}^n + 2e_{i_1}^n \to \cdots \to a_0 e_{i_0}^n + a_1 e_{i_1}^n \\ & \to \cdots \\ & \to \sum_{j=0}^{r-1} a_j e_{i_j}^n + e_{i_r}^n \to \sum_{j=0}^{r-1} a_j e_{i_j}^n + 2e_{i_r}^n \to \cdots \to \sum_{j=0}^r a_j e_{i_j}^n, \end{array}$$

and by $<< a_0 e_{i_0}^n(v), a_1 e_{i_1}^n(v), \cdots, a_r e_{i_r}^n(v) >>$ the following dipath from vertex $v = (e, e, \cdots, e)$ to vertex $v + \sum_{i=0}^r a_i e_{i_j}^n$:

$$\begin{array}{ll} v & \to v + e^n_{i_0} \to v + 2e^n_{i_0} \to \cdots \to v + a_0e^n_{i_0} \\ & \to v + a_0e^n_{i_0} + e^n_{i_1} \to v + a_0e^n_{i_0} + 2e^n_{i_1} \to \cdots \to v + a_0e^n_{i_0} + a_1e^n_{i_1} \\ & \to \cdots \\ & \to v + \sum_{j=0}^{r-1} a_je^n_{i_j} + e^n_{i_r} \to v + \sum_{j=0}^{r-1} a_je^n_{i_j} + 2e^n_{i_r} \to \cdots \to v + \sum_{j=0}^r a_je^n_{i_j}. \end{array}$$

3 Main results

Lemma 3.1 Let $S = \{o, v\}$ be a subset of V(C(d, n)) with $o = (0, 0, \dots, 0)$ and $v = (e, e, \dots, e), d, n \ge 4$. Then there exists n internally disjoint dipaths of length at most n(d-1) - f(n, d) + 1 from S to $x \in V(C(d, n)) - S$ if vertex x has no zero components.

Proof Since the digraph is vertex-transitive, without loss of generality, we consider the following cases for any vertex x with no zero components in V(C(d,n)) - S:

Case 1. Vertex x has no components with value e.

Assume $x=(\overbrace{x_{n-1},\ldots,x_j}^{n-j},\overbrace{x_{j-1},\ldots,x_0}^{j})$ for $e+1\leq x_{n-1},\ldots,x_j\leq d-1$ and $1\leq x_{j-1},\ldots,x_0\leq e-1$.

Subcase 1a. $\lceil n/2 \rceil \leq j \leq n$. Construct n internally disjoint dipaths from o to x as follows:

$$P_t : \langle \langle x_t e_t^n(o), x_{t+1} e_{t+1}^n(o), \cdots, x_{n-1} e_{n-1}^n(o), x_0 e_0^n(o), x_1 e_1^n(o), \cdots, x_{t-1} e_{t-1}^n(o) \rangle \rangle \quad \text{for } 0 \le t \le n-1.$$

We can see that the length of each dipath is

$$\sum_{l=0}^{n-1} x_{l} \leq j(e-1) + (n-j)(d-1) = n(d-1) - je' \leq n(d-1) - \lceil n/2 \rceil e'.$$

Subcase 1b. $0 \le j \le \lceil n/2 \rceil - 1$. By vertex-transitive, we can construct n internally disjoint dipaths from v to x in the same way as in Subcase 1a, and the length of each dipath is

$$\sum_{l=0}^{j-1} (e' + x_l) + \sum_{l=j}^{n-1} (x_l - e) \leq j(d-1) + (n-j)(e'-1)$$

$$= n(e'-1) + je$$

$$\leq n(e'-1) + e(\lceil n/2 \rceil - 1)$$

$$= n(d-1) - e(\lceil n/2 \rceil + 1).$$

Case 2. Vertex x has some components with value e.

Assume $x = (\overbrace{x_{n-1}, \dots, x_{j+k}}^{n-j-k}, \overbrace{e, \dots, e}^{k}, \overbrace{x_{j-1}, \dots, x_{0}}^{j})$ for $e+1 \le x_{n-1}, \dots, x_{j+k} \le d-1$ and $1 \le x_{j-1}, \dots, x_{0} \le e-1, k \ge 1$.

Subcase 2a. $\lceil n/2 \rceil - 1 \le j \le n$. Construct the same dipaths from o to x as in Subcase 1a. The length of each dipath is

$$\begin{array}{ll} \sum\limits_{l=0}^{j-1} x_l + ke + \sum\limits_{l=j+k}^{n-1} x_l & \leq j(e-1) + ke + (n-j-k)(d-1) \\ & = n(d-1) - je^{'} - k(e^{'}-1) \\ & \leq n(d-1) - (\lceil n/2 \rceil - 1)e^{'} - (e^{'}-1) \\ & = n(d-1) - \lceil n/2 \rceil e^{'} + 1. \end{array}$$

Subcase 2b. $0 \le j \le \lceil n/2 \rceil - 2$. Construct n internally disjoint dipaths from v to x as follows:

 $P_t: <<(e^{'}+x_t)e_t^n(v), (e^{'}+x_{t+1})e_{t+1}^n(v), \cdots, (e^{'}+x_{j-1})e_{j-1}^n(v), (x_{j+k}-e)e_{j+k}^n(v), (x_{j+k+1}-e)e_{j+k+1}^n(v), \cdots, (x_{n-1}-e)e_{n-1}^n(v), (e^{'}+x_0)e_0^n(v), (e^{'}+x_1)e_1^n(v), \cdots, (e^{'}+x_{t-1})e_{t-1}^n(v)>> \text{ for } 0 \leq t \leq j-1;$

 $P_{t}:<<(d-1)e_{t}^{n}(v),(x_{j+k}-e)e_{j+k}^{n}(v),(x_{j+k+1}-e)e_{j+k+1}^{n}(v),\cdots,(x_{n-1}-e)e_{n-1}^{n}(v),(e^{'}+x_{0})e_{0}^{n}(v),(e^{'}+x_{1})e_{1}^{n}(v),\cdots,(e^{'}+x_{j-1})e_{j-1}^{n}(v),e_{t}^{n}(v)>>$ for $j \leq t \leq j+k-1$;

 $P_{t}^{n}:<<(x_{t}-e)e_{t}^{n}(v),(x_{t+1}-e)e_{t+1}^{n}(v),\cdots,(x_{n-1}-e)e_{n-1}^{n}(v),(e'+x_{0})e_{0}^{n}(v),(e'+x_{1})e_{1}^{n}(v),\cdots,(e'+x_{j-1})e_{j-1}^{n}(v),(x_{j+k}-e)e_{j+k}^{n}(v),(x_{j+k+1}-e)e_{j+k+1}^{n}(v),\cdots,(x_{t-1}-e)e_{t-1}^{n}(v)>> \text{ for } j+k \leq t \leq n-1.$

The length of each dipath is at most

$$\begin{split} &\sum_{l=0}^{j-1} (e^{'} + x_l) + \sum_{l=j+k}^{n-1} (x_l - e) + d \\ &\leq j(d-1) + (n-j-k)(e^{'} - 1) + d \\ &= n(e^{'} - 1) + je - k(e^{'} - 1) + d \\ &\leq n(e^{'} - 1) + (\lceil n/2 \rceil - 2)e - e^{'} + 1 + d \\ &= n(d-1) - e(\lceil n/2 \rceil + 1) + 1. \end{split}$$

Summarizing cases 1 and 2, the length of each dipath is at most n(d-1) - f(n,d) + 1.

Lemma 3.2 Let $S = \{o, v\}$ be a subset of V(C(d, n)) with $o = (0, 0, \dots, 0)$ and $v = (e, e, \dots, e), d, n \ge 4$. Then there exists n internally disjoint dipaths of length at most n(d-1) - f(n, d) + 1 from S to $x \in V(C(d, n)) - S$ if vertex x has some zero components.

Proof We consider the following cases:

Case 1. Vertex x has no components with value e.

Assume
$$x = (\overbrace{x_{n-1}, \dots, x_{i+j}}^{n-i-j}, \overbrace{x_{i+j-1}, \dots, x_{i}}^{j}, \overbrace{0, \dots, 0}^{i})$$
 for $e+1 \le x_{n-1}, \dots, x_{i+j} \le d-1$ and $1 \le x_{i+j-1}, \dots, x_{i} \le e-1, i \ge 1$.

Subcase 1a. $\lceil n/2 \rceil + 1 \le i + j \le n$. Construct n internally disjoint dipaths from o to x in the samy way as in Subcase 2b of Lemma 3.1. The length of each dipath is at most

$$\begin{split} \sum_{l=i}^{n-1} x_l + d &\leq j(e-1) + (n-i-j)(d-1) + d \\ &= n(d-1) - i(d-1) - je' + d \\ &\leq n(d-1) - i(d-1) - (\lceil n/2 \rceil + 1 - i)e' + d \\ &= n(d-1) - i(e-1) - (\lceil n/2 \rceil + 1)e' + d \\ &\leq n(d-1) - (e-1) - (\lceil n/2 \rceil + 1)e' + d \\ &\leq n(d-1) - \lceil n/2 \rceil e' + 1. \end{split}$$

Subcase 1b. $0 \le i + j \le \lceil n/2 \rceil$. Construct the same dipaths from v to x as in Subcase 1b of Lemma 3.1. The length of each dipath P_t is

$$ie' + \sum_{l=i}^{i+j-1} (e' + x_l) + \sum_{l=i+j}^{n-1} (x_l - e)$$

$$\leq ie' + j(d-1) + (n-i-j)(e'-1)$$

$$= n(e'-1) + i + je$$

$$\leq n(e'-1) + i + (\lceil n/2 \rceil - i)e$$

$$= n(e'-1) - i(e-1) + \lceil n/2 \rceil e$$

$$\leq n(e'-1) - (e-1) + \lceil n/2 \rceil e$$

$$= n(d-1) - e(\lceil n/2 \rceil + 1) + 1.$$

Case 2. Vertex has some component with value e.

Assume
$$x=(\overbrace{x_{n-1},\ldots,x_{i+j+k}}^{n-i-j-k},\overbrace{e,\ldots,e}^{k},\overbrace{x_{i+j-1},\ldots,x_{i}}^{j},\overbrace{0,\ldots,0}^{i})$$
 for $e+1\leq x_{n-1},\ldots,x_{i+j+k}\leq d-1$ and $1\leq x_{i+j-1},\ldots,x_{i}\leq e-1,\ i,k\geq 1$.
Subcase 2a. $\lceil n/2\rceil+1\leq i+j\leq n$. Construct n internally disjoint dipaths from o to x in the same way as in Subcase 2b of Lemma 3.1. So

the length of each dipath is at most

$$\begin{split} \sum_{l=i}^{n-1} x_l + d &\leq j(e-1) + ke + (n-i-j-k)(d-1) + d \\ &= n(d-1) - i(d-1) - je' - k(e'-1) + d \\ &\leq n(d-1) - i(d-1) - (\lceil n/2 \rceil + 1 - i)e' - k(e'-1) + d \\ &= n(d-1) - i(e-1) - (\lceil n/2 \rceil + 1)e' - k(e'-1) + d \\ &\leq n(d-1) - (e-1) - (\lceil n/2 \rceil + 1)e' - (e'-1) + d \\ &= n(d-1) - e' (\lceil n/2 \rceil + 1) + 2. \end{split}$$

Subcase 2b. $i+j = \lceil n/2 \rceil$. Construct n-i-j internally disjoint dipaths from o to x and i+j internally disjoint dipaths from v to x as follows:

$$P_t: \langle \langle x_i e_i^n(o), x_{i+1} e_{i+1}^n(o), \cdots, x_{i+j-1} e_{i+j-1}^n(o), x_t e_t^n(o), x_{t+1} e_{t+1}^n(o), \cdots, x_{n-1} e_{n-1}^n(o), x_{i+j} e_{i+j}^n(o), x_{i+j+1} e_{i+j+1}^n(o), \cdots, x_{t-1} e_{t-1}^n(o) \rangle \rangle \quad \text{for } i+j \leq t \leq n-1;$$

$$P_{t} : << (e' + x_{t})e_{t}^{n}(v), (e' + x_{t+1})e_{t+1}^{n}(v), \cdots, (e' + x_{i+j-1})e_{i+j-1}^{n}(v), (x_{i+j+k} - e)e_{i+j+k}^{n}(v), (x_{i+j+k+1} - e)e_{i+j+k+1}^{n}(v), \cdots, (x_{n-1} - e)e_{n-1}^{n}(v), (e' + x_{0})e_{0}^{n}(v), (e' + x_{1})e_{1}^{n}(v), \cdots, (e' + x_{t-1})e_{t-1}^{n}(v) >>$$
 for $0 \le t \le i+j-1$.

The length of dipath P_t for $i+j \leq t \leq n-1$ is $\sum_{l=i}^{n-1} x_l$ and the length of dipath P_t for $0 \leq t \leq i+j-1$ is $\sum_{l=0}^{i+j-1} (e'+x_l) + \sum_{l=i+l+1}^{n-1} (x_l-e)$. Noting

 $\sum_{l=i}^{n-1} x_l \leq \sum_{l=0}^{i+j-1} (e^{'} + x_l) + \sum_{l=i+j+k}^{n-1} (x_l - e) \text{ for } i+j = \lceil n/2 \rceil, \text{ so the length of each dipath } P_t \text{ is at most}$

$$\begin{split} &\sum_{l=0}^{i+j-1} (e^{'} + x_l) + \sum_{l=i+j+k}^{n-1} (x_l - e) \\ &\leq ie^{'} + j(d-1) + (n-i-j-k)(e^{'} - 1) \\ &= n(e^{'} - 1) + i + je - k(e^{'} - 1) \\ &= n(e^{'} - 1) + i + (\lceil n/2 \rceil - i)e - k(e^{'} - 1) \\ &= n(e^{'} - 1) + \lceil n/2 \rceil e - i(e-1) - k(e^{'} - 1) \\ &\leq n(e^{'} - 1) + \lceil n/2 \rceil e - (e-1) - (e^{'} - 1) \\ &= n(d-1) - |n/2|e - d + 2. \end{split}$$

Subcase 2c. $i+j=\lceil n/2\rceil-1$. Construct the same dipaths as in Subcase 2b of Lemma 3.2. Similarly, $\sum_{l=0}^{i+j-1}(e^{'}+x_l)+\sum_{l=i+j+k}^{n-1}(x_l-e)\leq n(d-1)-\lfloor n/2\rfloor e-d-e+2$, and

$$\begin{split} \sum_{l=i}^{n-1} x_l &\leq j(e-1) + ke + (n-i-j-k)(d-1) \\ &= n(d-1) - i(d-1) - je' - k(e'-1) \\ &= n(d-1) - i(d-1) - (\lceil n/2 \rceil - 1 - i)e' - k(e'-1) \\ &= n(d-1) - i(e-1) - (\lceil n/2 \rceil - 1)e' - k(e'-1) \\ &\leq n(d-1) - (e-1) - (\lceil n/2 \rceil - 1)e' - (e'-1) \\ &= n(d-1) - e - \lceil n/2 \rceil e' + 2. \end{split}$$

Subcase 2d. $0 \le i + j \le \lceil n/2 \rceil - 2$. Construct the same dipaths as in Subcase 2b of Lemma 3.1. So the length of dipath is at most

$$ie' + \sum_{l=i}^{i+j-1} (e' + x_l) + \sum_{l=i+j+k}^{n-1} (x_l - e) + d$$

$$\leq ie' + j(d-1) + (n-i-j-k)(e'-1) + d$$

$$= n(e'-1) + i + je - k(e'-1) + d$$

$$\leq n(e'-1) + i + (\lceil n/2 \rceil - 2 - i)e - k(e'-1) + d$$

$$= n(e'-1) - i(e-1) + (\lceil n/2 \rceil - 2)e - k(e'-1) + d$$

$$\leq n(e'-1) - (e-1) + (\lceil n/2 \rceil - 2)e - (e'-1) + d$$

$$= n(d-1) - e(\lceil n/2 \rceil + 2) + 2.$$

Summarizing cases 1 and 2, the length of each dipath is at most n(d-1) - f(n,d) + 1.

Finally, we can see that Lemma 3.1 and 3.2 yield the following theorem.

Theorem 3.3 If $d, n \ge 4$, then $\gamma_{l,n}(C(d,n)) = 2$ for $n(d-1) - f(n,d) + 1 \le l \le n(d-1)$.

Lemma 3.4 Let $S = \{o, v\}$ be a subset of V(C(d, n)) with $o = (0, 0, \dots, 0)$ and $v = (e, e, \dots, e)$, $d, n \ge 4$. For $1 \le \omega \le n - 1$, there exists ω internally disjoint dipaths of length at most n(d-1) - f(n, d) from S to $x \in V(C(d, n)) - S$ if vertex x has no zero components.

Proof We consider the following cases:

Case 1. Vertex x has no components with value e.

From the Case 1 of Lemma 3.1, the result follows.

Case 2. Vertex x has some component with value e.

Assume
$$x = (\overbrace{x_{n-1}, \dots, x_{j+k}}^{n-j-k}, \overbrace{e, \dots, e}^{k}, \overbrace{x_{j-1}, \dots, x_{0}}^{j})$$
 for $e+1 \le x_{n-1}, \dots, x_{j+k} \le d-1$ and $1 \le x_{j-1}, \dots, x_{0} \le e-1, k \ge 1$.

Subcase 2a. $\lceil n/2 \rceil \le j \le n$. Construct the same ω internally disjoint dipaths as in Subcase 1a of Lemma 3.1, and we can easily see the length of

each dipath is

$$\sum_{l=0}^{j-1} x_l + ke + \sum_{l=j+k}^{n-1} x_l \le n(d-1) - \lceil n/2 \rceil e' + 1 - e'.$$

The details are omitted here.

Subcase 2b. $0 \le j \le \lceil n/2 \rceil - 1$.

If k=1, construct the same ω internally disjoint dipaths as P_t for $0 \le t \le j-1$ and $j+1 \le t \le n-1$ in Subcase 2b of Lemma 3.1. Similarly, the length of each dipath is

$$\sum_{l=0}^{j-1} (e^{'} + x_l) + \sum_{l=j+1}^{n-1} (x_l - e) \le n(d-1) - e(\lfloor n/2 \rfloor + 1) + 1 - e^{'}.$$

Otherwise, $k \geq 2$. We consider the following cases:

For $j = \lceil n/2 \rceil - 1$, the desired ω internally disjoint dipaths are similar to that in Subcase 1a of Lemma 3.1, the length of each dipath is

$$\sum_{l=0}^{j-1} x_l + ke + \sum_{l=j+k}^{n-1} x_l \le n(d-1) - \lceil n/2 \rceil e' + 2 - e'.$$

For $j \leq \lceil n/2 \rceil - 2$, the desired ω internally disjoint dipaths are similar to that in Subcase 2b of Lemma 3.1, the length of each dipath is at most

$$\sum_{l=0}^{j-1} (e^{'} + x_{l}) + \sum_{l=j+1}^{n-1} (x_{l} - e) + d \leq n(d-1) - e(\lfloor n/2 \rfloor + 1) + 2 - e^{'}.$$

Lemma 3.5 Let $S = \{o, v\}$ be a subset of V(C(d, n)) with $o = (0, 0, \dots, 0)$ and $v = (e, e, \dots, e)$, $d, n \ge 4$. For $1 \le \omega \le n - 1$, there exists ω internally disjoint dipaths of length at most n(d-1) - f(n, d) from S to $x \in V(C(d, n)) - S$ if vertex x has some zero components.

Proof We consider the following cases:

Case 1. Vertex x has no components with value e.

Assume
$$x = (\overbrace{x_{n-1}, \dots, x_{i+j}}^{n-i-j}, \overbrace{x_{i+j-1}, \dots, x_{i}}^{j}, \overbrace{0, \dots, 0}^{i})$$
 for $e+1 \le x_{n-1}, \dots, x_{i+j} \le d-1$ and $1 \le x_{i+j-1}, \dots, x_{i} \le e-1, i \ge 1$.

Subcase 1a. $\lceil n/2 \rceil + 1 \le i + j \le n$. We can construct ω internally disjoint dipaths from o to x.

If i = 1, the length of each dipath is

$$\sum_{l=i}^{n-1} x_{l} \leq n(d-1) - \lceil n/2 \rceil e' + 1 - d.$$

If $i \geq 2$, the length of each dipath is at most

$$\sum_{l=i}^{n-1} x_l + d \leq n(d-1) - \lceil n/2 \rceil e' + 2 - e.$$

Subcase 1b. $i+j=\lceil n/2\rceil$. If $i\geq 2$, construct ω internally disjoint dipaths from v to x, the length of each dipath is

$$ie^{'} + \sum_{l=i}^{i+j-1} (e^{'} + x_l) + \sum_{l=i+j}^{n-1} (x_l - e) \le n(d-1) - e(\lfloor n/2 \rfloor + 1) + 2 - e.$$

If i = 1, it is similar to the case of i = 1 in Subcase 1a of Lemma 3.5. The length of each dipath is

$$\sum_{l=i}^{n-1}x_{l}\leq n(d-1)-\lceil n/2\rceil e^{'}+1-e.$$

Subcase 1c. $i + j \leq \lceil n/2 \rceil - 1$. Construct ω internally disjoint dipaths from v to x, the length of each dipath is

$$ie' + \sum_{l=i}^{i+j-1} (e' + x_l) + \sum_{l=i+j}^{n-1} (x_l - e) \le n(d-1) - e(\lfloor n/2 \rfloor + 1) + 1 - e.$$

Case 2. Vertex x has some component with value e.

From the Case 2 of Lemma 3.2, the result follows.

Finally, we can see that Lemma 3.4 and 3.5 yield the following theorem.

Theorem 3.6 If $d, n \geq 4$, then $\gamma_{l,\omega}(C(d,n)) = 2$ for $1 \leq \omega \leq n-1$ and $n(d-1) - f(n,d) \leq l \leq n(d-1) - 1$.

References

- G. J. Chang, k-domination and graph covering problems. Ph.D.Thesis, School of OR and IE, Cornell University, Ithaca, NY, 1982.
- [2] G. J. Chang and G. L. Nemhauser, The k-domination and k-stability problems on sun-free chordal graphs. SIAM J. Algebr. Discrete Methods, 5(1984), 332-345.
- [3] G. Chartrand and L. Lesniak, *Graphs and Digraphs*, fourth ed., Chapman and Hall, Boca Raton, FL, 2005.
- [4] E. Flandrin and H. Li, Mengerian properties, hamiltonicity, and claw-free graphs. Networks, 24(1994), 177-183.

- [5] X. M. Hou and Y. Lu, On the k-domination number of Cartesian products of graphs. Discrete Mathematics, 309(2009), 3413-3419.
- [6] D. F. Hsu and Y. D. Lyuu, A graph-theoretical study of transmission delay and fault tolerance. *International Journal of Mini and Micro*computers, 16(1994), 35-42.
- [7] H. Li and J. M. Xu, (d, m)-dominating number of m-connected graphs. Rapport de Recherche, LRI, URA 410 du CNRS Universite de parissud No. 1130, 1997.
- [8] S. C. Liaw and G. J. Chang, Generalized diameters and rabin numbers of networks. *Journal of Combinatorial Optimization*, 4(1999), 371-384.
- [9] J. Liu, X. D. Zhang, X. Chen and J. X. Meng, On domination number of Cartesian product of directed cycles. *Information Processing Letters*, 110(2010), 171-173.
- [10] C. H. Lu, J. M. Xu and K. M. Zhang, On (d,2)-dominating numbers of binary undirected de bruijn graphs. Discrete Applied Mathematics, 105(2000), 137-145.
- [11] Y. Lu, X. M. Hou and J. M. Xu, On the (2, 2)-domination number of trees. Discussions Mathematicae Graph Theory, 30(2010), 185-199.
- [12] J. M. Xu, C. H. LU and K. M. Zhang, A new preperty of binary undirected de bruijn graphs. Chinese Annals of Mathematics, 21B(2000), 39-42.