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Abstract

Given a graph G = (V| E), a matching M of C is a subset of E,
such that every vertex of V is incident to at most one edge of M. A
k-matching is a matching with &k edges. The total number of match-
ings in G is used in chemoinformatics as a structural descriptor of
a molecular graph. Recently, Vesalian and Asgari (MATCH Com-
mun. Math. Comput. Chem. 69 (2013) 33-46.) gave a formula for
the number of 5-matchings in triangular-free and 4-cycle-free graphs
based on the degrees of vertices and the number of vertices, edges
and 5-cycles. But, many chemical graphs are not triangular-free or
4-cycle-free, e.g. boron-nitrogen fullerene graphs (or BN-fullerene
graphs). In this paper, we take BN-fullerene graphs in consideration
and obtain the formulas for the number of 5-matchings based on the
number of hexagons.

Keywords: 5-matching, Boron-nitrogen fullerene, Number of k-
matchings

1 Introduction

The graphs considered in this paper are finite, loopless and contain no
multiple edges. Given a graph G, let V(G) and E(G) be the vertex and
edge sets of G, respectively. As usual, k-path denotes the path with k
vertices. The number of k-paths in G is denoted by Pi(G). A subset S of
V is called an independent set of G if no two vertices of S are adjacent in
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G. A k-independent set is an independent set which contains k vertices.
The number of k-independent sets in G is denoted by Indi(G).

A matching M of a graph G = (V, E) is a subset of E, such that every
vertex of V is incident to at most one edge of M. The two endpoints of an
edge in M are said to be matched under M. A k-matching is a matching
with k edges. We denote M (G, k) the number of k-matchings in G. It is
easy to see that M (G, 1) is equal to the number of edges in G. (See [3] for
details)

The number of k-matching is closely linked to the coefficients of some
graph polynomials, such as the matching polynomial [7], the characteris-
tic polynomial {10}, etc. And the total number of matchings in G, the
Hosoya index of a graph G, is used in chemoinformatics as a structural de-
scriptor of a molecular graph. Thus many formulas for M (G, k) are given.
Constantine et al. [5] gave a formula for M(G, 3) based on the degrees of
vertices and the number of vertices, edges and triangles. Behmaram (1]} also
has calculated M(G,4) in triangular-free graphs. Klahjan and Mohar [10]
calculated M(G, k), k < 5, in hexagonal systems. Recently, Vesalian and
Asgari (13] have given a formula for M (G, 5) in triangular-free and 4-cycle-
free graphs based on the degrees of vertices and the number of vertices,
edges and 5-cycles. But, many chemical graphs are not triangular-free and
4-cycle-free, e.g. horon-nitrogen fullerene graphs (or BN-fullerene graphs).
In this paper, we take BN-fullerene graphs in consideration and obtain
explicit formulas for M(G,5) in them based on the number of hexagons.

A fullerene is any molecule composed entirely of carbon, in the form of a
hollow sphere, ellipsoid or tube. The first fullerene was discovered in 1985
by Kroto et al. [11, 12]. For the past decade, the chemical and physical
properties of fullerenes have been a hot topic in the field of research and
development, and are likely to continue to be for a long time.

In this paper we consider boron-nitrogen fullerene graphs, the molecu-
lar graphs of horon-nitrogen fullerenes. In fact, a boron-nitrogen fullerene
graph (in short BN-fullerene) is a 3-connected cubic planar graph, all of
whose faces are squares and hexagons. In Figure 1, a BN-fullerene graph
with 24 carbon atoms is depicted. From the very heginning, BN-fullerene
graphs have been attracting attention of graph theory researchers. A num-
ber of graph-theoretical invariants and some structure properties of BN-
fullerene graphs were studied [4, 6, 8, 9]. Recently, Behmaram et al. (2]
discussed BN-fullerene graphs and calculated the number of paths of low or-
der and the number of k-matchings and k-independent sets when k = 2, 3, 4.
In this paper, we will calculate the number of k-matchings when k£ = 5 in
BN-fullerene graphs.
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Figure 1: A BN-fullerene with 24 atoms.

2 Preliminaries

As a BN-fullerene graph is a cubic planar graph, all of whose faces are
squares and hexagons, by Euler’s formula we have:

Lemma 2.1 ([2]). If F is a BN-fullerene graph, s, h, n and m be the
number of squares, hexagons, vertices and edges respectively, then s = 6,
n=2h+8 and m =3h + 12.

Some exact formulas for the number of k-paths, k-matchings and k-
independent sets (k = 2, 3,4) in a BN-fullerene graph are presented by the
following theorems. These formulas will be used in next section.

Lemma 2.2 ([2]). If F is a BN-fullerene graph with h hezagons, then
(i) Pu(F) =2F"2(3h+12),k =3,4;

(if) Ps(F) =24h +T72;

(iii) Ps(F) = 48h + 144;

(iv) M(F,3) = Jh® + 63h% 4 65h + 44;

(v) Inds(F) = 3h® +8h% + Ph +8.

Remark. The expressions (iv) and (v) cited in the above lemma are
not consistent with the original paper [2]. Behmaram et al. [2] obtained
M(F,3) by using formula C3, — (m — 2)P3(F) 4+ P4(F) + 2n. This formula
is correct, but the calculated result gh3 + 129 h? — 65h + 44 is incorrect.
The correct calculation result is M(F,3) = Jh3 + 3h2 + 65k + 44.

We have also found that the formula of Inds(F) given by Behmaram et
al. [2] is incorrect. More details are described helow:

The formula of Inds(F) can be obtained by subtracting the number of
those triples that do not represent 3-independent sets from the number of all
triples of vertices. There are two types of induced subgraphs corresponding
to those triples that do not represent 3-independent sets. The first type is
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an edge with a vertex non-incident to the edge and the second is a 3-path.
They claimed that the number of the first type of induced subgraphs is
m(n—2). This is incorrect. In fact, the number of the first type of induced
subgraphs should be m(n — 6). Also, they used the wrong number of n
which is 2k + 8, not 2h + 20. Thus, the correct formula should be

Inds(F) = C? — m(n — 6) — P3y(F) = gfﬁ +8h2 + 338-;; +8.

3 Main Results

Now, we calculate the number of 5-matchings in BN-fullerene graphs.

Theorem 3.1. If F is a (4, 6)-fullerene graph with h (h > 2) hezagons,
then

M(F,5) = 8(1) +247h4+4z3h3+519h 1722h 444.

Proof. To calculate M(F,5), we count the number of 5-subsets in F' minus
the number of those 5-subsets which are not 5-matchings. The cases where
5-subsets do not represent 5-matchings are shown in Figure 2.
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Figure 2. The possﬂ)le 5-subsets of edges which are not 5-matchings.

Let N(a), N(b), N(c), N(d), N(e), N(f), N(g), N(R), N(i), N(j), N(k),
N(l), N(m), N(n) denote the number of subgraphs which are isomorphic
to those depicted in Figure 2. Then we calculate as follows:
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First, we compute N(a):

N(a): Choose a 4-cycle and an edge which does not have a common neigh-
bor. Thus, we have:
N(a) =6 x (m —8)=18h + 24.

Second, we focus on the subgraphs which have at least one vertex of
degree 3. These subgraphs are isomorphic to graph (b), (¢), (d), (e), (f),
(g), (h). To calculate the sum of the numbers of these subgraphs, we choose
a vertex and pick all the three edges incident to it. Then we choose two

more edges in the remaining edges. But notice that, N(e) is counted twice
and N(e) is equal to the number of edges. Thus, we have:

N(b) + N(c) + N(d) + N(e) + N(f) + N(g) + N(h)
=nx C2,_3 — m = 9h% + 87h® + 273h + 276.

In addition, we calculate N(b), N(c) and N(g) for the following calcula-
tions.

N(b): Choose a 4-cycle with a pendant edge, then:
N(b)=6x4=24.
N(c): For computing N(¢), we first pick a vertex. Then choose two of its
neighbors and for each of them, we pick one more edge from it. But

notice that, we may get a subgraph which is isomorphic to graph (b).
Therefore,

N()=nxC:xC}xC}—6x4=2h+72

N(g): For calculating N(g), we first choose 3-path. Then choose a star with
three edges. But when we choose the 3-path, we should consider if it
is contained in a square. Then,

N(g)=6x4x (n—T7)+hx6x (n—8)=12h%+ 48h + 24.

Then, we calculate the number of the subgraphs which contain no vertices
of degree 3.

N(i): By using Lemma 2.2, we have:
N(i) = Ps(F) = 48h + 144.
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N(j): We choose a 5-path and then choose an edge which has no common
vertex with it. But when we choose the 5-path, we should consider if
three edges of the 5-path are contained in a square. Thus, by using
Lemma 2.2, we have:

NG =6x4x2x(m—10)+ (Ps(F)—6x4x2)x(m-11)
= 72h? + 240k + 120.
To calculate N(k) and N(l), we first consider their sum. We choose a 4-
path and two edges that have no common vertices with the path. Like com-

puting N(j), we also consider two circumstances. Then, by using Lemma
2.2, we have: :

N(k) + N(1) =6 x4 x C%_g + (P4(F) — 6 x 4) x Cc2_,
= 54h® + 306h? + 468k + 216.
Now, we calculate N (k) and N(1).

N(l): We choose a 3-matching and pick one of the edges. Then choose one
edge from the two vertices of the chosen edge. Notice that, we may
have subgraphs isomorphic to graph (a), graph (i) or graph (j). Since
graph a is counted forth and graph (j) twice, by using Lemma 2.2,
we have:

N(l) = M(F,3) x C2 x C} x C} —4N(a) — N(i) — 2N(j)
= 54h3 + 234h% + 180h + 48.
N(k): By doing subtraction, we have:
N(k) = 72h* + 288h + 168.

At last, we compute the sum of N(m) and N(n). We choose a 3-path and
pick three edges in the remaining edges which have no common vertex with
the path. Notice that, we may have subgraphs isomorphic to graph(n),
graph(g) and graph (k). We calculate N(n) firstly.

N(n): We choose a 3-independent sets and pick two of them. For these two
picked vertices, we choose two edges from each of them independently.
For the third vertex, we choose an edge from it. Notice that, we may
have subgraphs isomorphic to graph (a), (b), (c), (i), (j) and (k).
Since graph (a) is counted forth, graph (i), (j), (k) are all counted
twice, by using Lemma 2.2, we have:

N(n) = Ind3(F)C3C3C3C3—4N(a)—N(b)—N(c)—-2N(i)-2N(5)—2N (k)
108h° + 360h% — 222h — 408.
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Then,by using Lemma 2.2, we have:
N(m) + N(n) = P3(F) x C3_; — N(n) - N(k) — N(g)
= 27h* 4+ 108h° + 129A2 + 510h + 456.

Therefore,

ME5)= ('3 ) = N@) = N®) - N - N(&) = N(e) - N(7) = N o)

=N(h) = N(i) - N(j) - N(k) - N(}) - N(m) - N(n)
81,5 135 , 1791 2955 6063

- 5 fuatedt X | i 2 dubted
_40h+ 4h+ 3 R + he + h+ 792
—(27h* 4+ 171h* + 594h® + 1557h + 1236)
8,5 ,27,4 423,53 579, 1722
= —h% 4+ ——h — 444,
40h + 1 h® + 5 —h" 4 n —h? 5 44
which completes the proof. a
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