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ABSTRACT. This paper aims to provide systematic investigation of
the family of polynomials generated by the Rodrigues’ formulas
2
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which include the multiple Laguerre I and the multiple Laguerre
IT polynomials, respectively. The explicit forms, certain operational

formulas involving these polynomials with some apphcatnons and lin-

ear generating functions for K,(,lf,’f;’) (z, k,p) and M,.,?,.’;‘ m)( . k)

are obtained.
1. INTRODUCTION

Multiple orthogonal polynomials, which are the extension of the orthog-
onal polynomials have been an active research field during the last few
decades. Multiple orthogonal polynomials are closely related to Hermite-
Pade approximation of a system of Markov functions [12]. These polynomi-
als have some general properties such as Rodrigues’ formula and generating
functions.

There are several attempts to generalize the known special functions
via corresponding Rodrigues’ formula [4},[5],[11],{14],{16] and new papers
constantly coming out related with these generalizations [3),[6],[7],{8],[15].

Our starting point in this paper is to obtain some properties of multiple
Laguerre I and multiple Laguerre II polynomials [2]. In obtaining these
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properties we consider the following general family of polynomials:
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where p, p1,p2 > 0 with py # p2; ag,a1,02 > —1 with oy # ax and kis a
natural number. It should be noticed that, in the particular case k =1 and
p = 1, definition (1) gives the Rodrigues’ formula of the multiple Laguerre
I polynomials and the case k = 1 reduces (2) to the Rodrigues’ formula of
the multiple Laguerre 11 polynomials [2].

Except for the appropriate choices of the parameters, it is not easy to
show that the polynomials defined by (1) and (2) satisfy multiple orthog-
onality properties in the sense of the classical definition [1]. On the other
hand, they may satisfy a kind of multiple biorthogonality which is an open
problem.

Recently, two classes of multiple orthogonal polynomials were discussed
in [10], where J. Coussement and W. Van Assche obtained a linear dif-
ferential equation for them by combining the lowering operator with the
raising operator. Obtaining a differential equation for certain classes of
polynomials including the polynomials defined by (1) and (2), is another
open problem which is related with the above mentioned open problem.

We organize the paper as follows. In section 2, we obtain the explicit
forms of the polynomials as
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which shows that the polynomials are of exact degree k(n; + nz). In sec-
tion 3, we obtain some operational formulas involving the polynomials
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Kenod)(z k. p) and MEe9P1P2) (4 k) and give some applications to these

results. In section 4, linear generating functions are obtained for the poly-
nomials defined by (1) and (2).

2. EXpLICIT EXPRESSION OF THE POLYNOMIALS

Chatterjea [5|, defined the generalized Laguerre polynomials via Ro-
drigues’ formula by

3 T (@:p) = 5% D"(z**"e™»"); pkeN,

and obtained its explicit formula as
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In obtaining the explicit form of the polynomials T,Sz) (z,p), he used the
following generalized rule for the derivative of f(2) [13],
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where D2(f(2)) = M
Now, using (1), (3) and (4), we get
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Taking into account (5), we obtain
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On the other hand, since (see [5])
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we can state the following theorem, which gives the explicit form of the

polynomials defined by (1).
Theorem 2.1. The family of polynomials K°%2?)(z, k,p) has the explicit
expression
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In a similar way, it can be obtained that

Theorem 2.2. The family of polynomials Mn,,“ﬁ’," 1r’2)(:1: k) defined by (2)
has the explicit expression
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Remark 2.1. Theorem 2.1 and Theorem 2.2 state that the polynomials
K322 (. k. p) and M, M{2OPP2)(3 k) are of ezact degrees k(ny + na).

198



3. OPERATIONAL FORMULAS

In this section we obtain some operational formulas for the polynomials
defined by (1) and (2). We should note that some operational formulas
have recently been given in [9].

In [5], Chatterjea obtained the operational formula

(6) z=eP* DM+ P2 Y) = [ (2D - pha* + a + )Y
=1

where Y is any sufficiently differentiable function of z. Now considering

3
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and using (6), we get
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Recalling Chatterjea’s result [5)
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where the polynomials T,Ef:)(a:,p) be defined by (3) and (4).
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Considering (7), we can write
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By the explicit form of Ka;'g>' (2, k, p), we obtain
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Then by (7) and (8), we get the following general operational formula
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By appropriately choosing the differentiable function Y one can obtain
various operational formulas from (9). For instance, setting ¥ = 1 in (9)
we can state the following theorem.

Theorem 3.1. For K{%4:2%)(z, k,p), we have
(10)
ny n2
(-1)rtm K0 (g, k,p) = [[(eD-pkz*+ar+i) [[(@D-pkz*+az+3)1.

ny,n2
i=1 j=1
In fact Theorem 3.1 can be obtained directly from the equation (6).
Letting k =1 and p =1 in (9), we have the following result.

Corollary 3.2. For the multiple Laguerre I polynomials, we have
n n2
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Furthermore letting Y = 1 in the above Corollary, we get

Corollary 3.3. For the multiple Laguerre I polynomials, we have
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Following the same procedure which is used to obtain operational formu-

las for the polynomials K%:2?(z, k,p), we have the following analogous

result of (9) for the polynomials M,(,‘l’?,;‘;” 'pz)(x, k) :
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where Y is any sufficiently differentiable function of z. Setting Y =1 in
(11) we can state the following theorem.

Theorem 3.4. For M{®%2'?2)(z, k), we have
ny na
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Now letting k =1 in (11), we conclude that
Corollary 3.5. For the multiple Laguerre II polynomials, we have
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Finally, taking ¥ = 1 in the above corollary, we get
Corollary 3.6. For the multiple Laguerre II polynomials, we have
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4. Some Applications Of The Operational Formulas

In this section, by use of the operational formulas obtained in the above
section, we are aimed to obtain some recurrence relations and useful for-

mules for the polynomials K$252?) (x, k, p) and M{S%2"P*)(z, k) defined by
(1) and (2). We start with the following theorem:

Theorem 4.1. For K{2422)(z, k, p), we have
K,(,‘:j,;‘g‘z)(:v, k,p) = —(zD — pkz* + oy + nl)K,(,'f‘_’i"fn)z(w, k,p).
Proof. Writing (10) in the form
(_l)m+n2K(a1,a2)(x’ k,p) = (:I:D _ pk:ck +ay + 'nl)

ni,n2
ny—-1 n2
- [I @D — pkz* + on + &) [[ (=D — pka* + a2 + )1,
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we get the desired result. O

The particular case k = 1 and p = 1 in the above theorem gives the
following recurrence relation for the multiple Laguerre I polynomials:
Corollary 4.2. For the multiple Laguerre I polynomials, we have

LE1vad)(g) = —(zD — z + oy +m) LT (2).

ny,n2 n1—1,n2

Another application of the formula (10) is the following:
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Theorem 4.3. The recurrence formula
(—1)mr+m Klanaz) (z, k, p)
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holds for K2 (z, k, p).
Proof. Replacing n; by n; + m, and ng by ns + m; in (10), we can write
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Whence the result. O

Corollary 4.4. For the multiple Laguerre I polynomials, we have
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On the other hand, considering (9) with Y = K{32%2°?) (g, k, p) in (10)
we get

Corollary 4.5. For K429 (z,k,p), we have
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Corollary 4.6. For the multiple Laguerre I polynomials, we have

L(a:.az) (z)

ni+my,na+me

m —
=my'n 'nzl?—r l m_s (=1) totn) (G1+nn+s+r,ax+r)(x)
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r=0 " s
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Before leaving this section, it should be noticed that similar formulas for
the polynomials M,(,‘f,”,;z"'p’)(m, k) can be obtained in a similar manner.

5. GENERATING FUNCTIONS

In this section we obtain generating functions of a class of polyno-
mials defined by (1) and (2) by using Chatterjea’s result [5]

oo
(13) (1 _ t)—a—lepz*(l—(l-t)'k) - Z T,S:)(IL‘,P)tn,

n=0

where the polynomials T,gz)(m,p) are the class of polynomials defined by
(3). We start with the following theorem:

Theorem 5.1. Let the polynomials {K,(;?,’,’,‘:’)(x,k,p)} be defined by (1).

Then we have

(o ,a2) = = tm 2
i (@ ti,t2) = ) ) Kbt (@ k,p) 15 2,
'ng=0n1=0 1 2
where
Gz, t1,ta) = (1 + 1)@ 7 (L ) T2 ere (1o (t)v(ta)

and v(t) = (1 +t)7F.
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Proof. Considering (3) in (1), we can write

Z K(3ho? (z,k p)l—,

m-o

= (gt Y (<1
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where C] is a circle in the complex z—plane, cut along the negative real
axis, (centered at z = z) with radius € > 0 , which is described in the
positive direction (counter-clockwise). where the closed contour C; in the
complex n—plane, cut along the negative real axis, is a circle (centered at
N = 1i3;) of sufficiently small radius. Thus

e~ &)k T(an)(

T —,D),

O
1 N2 epz 1’(1+:,
3 Ko 2 m2T{2)(
Kaina® (:z:,k:p)n‘m, At z( " e 1+t P

na,ny=0 ng=0

Using (13) in the above equality, the proof is completed. O
In a similar way, we can state the following theorem.

Theorem 5.2. Let the polynomials {M,‘,‘."?,;’;"” 2)(g, k)} be defined by (3).

Then we have

el ng
(ao0,p1, tH ty?
Hkao P pz)(:l:,tl,t2) = Z Z Mr(l?,qfizhpe)( ’k)nlln 2
n1=0n2=0
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D2
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and w(t) =1 — (1 +¢)~*.
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