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Abstract. In this paper, we generalize the notion of solid bursts
from classical codes equipped with Hamming metric [14] to array
codes endowed with RT-metric [13] and obtain some bounds on the
parameters of RT-metric array codes for the correction and detection
of solid burst array errors.
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1. Introduction

In a classical coding setting, codes are subsets/subspaces of ambient
space I’ and are investigated with respect to the Hamming metric [12, 14].
In {13}, m-metric or RT-metric array codes which are subsets/subspaces of
linear space of all m by s matrices Mat.xs(F,) with entries from a finite
field F, endowed with a non-Hamming metric were introduced and some
bounds on code parameters were obtained.

Here is a model of an information transmission for which m-metric
array coding is useful and the non-Hamming metric defined in [13] is the
natural quality characteristic of a code. Suppose that a sender transmits
messages, each being an s-tuple of m-tuples of g-ary symbols, transmitted
over m parallel channels. There is an interfering noise in the channels which
creates errors in the transmitted message. An important and practical
situation is when errors are not scattered randomly in the code matrix but
are in cluster from and are confined to a submatrix part of the code matrix.
These errors arise, for example, due to lightning and thunder in deep space
and satellite communications. With this motivation, the author has already
introduced the notion of usual burst errors (7}, CT-burst errorrs [8] and
cyclic burst errors [11] in the space Matmxs(Fy) equipped with m-metric
as a generalization of classical burst of respective types. In this paper, we
generalize and get another category of classical bursts viz. solid bursts to
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array codes and obtain some bounds on the parameters of m-metric array
codes for the correction and detection of solid burst arry errors.

2. Definitions and Notations

Let F; be a finite field of g elements. Let Mat,x s(Fg) denote the linear
space of all m x s matrices with entries from Fy. An m-metric array code
is a subset of Mat,, xs(F;) and a linear m-metric array code is an Fy-linear
subspace of Mat,xs(Fg) . Note that the space Mat,xs(Fy) is identifiable
with the space Fy*°. Every matrix in Mat,nxs(Fg) can be represented as
a 1 x ms vector by writing the first row of matrix followed by second row
and so on. Similarly, every vector in F" can be represented as an m X s
matrix in Mat, xs(F,) by separating the co-ordinates of the vector into m
groups of s-coordinates.

The weight and metric defined by Rosenbloom and Tsfasman [9] on
the space Mat,, xs(Fy) are as follows :

Let X € Maty,x1(Fg) with

z

I
X= 2,

Im

then column weight (or weight) of X is given by

m— max {i|zx=0 foranyk<i} if X#0
wt(X) =
0 if X=0.

This definition of wt, can be extended to m x s matrices in the space
Matxs(Fq) as

wto(A) = Y witc(4;)
7j=1

where A = [A}, A2, -, As] € Mat,,xs(Fy) and A; denotes the j** column
of A. Then wt, satisfies 0 < wt.(A) < n(= ms) and determines a metric
on Matm,xs(Fy) if we set d(A4,A’) = wt.(A — A") ¥V A, A’ € Matyxs(Fy).
We call this metric as column-metric. Note that for m = 1, it is just the
usual Hamming metric.

There is an alternative equivalent way of defining the weight of an
m X s matrix using the weight of its rows [4]:

Let Y € Maty«s(F,) with Y = (y1,%2,--,¥s). Define row weight (or

216



weight) of Y as

max { i | y; #0} ifY#0
wty(Y) =
0 if Y=0.

Extending the definitions of wt, to the class of m x s matrices as

wtp(A) = Y wty(Ry)
=1
R,
where A = R2 € Matmxs(F,) and R; denotes the it row of A. Then

Rn
wt, satisfies 0 < wt,(A) < n(= ms) V A € Maty,xs(F;) and determines a

metric on Mat,,xs(F,;) known as row-metric.

It turns out that row weight of a vector is equal to the column weight
of transpose of the vector with its component reversed and hence the two
metrices viz. row-metric and column-metric give rise to equivalent codes
and both the metrices have been known as m-metric or RT-metric.

In this paper, we take distance and weight in the sense of row-metric
(or p-metric). Throughout this paper, < z,y > will denote the minimum
of z and y and [z] as the greatest integer less than equal to z.

3. Solid Bursts in m-Metric Array Codes

We now define bursts in m-metric array codes:
Definition 3.1. A solid burst of order pr(orpxr)(1 <p<m,1<r<s)
in the space Mat,,xs(Fy) is an m X s matrix A having a p x r submatrix

B with all entries in B nonzero and remaining entries in the m x s matrix
A as zero.

Note. For p = 1, Definition 3.1 reduces to the definition of solid-burst for
classical codes [14].

Example 3.2. Consider the linear space Matzx3(F2). Then all the solid-
bursts of order 2 x 2 are given by:

110 011 0 00 0 00
1104y,{011},]110],{011
0 00 0 00 110 011

We now obtain a bound for the correction of solid-burst array errors
in linear m-metric array codes.
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Theorem 3.3. An (n,k) linear m-metric array code V. C Matmxs(Fy)
where n = ms that corrects all solid-bursts of order pr(1 <p<m,1<r <
8) must satisfy

qn—k 21+ Srp;uxxrs(Fq)v (1)
where SE!,(Fy) is the number of solid-bursts of order pr(1 < p < m,1 <
r < 8) in Mat,xs(Fy) and is given by

Shxa(Fg) = (m—p+1)(s—r+1)(g—- 1) (2)

Proof. Consider a solid-burst A € Mat,xs(F,) of order pr(l <p<m,1<
r < s). Let B be the p x r nonzero submatrix of A such that all the
nonzero entries in B are nonzero and entries in A outside B are zero.
Since the number of starting positions for the submatrix B of order pr
in the m x s matrix A is (m — p + 1)(s — r + 1) and entries iin B can be
filled in (g — 1)P" ways, therefore, the total number of solid-bursts of order
pr(l <p<m,1<r<s)in Matyx(Fg) is given by

SE(F)=(m—p+1)(s—7+1)(g—1).

Now, since the linear m-metric array code V' C Maty, xs(Fy) corrects
all solid-bursts of order pr(l < p < m,1 < r < s), therefore, all the solid-
bursts of order pr(1 < p < m,1 < r < s) including the null m x s matrix
must belong to different cosets of the standard array. Since number of
available cosets = ¢"~*. Therefore, we must have

qn—k >1+ SpXr (Fq)

mxs
where SP\7 (Fy) is given by (2) and we get (1). m]
Remark 3.4.

(i) Takem =s =3,p =7 = 2 and ¢ = 2 in S5},(Fy) computed in (2),
we get S2X2(Fz) = 2 x 2 = 4 and these 4 solid-bursts of order 2 x 2
in Matay3(F3) are listed in Example 3.2.

(ii) Teke m = s = 3,p = 1,7 = 2 and ¢ = 2 in S5} (F,) computed in
(2). We get SiX2(F,) = 3 x 2 = 6 and these 6 solid-bursts of order
1 x 2 in Matgx3(F3) are listed below:

1 0 00 0 00 0
) oJ],l]l110]}],{011]},10
0 0 00 0 00 1
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We now obtain a lower bound on the number of parity check digits
required to correct all weighted solid-bursts of order pr(l < p < m,1 <
r < s) in Mat,,,xs(Fy) having p-weight w or less (1 < w < ms). To obtain
the desired bound, we first prove a lemma that enumerates the number of
solid-bursts of order pr(1 < p < m,1 < r < s) having p-weight w or less.

Lemma 3.5. The number of solid-bursts of order pr(1 <p<m,1<r <s)
in Maty,xs(Fq) having p-weight w or less (1 < w < ms) is given by

m x min(w,8) x (g~ 1) ifp=r=1,

xr _ ) mxminfw—-r+1,s-r+1)(g—1)"
Shixs(Fgw) = ifp=1,r>2 ®)

(m—p+1)xLx(g—1)P" ifp>1r>1

where
L = ma.x{O,min{[w/p]—r+1,s—r+1}}. 4)
A
Proof. Consider a solid-burst A = A2 where A; = (ai,, a4y, -, ai, ),

Am
of order pr(1 < p < m,1 < r < s) having p-weight w or less (1 < w < ms).
Let B be the p x r nonzero submatrix of A such that all the entries in
B are nonzero and entries in A outside B are zero. There are three cases
depednding upon the values of p and r.

Case 1. Whenp=1,r=1.

In this case, the number of starting positions for the 1 x 1 nonzero
submatrix B in m x s matrix A is m x min(w, s) and these m x min(w, s)
positions can be filled by (¢ — 1) nonzero elements from F,;. Therefore,
the number of solid-bursts of order 1 x 1 having p-weight w or less in
Matxs(Fy) is given by

SIX1 (F,,w) = m x min(w, s) x (g — 1).

mxs
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Case 2. Whenp=1, r > 2.

In this case, the number of starting positions for the 1 x r nonzero
submatrix B in mx s matrix A is mxmin(w—r+1, s—r+1) and entries in the
1 x r submatrix B can be selected in (g — 1)” ways. Therefore, the number
of solid-bursts of order 1 x 7 having p-weight w or less in Matm,xs(Fy) is
given by

SIXr (Fpw) =mxmin(w—r+1,s-7+1)x (¢g-1)".

mxs

Case 3. Whenp>1, r > 1.

In this case, the number of starting positions for the p x r nonzero
submatrix B in m x s matrix A is (m —p+ 1) x L when L is given by (4).
and entries in B can be filled in (¢ — 1)?" ways. Therefore, the number of
solid-bursts of order p x r having p-weight w or less in Mat, xs(Fy) is given
by

Shxe=(m—p+1)x Lx(g—1)"
where L is given by (4). O
Example 3.6. Takem = s = 3,p=71 = 2,¢ = 2 and w = 3. Then number
of solid-bursts of order 2 x 2 having p-weight 3 or less in Matsx3(F3) is
given by:
S2X2(F»,3) = 2 x max{0,min{0,2}} x 1
2x0=0.

Thus, there is no solid burst of order 2 x 2 having p-weight 3 or less in
Matzx3(F2).

Example 3.7. Takem =s=3,p=7r=2,¢g=2 and w = 4 in Lemma 3.5.
Then S2X2(F»,4) is given by:

S2%2(Fy,4) 2 x max{0, min{1,2}} x 1
2 x max{0,1}

= 2x1=2.

The 2 solid-bursts of order 2 x 2 having p-weight 4 or less in Matax3(F3)

is given by:
110 0 0O
110]}),[110}.
0 00 110

Now, we obtain the lower bound on the number of parity check digits
for the correction of solid-bursts of order pr(1 < p < m,1 < r < s) having
p-weight w or less (1 £ w £ ms).
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Theorem 3.8. An (n,k) linear m-metric array code V. C Matmxs(Fy)
where n = ms that corrects all solid-bursts of orderpr (1 <p<m,1< 1<
8) having p-weight w or less (1 < w < ms) must satisfy

¢ 2 14+ SEY(Fy,w) ()

where SP (Fy,w) is given by (8) in Lemma 3.5.

mxs

Proof. The proof follows from the fact that the number of available cosets
must be greater than or equal to the number of correctable error matrices
including the null matrix. O

4. Construction Bounds for Solid-Bursts Error Detec-
tion and Correction in Linear m-Metric Array Codes

In this section, we obtain construction bounds for solid-burst error
detection and correction. To obtain the desired bounds, we shall identify
the space Mat,,xs(F,) with the space F;"’ i.e. an m x s matrix over Fy
is considered as an ms-tuple over Fy arranged into m groups of s elements
each. Each group of s elements in an ms-tuple is called a block. Also,
s is called the block length or block size and m is the number of blocks.
Each block of an ms-tuple has a p-weight and sum of p-weights of all the
m blocks of an ms-tuple is the p-weight of that ms-tuple. Also, columns of
generator matrix G and parity check matrix H of a linear m-metric array
code V are grouped into m blocks of s columns each. Therefore, generator
matrix G and parity check matrix H of a linear m-metric array code V
are represented as G = [G1,Ga, - +,Gm], H = [Hy, Ha,- -+, Hy) where G;
and H; are the it* block (1 £ 2 £ m) of generator and parity check matrix
respectively of the code V' and are given by

G’i = [Gil 3 Gi2a Ty Gis],
and

Hi = [H‘ila Hi?: Y His]a
where each Gi;(1 < i< m,1 < j < s)isakx 1 column vector and each
Hij(1<i<m,1<j<s)isan(ms—k)x 1 column vector.
Note. Throughout our discussion, by strict linear combination we mean
a linear combination where all the scalars are nonzero.

Now, we obtain the construction (upper) bound for burst error detec-
tion in linear m-metric array codes.

Theorem 4.1. Let g be prime or power of prime and m, s,p, 1, k be positive
integers satisfying 1 <p <m,1 <r <s and 1 < k < ms, then there exists
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an [m x s,k| linear m-metric array code over Fy i.e. a linear m-metric
array code with m as the number of blocks and s as the block size, that has
no solid-burst of order pr as a code array provided

s
qms—k >14 Z(q<j,r>)p-lq<j-l,r—1>_ (6)
j=1

Proof. The existence of such a code will be proved by constructing a suit-
able (ms — k) x ms parity check matrix H for the desired code. To detect
any solid-burst of order pr, it is necessary and sufficient that no strict lin-
ear combination involving 7 consecutive columns in p consecutive blocks
should be zero. Suppose that i — 1(1 < 7 < m) blocks Hy, Hs,- -, Hi_1
have been chosen suitably. Then j** column (1 < j < s) in the i** block
may be added provided it is not a strict linear combination of l;", ¢+
1)th,..., j** columns from the immediately preceding < i —1,p—1 >
blocks (where l; =< 1,j —r + 1 >) together with strict linear combination
of l;", (i + 1) (G- l)th columns in the i** block. Therefore, column
H;j(1 <£j < s)in the it" block can be added to H provided

i1

Hi; # Z (agi;Hgu; + gy +1Hgs41 + -+ + ag,iHg 5)
g=i—-<i,p>+1
oy, Higy + i1 Hi o1+ + a1 Hi o (7)

Note that summation in (7) will not run at all if the lower limit of the
summation is greater than the upper limit and this will occur when <
i,p >=1 and in this case value of the summation is assumed to be zero.

Now, the number of strict linear combinations occuring in (7) is given
by
((g - 1)<J’,r>)<i—l.p—l>(q _ 1)<j—1,r—1>. (8)

Therefore, it" block can be added to H provided the summation of number
of strict linear combinations enumerated in (8) for 1 < j < s including
the pattern of all zeros is less than the total number of (ms — k)-tuples.
Therefore, it* block H; can be added to H provided that

s
qms—k >14 Z((q _ 1)<j.r>)<i—l,p—1>(q _ 1)<j—l,r-—1>. (9)
j=1

For the existence of an [m x s, k] linear m-metric array code, inequality (9)
should hold for i = m so that it is possible to add up to the mt* block to
form an (ms — k) x ms parity check matrix and we get (6).
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(Notethat 1 <p<mgives<m—-1,p—1>=p-1). O
Example 4.2. Take m =3,s =2,p=r=2,k=2and q = 3.
Then

R.HLS. of(6)

]

2
1 +Z(2<j,2>)12<j—1,1>
j=1
1+ (2<1,2>)2<0,1> + (2<2,2>)2<1,1>
142x204+22x2!
11

Also, L.H.S. of (6) = ¢™*~% = 3% = 81.
Therefore, L.H.S. of (6) = 81 > 11= R.H.S. of (3).

Thus, sufficient condition of Theorem 4.1. is satisfied for the chosen pa-
rameters and hence there exists a [3 x 2,2] linear m-metric array code
over Fy detecting all solid-bursts of order 2 x 2. Consider the following
(3x2=2)x(3x2) =4 x 6 parity check matrix of a [3 x 2,2] linear
m-metric array code over F» constructed by the algorithm discussed in the
proof of Theorem 4.1.

1
0
0

00
0 0
10
01

S N O N

0 2
1 2
0 0
0 0 P00,

The generator matrix of the code corresponding to the parity check matrix

H is given by
C= 1 0 1 0 10
11:00:01],.

The 9 code arrays of the code V' C Matax2(F2) with G as generator matrix
and H as parity check matrix are given by

00 1 0 11 01
Yo = 00 U1 = 10 y U2 = 00 yUg = 1 0

0 0 1 0 01 11

2 0 2 2 1 2 2
vy=| 2 0 J,s=| 0 0 J,v6=]| 2 0 |,v7= 0],
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01
vg=1| 2 O

2 1
We note that none of the code arrays is a solid-burst of order 2 x 2 over F3.
Therefore, construction bound (6) is verified.

Now, we obtain a construction upper bound for solid burst error cor-
rection.

Theorem 4.3. Let q be prime or power of prime and m, s, p, 1, k be positive
integers satisfying 1 < p < [m/2],1 <7 < sandl < k < ms, then a
sufficient condition for the ezistence of an [m x s, k] linear m-metric array
code over F, that corrects all solid-bursts of order pr is given by

e (Sp:z:p)xa)(Fq)) X
(L= nsiy-ig=peies) (10)
=1

where STXT | (Fy) is given by (3).

(m-p)xs

Proof. The existence of such a code will be proved as in previous theorem
by constructing a suitable parity check matrix for the code. To correct all
solid-bursts of order pr, it is necessary and sufficient that no code array
consist of the sum of two solid-bursts of order pr. Thus, no strict linear
combination involving two sets of r consecutive columns in p consecutive
blocks should be zero. Suppose that m — 1 blocks Hy, Ha, -, Hpm—1 of
the parity check matrix H have been chosen suitably. Then j** column
(1 £ j < s) in the m** block may be added, provided that it is not a strict

linear combination of l;", ¢ + 1)th, ..., jt* columns from the immediately
preceding p — 1 blocks (where I; =< 1,j — r + 1 >) together with a strict
linear combination of I*, (I; + Ntk (G- 1)*® columns in the m** block

and any set of r consecutive columns in p consecutive blocks among the
first (m — p) blocks. (Note that the condition 1 < p < {m/2] is used here
because if p < [m/2], only then (m — p) blocks can contain p consecutive
blocks). In other words, column Hp;(1 € j < s) in the m*® block can be
added to H provided that

m=—1

Hm; # Z (ag; Hgty + g 41 Hgty41 + g5, Hg 5)
g=m—p+1

+ am i Hmy; + ampy 1 Hmpye1 + 0+ 0myj—1, Hm i1 (11)
+ strict linear combination which form a solid-burst
of order pr among the first (m — p) blocks

224



= Gj-i-P.

where
m—1
G, = Z (og,t; Hoty + g1 Hg 41 + -+ ag,jHyg )
g=m-—p+1
+am,lj Hm,l,' + am,l_,--l-le,lj-f-l +---+ am,j—le.j—ly
P = strict linear combinations which form a solid-burst

of order pr among the first(m — p)blocks.

Now, there are ((g — 1)<#">)P~1(g — 1)<7~1Lr—1> distinct linear combina-
tions occuring in G;. The number of linear combinations occuring in P
which form a solid-burst of order pr in the space of (m — p) x s matrices is
given by

pxr ( F )

(m—p) xs

Thus, the number of strict linear combinations for a given j(1 < j < s)
occuring in the R.H.S. of (8) is given by

(((q — 1)< )P=l(g - 1)<"“"‘1>) X Stnlpyxs(Fa)- (12)

To add all the s columns in the m* block, the number of available (ms—k)-
tuples must be greater than the summation of the number enumerated in
(12) for j = 1 to s including the pattern of all zeros. Therefore, mt* block
H,, can be added to H provided

P IS 1+Z( — 1)<Ir>)P-l(g — 1)<i- lr—1>) (Sf’"’::p)xs(Fq))

+ (ST st ) (Stta = 175874 g = =222,

=1

Thus we conclude that if (10) is satisfied, then it is possible to construct an
(ms — k) x ms parity check matrix of an [m x s, k] linear m-metric array
code which corrects all solid-bursts of order pr. O

Further, for a given 7(1 < r < s), let p} be the largest value of p
satisfying inequality (10). Then for p = pj + 1, the opposite inequality
is satisfied and the following theorem giving another upper bound on the
number of parity checks holds:

Theorem 4.3. There ezists an [m X s, k] linear m-metric array code over
F, that corrects any single solid-burst of order Py X7 where1<r <s,1<
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Py < [m/2], for which the following inequality is satisfied:

ms—k < logq(1+ (S(p;'H)xr (Fq)) x

- (m—p;—l)xs

(- nuryia-pee)) o

=1

Example 4.4. Takem=s=3,p=1,r=2,9g=2 and k = 3, Then

3
RHS. of (10) = 1+ 5§:§(F3)) (2(2<j,2>)02<j—1,1>)

=1
1+(6x4+(1+2+2)=1+24x5=1+120
121.

Also, L.H.S. of (10) = 3™*~% = 3¢ = 729.

Therefore, L.H.S. of (10) = 729 > 121 =R.H.S. of (10) there exists a [3x 3, 3]
linear m-metric array code over F3 that corrects any solid-bursts of order
1x2.

Consider the following (3 x 3 — 3) x (3 x 3) = 6 x 9 parity check matrix of
a [3 x 3, 3] linear m-metric array code over F5 constructed by the synthesis
procedure outlined in the proof of Theorem 4.2.

o O = O O O
S = O O O O
- O O o O O

1
1
1
0
0
0

o O = = O O

1
1
0
0
0
1

o O o o o
c o ©o © = O
O O = O Qo

- ) : - 6x9

We now claim that the code V' C matsy3(F2) which is the null subspace of
H corrects all solid-bursts of order 1 x 2. The claim is verified from Table
4.1 which shows that syndromes of all solid-burst errors of order 1 x 2 are
all distinct.
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Table 4.1

Solid-Burst Errors of order 1 x 2 Syndromes

110

000 (110000)
(0 0 0)

1 20

0 00 (120000)
(0 0 0)

210

0 00 (210000)
(0 0 0)

2 20

000 (220000)
222)

011
(0 0 0) (011000)
0 00

01 2
(0 0 o0 (012000)
0 00

0 21

000 (021000)
(0 0 0)

0 2 2
(0 00 (022000)
0 00

0 00

110 (000110)
320)

0 0O

1 20 (000120)
(0 0 o)

0 00

2 10 (000210)
230)

0 0O

2 2 0 (000220)
o)

Table contd.
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