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Abstract

In this paper the A-number of the circular graph C(km,m) is
shown at most 9 where m > 3 and k > 2, and the A-number of the
circular graph C(km + s, m) is shown at most 15 wherem > 3,k > 2
and 1 < s < m — 1. In particular, the A-numbers of C(2m,m) and
C(n, 2) are determined, which are at most 8. All our results indicates
that the Griggs and Yeh’s conjecture holds for circular graphs. The
conjecture says that for any graph G with maximum degree A > 2,
MG) < A?. Also, we determine A-numbers of C(n,3), C(n,4) and
C(n,5) if n = 0(mod 7).
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1 Introduction

An L(2,1)-labeling of a graph G is a function f from the vertex set of G to
a set of non-negative integers such that |f(u) — f(v)| > 2 if d(u,v) =1 and
[f(u) = f(v)] = 1if d(u,v) = 2, where d(u,v) denotes the distance between
two vertices v and v of G.

An L(2,1)-labeling of a graph G that uses numbers in the set {0,1,...,
k} is called a k-labeling. The minimum k such that G has a k-labeling is
called the A-number of G and is denoted by A(G). A A(G)-labeling is called
an optimal labeling of G.

Graph labelings are commonly used to model the channel assignment
problem. The problem of labeling a graph with a condition at distance two
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was firstly investigated by Griggs and Yeh[5]. They shown that A(G) <
A? + 2A, where A denotes the maximum degree of G. Chang et al.[2]
reduced the bound to A% + A, and Kral’ et al.[8] reduced the bound to
A? + A — 1. Recently, Goncalves [6] showed that A(G) < A%+ A — 2. For
more details about labelings of graphs, readers can refer to [13]. In 1992,
Griggs and Yeh[5] proposed the following conjecture.

Conjecture [5] For any graph G with A >2, A(G) < A%

The conjecture is still open now.

The circular graph C(n, m) is a graph with vertex set {vo, v1,...,Vn-1}
and edge set {v;vi4+1,vi%i4m|i =0,1,...,n—1}, where m and n are positive
integers satisfying 2 < m < | 2] and indices is read modulo n. If n = 2m,
then C(n,m) is a 3-regular graph. In other cases, C(n,m) is a 4-regular
graph.

People focus on verifying the Griggs and Yeh’s conjecture and finding
exact values for A-numbers of particular graphs. In this paper we will show
that the Griggs and Yeh’s conjecture holds for circular graphs, and we
will determine A-numbers of some circular graphs. Circular graphs have
closed relations with both Cartesian products of a path and a cycle and
Generalized Petersen graphs. The L(2,1)-labeling of Cartesian product of
any two graphs were considered in [12]. Jha[7] first considered the L(2,1)-
labeling of the Cartesian product of a path and a cycle. The A-numbers of
the Cartesian products of a path and a cycle were determined by Klavzar
and Vesel in [8] and by D.Kuo and J.H. Yan in [10] independently. A-
numbers of Generalized Petersen graphs have been discussed. Readers can
refer to [1] and [3].

The structure of the paper is as follows. In Section 2 we will determine
A-number of C(2m,m) and show that A(C(km,m)) < 9 if m > 3 and
k > 3. Also, We will show that A(C(km +s,m)) <15if m > 3, k > 2 and
1 < s < m—1. In Section 3 the A-number of C(n,2) will be determined,
which is at least 8. In Section 4 we will determine A-numbers of C(n, 3),
C(n,4) and C(n,5) if n = 0(mod 7).

In the remainder of the section, we give some terms and theorems
which will be used in the other sections.

For an L(2,1)-labeling of a graph G, if a triple (or a pair) of vertices
are labeled the same number, then the triple (or the pair) is called a colored
triple (or a colored pair). A path with m vertices is denoted by Pp, and a
cycle with n vertices denoted by C,. The Cartesian product of two graphs
G and H, denoted by G x H, is defined as the graph with vertex set V(G) x
V(H) and edge set {(u,v)(z,y) : ur € E(G) and v =y, or wvy€
E(H) and u==z}.

Theorem 1.1[5] If a graph contains three vertices with maximum
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degree A > 2 and one of them is adjacent to the other two vertices, then
its A-number is no less than A + 2.

Theorem 1.2{5] Let G be a complete k-partite graph with [V(G)| =
v. Then A\(G) =v +k -2.

Theorem 1.3[5] A(C,) =4.
Theorem 1.4[8] If m >4 and n > 3, then

_ [ 6, if n=0(mod7),
MPrnxCp) = { 7, otherwise.

2 An upper bound for the A-number of a cir-
cular graph

We consider an upper bound for the A-number of the circular graph C(2m,
m) at first. If m = 2, then C(2m,m) is the complete graph K4 whose
A-number is 6. If m = 3, then C(2m,m) is the complete bipartite graph
K3 3. By Theorem 1.2, \(C(6,3)) = 6. If m = 4, C(2m,m) is the graph
Vs. Since any two vertices of V3 have the distance no more than two,
A(Vg) > 7. Define a labeling of C(8,4), say f, as follows: f(v;) = 3i(mod 8)
for ¢ =0,1,...,7. Then f is an L(2,1)-labeling of C(8,4), which means
that A(C(8,4)) = 7. If m > 5, we have the following result.

Theorem 2.1 If m > 5, then A(C(2m, m)) = 6.

Proof A drawing of C(2m,m) in the plane is shown in Figure-1. We
will construct a labeling of C(2m, m) using block combinations of matrices.
The method is due to Schwars and Troxell[11].

Yo Vi V2 Vs Um-2 Um-—1

Um Um41 Um42 Um+3 V2m-2 V2rm—

Figure 1 A drawing of C(2m,m) in the plane

233



NowwesupposethatA1=(g ‘11 g),A2=(g ‘11 g),B=
4
1

6 4 15 0 0 6 _
30 6 2 ,andC—<3 4 2 . If m = 0(mod 3), then a

labeling of C(2m,m) is defined as (A2A; -~ A;). If m = 1(mod 3), then a
labeling of C(2m, m) is defined as (A; - -+ A1 B). Need to say that if m = 7,
the above labeling of C(2m,m) is A1B. If m = 2(mod 3), then a labeling
of C(2m,m) is defined as (A;--- A;C). In particular, the above labeling
of C(2m, m) is exactly C if m = 5. Obviously, the above defined labeling
of C(2m,m) is an L(2,1)-labeling. So A(C(2m,m)) < 6.

In order to prove the theorem, we need to show that A(C(2m,m)) > 6.
Since C(2m,m) is a 3-regular graph, A(C(2m,m)) > 5 by Theorem 1.1.
Suppose that A(C(2m,m)) = 5, and suppose that f is an optimal labeling.
Let S = {0,1,2,3,4,5}. Without loss of generality, suppose that f(vo) = 0.
We have the following claims.

Claim 1 f(vm)=3or5.

Since f(vg) = 0, we have that f(v,) # 0,1. If f(vn) = 2, then
f(um+1) =4 or 5. If f(vm+41) = 4, then any number in S can not label v;.
If f(Um+1) = 5, then f(vy) = 3 and f(v2) = 1. In this case, any number in
S can not label vy, 42. So f(vm) # 2.

If f(vm) =4, then f(vm41) =1 or 2. If f(vm41) =1, then f(v;) =3
or 5. If f(v1) = 3, then f(vm42) = 5. In this case, any number in S
can not label vo. Similarly, if f(v,) = 5, then there is a contradiction.
If f(Vms+1 = 2, then f(v1) = 5 and f(vms+2) = 0. So f(v2) = 3 and
f(v3) = 1. In this case, f(vm43) =4 or 5. If f(vm+3) =5, then f(vq) =4,
f(Vm+4a) =2, and f(vpm4s) = 0. In this case, any number in S can not label
vs. If f(Umss) = 4, then f(um+4s) =2 and f(vg) = 5. If m =5, there is a
contradiction, since vg is adjacent to vy. If m > 6, then f(vm4s) = 0. In
general, for ¢ = 1,2,...,m— 1, we have that f(v;) = 7—2j if i = j(mod 3)
and j = 1,2, 3, that f(vm+:) = 4—2j if i = j(mod 3) and j = 1,2, and that
f(vm+i) = 4if i = 3(mod 3). So f(vm—1) = 1(mod 2). Since v,, is adjacent
to Um—1, f(vm-1) = 1. Then f(vgm-1) = 4. Thus there is a contradiction,
since the distance between v, and vy,,,_; is two.

Claim 2 f(vy,) #5.

If f(vm) =5, then f(v1) = 2,3 or 4. If f(v;1) = 2, then any number in
S can not label v y1. If f(v) = 3, then f(vm41) =1 and f(vmy2) =4. In
this case, any number in S can not label vs. If f(v;) = 4, then f(vm41) =1
or 2. If f(m+1) = 1, then f(vm42) = 3. In this case, any number in S can
not label vp. Similarly, if f(vm+1) = 2, there is a contradiction.

By Claim 1 and Claim 2, we have that f(vm) = 3. So f(vm41) =1or
5. If f(um+1) = 1, then f(v1) = 4 or 5. If f(v1) = 4, then f(vm42) =5

234



and f(vz2) = 2. Furthermore, f(vas) = 0 and f(vm+3) = 3. In general,
for i =0,1,...,m — 1, we have that f(v;) = 6 — 2 if i = j(mod 3) and
Jj=1,2,3, that f(vmyi) =9 =25 if i = j(mod3) and 7 = 2,3, and that
f(Wm4i) =1ifi =1(mod 3). So f(vm-1) =0(mod 2). Since vy, is adjacent
t0 Um—1, f(Um-1) = 0. So f(vam—1) = 3. Since the distance between v,
and vgm— is two, there is a contradiction. If f(v,) = 5, then f(vn42) =4,
and f(v2) = 2. So f(vs) = 0. In this case, any number in S can not label
VUm+3-

If f(um+1) =5, then f(v;) =2 and f(vy) = 4. In this case, f(vm42) =
Oor 1. If f(vm+2) =0, then f(v3) =1, f(vm+3) = 3, and f(v4) = 5. In this
case any number in § can not label vpn44. If f(vrmg2) =1, then f(v3) =0
and f(vm+3) = 3. Ingeneral, fori =0,1,...,m—1, we have that f(v;) = 2j
if i = j(mod 3) and j = 1, 2,3, that f(vm+i) = 3 + 27 if i = j(mod3) and
7 = 0,1, and that f(vm4+:) = 1 if i = 2(mod3). Proceeding the similar
argument to the above paragraph, there is a contradiction.

Therefore, A(C(2m, m)) > 6, as desired. |

Now we consider the case that k > 3. A drawing of C(km,m) in the
plane is shown in Figure 2. We can see that the vertices of C(km, m) can be
presented by a k-by-m matrix. Hence, labelings of the vertices of C(km, m)
can be presented by a k-by-m matrix such that the entry on the ith row
and the jth column is the label of the vertex.

v v2 v3 v4 v v Ym—-4 Ym-3 Ym—-2 YUm

[l 7

B{ AV SRV SRRV ERVERY

V(k—1)m T Va1

Figure 2 a drawing of C(km,m) in the plane

Theorem 2.2 Ifm > 3 and k > 3, then the A-number of the circular
graph C(km,m) is at most 9, i.e., A(C(km,m)) < 9.

Proof We define a labeling of C'(km,m) using block combinations
of the matrices. We consider the following cases.
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Case 1. k= 0(mod 3). There are three cases to consider:
Subcase 1. m = 0(mod3). In this case a labeling of C(km,m) is

ﬁ‘ ﬁ‘ o ﬁ‘\ 2 05
defined as 1A 1|, whered,=[ 7 3 1 |.
46 8
A A - A
Subcase 2. m = 1(mod3). In this case a labeling of C(km,m) is
jz o ’22 g‘\ 3 71
defined as 2 2 1 ,where Ao = 6 4 8 | and B, =
0 2 5
Ay - Ay Bl}

370 2
6 1 3 5 ].
0 4 6 8

Note that if m = 4 then a labeling of C(4k, 4) is defined as (BITBlT ces
B1T)T, where XT is the transpose of X. We shall not explain it in other
cases.

Subcase 3. m = 2(mod 3). In this case a labeling of C(km,m) is

A3 A A3 Cl 0 6 3
As --- Ax C
defined as 3 3 1 ,whereA3=(7 2 5) and C; =
As - Az C 4 8 1
0 6 3 0 5
7 2 5 7 1 1.
481 4 8)

Case 2. k = 1(mod3). We consider the following cases.
Subcase 1. m = 0(mod3). In this case a labeling of C(km,m)

o de M 0 3 6
is defined as Ad Ag - A where A4 = 2 ? ; , and
D, Dy --- D
0 3 6
8 5 1 . . L
D, = 30 7 In particular, if kK = 4 and m = 3, then a labeling is
5 8 2
defined as D,.
Subcase 2. m = 1(mod3). In this case a labeling of C(km,m) is
B 20 40
defined as A - A B , where B, = Z 2 ? g y Do =
Dy, --- Dy E
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4
and F = 2
1

N IR\
oo wo
=Moo,
B O~
S 0o o
N ©

In particular, if £ = 4 and m = 4, then a labeling is defined as £. We
shall not explain it in other cases.
Subcase 3. m = 2(mod 3) In this case a labeling of C(km,m)

Mo 03602
is defined as , where Cy = 8 51 3 9
Ag e Ag 4 79 57
Dy -+ Ds F
0 3 6 0 36 0 2
8 5 1 8 51 4 9
Da=1f3 ¢ 7 |ondF=|3 49561
5 8 2 5 7 4 9 7
Case 3. k= 2(mod3). We consider the following cases.
Subcase 1. m = 0(mod3). In this case a labeling of C(km,m) is
2 0 5
j‘f{ A‘ 7 41
defined as Al Al ,where G; =] 3 9 6
c G 8 50
vl 4 79
Subcase 2. m = l(mod 3) In this case a labeling of C(km,m) is
f{ o A1 2 0 41
defined as A A ,where B3 =| 7 65§ 2 8 |, Gy =
oo At 4 975
Gy, - Gs
2 0 5 2 0 4 1
7 41 7 5 2 6
3 9 6 |andH;=| 3 9 7 0
8 2 0 8 1.3 9
4 6 9 4 6 8 5

Subcase 3. m = 2(mod3). In this case a labeling of C(km,m) is
defined as

As - A5 Gy 1359 3
R LI el 79 270)
As .- As Cy |2 VRere 3 (4 6 8 4 6)
G3 C;'3 H2
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1 3 5 135 0 3
1 35 79 2 7 9 2 81
A5=(7 9 2),G3= 4 0 6 |,andH,=] 4 0 7 5 9
4 6 8 2 59 259 20
6 8 0 6 81 4 8
Obviously, the above labeling is an L(2,1)-labeling. So A(C(km,m)) SI
9.

Theorem 2.3 Suppose m > 3,k > 2and 1 < s < m—1. Then
AC(km + s,m)) < 15.

Wp-1

VYh-1)m+s Ve 1

Vkm Vkm—1+s

Figure 3 a drawing of C(km + s,m) in the plane

Proof A drawing of C(km + s,m) in the plane is shown in Figure
3. Let T = {¥(k—1)m+ss U(k-1)m+s+11"* * s Vkm+s—1}, let H the subgraph of
C(km + s,m) induced by V(C(km + s,m)) — T, and let H' the subgraph
of C(km + s,m) induced by T'. Clearly, H is a subgraph of C(km,m), and
H' is isomorphic to the cycle C,,. Therefore, there exist a 9-L(2,1)-labeling
g of H by Theorem 2.2 and a 4-L(2,1)-labeling g’ of H' by Theorem 1.3.
Define a labeling f of C(km + s, m) as

_ (v) if veV(H)
f(v) —{ SO A i v e V(D

Then f is a 15-L(2,1)-labeling of C(km + s, m). Therefore, A(C(km +
s,m)) < 15. ]
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3 The A-number of C(n,2)

In this section we determine the A-number of C(n,2). We have known that
AC(4,2)) = AMC(6,2)) = 6 in Section 2. If n = 5, then C(n,2) is the
complete graph Ks. So A(C(5,2)) = 8. Now we consider the case that
n>T.

Theorem 3.1 If n = 0(mod 7), then A(C(n,2)) = 6.

Proof Suppose n = 7k. Define a labeling f of C(n, 2) as follows: For
t= 071" ":k - 1! f('U7¢) = 17 f(v"t‘l'l) = 6’ f(v7t+2) = 47 f(’l)7t+3) = 2,
f(vreqa) =0, f(v7eqs) = 5, and f(vrepe) = 3. If k = 1, the labeling f of
C(7,2) is shown in Figure 4. It is easy to see that f is an L(2,1)-labeling.

Figure 4 the labeling of C(7,2)

We consider the case that k > 2. Suppose that v; is a vertex of
C(n,2). The neighbors of v; are v;;1, vj42,v—1 and v;_3. No matter
what f(v;) is, it can be checked that |f(vj4p) — f(v;)| > 2if p € {£1,%2}.
The vertices of C(n,2) which have the distance 2 from v; are v;43,vj14,
vj—3 and v;_4. Similarly, no matter what f(v;) is, it can be checked that
[f(vi+p) — f(v;)| = 1, where p € {£3,+4}. Hence, f is an L(2,1)-labeling
of C(n,2). Since C(n,2) is a 4-regular graph, A(C(n,2)) > 6 by Theorem
1.1. Therefore, A(C(n,2)) = 6. |

Lemma 3.2 If n > 8 and n # 0(mod 7), then A(C(n,2)) > 7.

Proof Since C(n,2) is a 4-regular graph, A(C(n,2)) > 6 by Theorem
1.1. Suppose that A(C(n,2)) = 6, and suppose that f is an optimal 6-
L(2,1)-labeling of C(n,2). Without loss of generality, suppose that f(vg) =
0. By the symmetry of v; and v,_;, it is sufficient to consider that f(v;) =
2,3, or 4. In this case f(v;) # 0,1 for j € {1,2,n —1,n —2}. Table 1
contains all possibilities of 6-L(2,1)-labelings of v,, va, vn—1 and v,_s.
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Let S = {0,1,2,3,4,5,6}. Since v3 joins to v; and vz, and the distance
between v3 and vg (or vn—1) is 2, any number of S can not label v3 in cases
(3), (4), (5) ,(10) and (11). Similarly, any number of S can not label v,_3
in case (9). In cases (7) and (8), f(va) = 1, but v4 can not be labeled using
any number of S. In case (6), f(vn—3) = 1, but vn_4 can not be labeled
using any number of S. Hence, there is only one case (1) to be left. In case
(1), f(v3) =6 and f(vp—3) = 1. In general, we have the following claim.

e
S
¢
[ V]
5
|

L
¢
~

(1)
(2)
(3)
(4)
(5)
(6)
(7
(8)
9
(10)
(11)

Table 1 all possibilities of L(2,1)-labelings of v1,v2, vn_1 and v,_2

PR AN R R R R SR SR O
P L R NS
MO NDRND DS D G
R R N N Nt Yt

Claim 1 If f(v;) = k(mod 7), then f(vit+1) = k+2(mod 7), f(vi+2)
k+ 4(mod7), f(viss) =k +6(mod7), f(vi—y) = k+ 3(mod7), f(vi-2)
k + 5(mod 7) and f(vi—3) =k + 1(mod7).

Otherwise, let g(v;) = f(v;) + (—k), where j € {4,i+1,i+2,i+3,i—
1,7—2,i— 3} and addition is read modulo 7. Then all possibilities of g(v;)
are in Table 1 by the symmetry of g(v;4+1)) and g(v;_1). Proceeding the
similar argument to that in the paragraph before Table 1, one can show
Claim 1.

Suppose that n = 7¢ + s, where 0 < s < 6. Since f(vp) = 0, we have
the following claim by Claim 1.

Claim 2 f(v;) =0if j =7q, where1 < ¢ <t

By Claim 2, f(vy) = 0. If 1 < s < 4, then the distance between
vy, and vg is at distance two. So there is a contradiction. If s = 5, then
f(v7e41) = 2. Note that f(vn—2) = f(vre4s—2) = 3 and v,_2 is adjacent to
v7:41, there is a contradiction. Similarly, if s = 6, there is a contradiction.

Therefore, A(C(n,2)) > 7. |

Theorem 3.3 Ifn >8,n % 0(mod7) and n # 9,10,11 and 17, then
MC(n,2)) =T7.
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Proof By Lemma 3.2, it is sufficient to show that A(C(n,2)) < 7
ifn>8 n#0(mod7) and n # 9,10,11 and 17. Using the similar way
of drawing to that of C(km,m) and C(km + s,m) shown in Figure 2 (or
Figure 3), C(n,2) has a drawing in the plane such that its vertices can be
arranged two columns and [%] rows. If n = 0(mod 2), then a labeling of
C(n,2) can be represented as the combination of matrices. If n # 0(mod 2),
then a labeling of C(n, 2) is also represented as the combination of matrices,
but the entry on the last row and the second column is absent, which is
represented as *. We consider the following six cases.

Case 1. n = 0(mod6). A labeling of C(n,2) is defined as

T 03 7
(A A .- A),whereA=(6 1 4>.
Case 2. n = 1{mod6). A labeling of C(n,2) is defined as
T 0 3 7 2
(A - A B),whereB:(6 1 4 *)
Case 3. n = 2(mod6). A labeling of C(n,2) is defined as
T 0 3 5 2
(A - A C‘),whereC’=(6 1 7 4)
Case 4. n = 3(mod6). A labeling of C(n,2) is defined as
(A .- 4 cB).
Case 5. = 4(mod 6). A labeling of C(n,2) is defined as
T 1 3 7 1 3 5 7
(D --- D E),whereD=(604>andE=(6 0 2 4).
Case 6. n = 5(mod6). A labeling of C(n,2) is defined as
(F - F G),whereF={ 1 1 g)andG=

714051 4031¢60
3 6 27 36 2574 2 «

Obviously, the above labeling is an L(2,1)-labeling. Thus, the propo-
sition holds.

Theorem 3.4 A(C(9,2)) =8, M(C(10,2)) = 8, A(C(11,2)) = 8 and
AC(17,2)) =8

Proof L(2,1)-labelings of C(9,2), C(10,2), C(11,2) and C(17,2) are
shown in the following matrices A, B, C and D, respectively, where A =

03528TB_02846T
6174+)""(a60238)"

c_ (035714 07140316 8\
6 8 0 3 8 « 53625742 x

Hence, A(C(9,2)) < 8, M(C(10,2)) < 8, M(C(11,2)) < 8 and A(C(17,2)) <
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We now prove that A(C(k,2)) > 8 for k = 8,10,11,17.

(1) Since every pair of vertices of C(9,2) has distance at most two,
AC(9,2)) > 8. Hence, A(C(9,2)) =8.

(2) Assume that A(C(10,2)) < 7. Suppose that f is a 7-labeling
of C(10,2). We observe that there is only one vertex v;;s which has
the distance more than two from v; in C(10,2), and that any vertex in
V(C(10,2)) \ {vi, vi4+s} is adjacent to v; or viys. So there must be two col-
ored pairs (vi,, Vi, +5) and (viy, Vi +5) in C(10,2) under f. Thus, there are
at most four numbers to label the rest six vertices. Hence, there must be
two colored pairs (vi,,viz+5) and (vi,,vi,45). By our second observation,
we have that | f(v;, ) — f(vs,)| = 2, where h # j. Therefore, the rest vertices
can not be labeled, a contradiction. Thus, A(C(10,2)) = 8.

(3) Assume that A\(C(11,2)) < 7. Suppose that f is a 7-labeling of
C(11,2). We observe that there are exactly two vertices viys and viqe
which have distance more than two from v; in C(11,2). So we have the
following claims.

Claim 1 If a colored pair labeled by j; under f, there is not the
other colored pair labeled by j2 under f such that |j; — j2| = 1.

Claim 2 There is not a colored triple of vertices in C(11,2) under
I

We also observe that there is only one vertex which has distance two
from any colored pair of vertices under f. Hence, we have the following
claim.

Claim 3 If a colored pair labeled by j; under f, then there are not
the other two vertices labeled by two distinct numbers j; and j3, respec-
tively, such that |j; — j2] =1 and |j; — j3| = 1.

Let wy be the number of colored pairs. Then 3 < wy; < 5. If wp =5,
then A(C(11,2)) > 8 by Claim 1. If wy = 3 or 4, there must be a colored
pair labeled by j and two vertices labeled j — 1,5 + 1, respectively, which
violates Claim 2. Hence, the assumption that A\(C(11,2)) < 7 does not
hold. Thus, A(C(11,2)) = 8.

(4) Assume that A(C(17,2)) < 7. Suppose that f is a 7-labeling of
C(17,2). We observe that there are not four vertices of C(17,2) such that
any two vertices have the distance more than two. So we the following
claim.

Claim 4 There are not four vertices labeled by the same number
under f.

Suppose (z1,T2,z3) is a triple of vertices of C(17,2) such that any
two vertices have the distance more than two. Suppose y; and y2 are two
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vertices in V(C(17,2)) \ {z1,z2,z3}. We observe that there is one in y;
and y3 such that it is adjacent with some vertex in z;,z and z3. Hence,
we have the following claim.

Claim 5 If a colored triple labeled by j under f, then there can not
be a colored pair labeled by h under f such that |j — k| = 1.

Let w3 (or wy) be the number of colored triples (or pairs). Then 0 <
w3 < 5. Ifws =0, then A(C(17,2)) > 8. If wy = 5, then \(C(17,2)) > 8 by
Claim 5. For ¢ = 1,2, 3, 4, if ws = ¢, then there are at most 8 — 2 numbers
to label colored pair of vertices under f. In other words, wo < 8 —2¢. In
this case, A(C(17,2)) > 8. Hence, A(C(17,2)) = 8.

Remark: Since the maximum degree of circular graphs is 4, all our
above results indicates that the conjecture proposed by Griggs and Yeh [5]
holds for circular graphs.

4 JA-numbers of some circular graphs

Theorem 4.1 If n = 0(mod 7), then A(C(n, 3)) = 6.

Proof A labeling f of C(n,3) is defined as f(v;) = 3i(mod7) for
i=0,1,...,n — 1. It is easy to check that f is a 6-L(2,1)-labeling of
C(n,3). Since C(n, 3) is a 4- regular graph if n = 0(mod 7), A(C(n, 3)) > 6
by Theorem 1.1. Hence, A(C(n,3)) = 6. |

Let us consider A-number of C(n,4) where n = 0(mod7). If a la-
beling of v; of C(n,4) is defined as that of C(n,3) in Theorem 4.1 for
J=0,1,...,n — 1, then it is easy to show the following result using the
similar argument to that in the proof of Theorem 4.1.

Theorem 4.2 If n = 0(mod 7), then A(C(n,4)) = 6.

Similarly, if n = 0(mod 7) and if a labeling of v; of C(n,5) is the same
as that of C(n,2) in Theorem 3.1, then we have the following theorem.

Theorem 4.3 If n = 0(mod 7), then A(C(n,5)) = 6.

Theorem 4.4 Let m > 3 and k& > 3. Then

(1) If k = 0(mod 3), then A\(C(4k,4)) = 7.

(2) If k =0(mod4), then A\(C(6k,6)) = 7.

(3) If k =0(mod3), m = 4(mod 6) and m # 0(mod 7), then
MC(km,m)) =T7.

Proof Ifm >3 and k > 3, C(km,m) has a subgraph isomorphic to
P,, x Ci which is obtained from C(km,m) by deleting edges vov,_, and
Vim—1Vim fori =1,2,...,k—1. Hence, A(C(4k,4)) > 7 and A(C(6k,6)) > 7
by Theorem 1.4. Similarly, if m # 0(mod 7), then A(C(km,m)) > 7 where
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k = O(mod3) and m = 4(mod6). We need to show the inverses of the
above mentioned inequalities.

(1) If k = 0(mod 3), a labeling of C(

N

k,4) is defined as

(A A - A )T, where A = Obviously, the above

f

3 0
7 4
0 6
4 1
labeling is an L(2,1)-labeling. So A(C(4k,4)) <
(2) If k = 0(mod 4), a labeling of

)

—~ W=

7. Then M(C(4k,4)) = 7.
)i

6)="1.
(3) If k = 0(mod3) and m = 4(mod 6),a labeling of C(km,m) is

deﬁn%d as
ﬁTg:::g 6 1 3 70 4
7 7 | whereC=1{ 046 137 . In partic-
e 6 370461
ular, if k = 3 and m = 10, a labeling of C(km,m) is defined as (AT C).
Clearly, the above labeling is an L(2,1)-labeling. So A(C(km,m)) < 7.

Therefore, A(C{km,m)) = 7.
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