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Abstract

For a connected graph G and any two vertices u and v in G,
let d(u,v) denote the distance between u and v and let d(G) be the
diameter of G. For a subset S of V(G), the distance between v and
S is d(v,S) = min{d(v,z) | z € S}. Let Il = {51,852,...,5k} be an
ordered k-partition of V(G). The representation of v with respect
to II is the k-vector »(v | ITI) = (d(v, 51),d(v, S2),...d(v,Sk)}). A
partition II is a resolving partition for G if the k-vectors r(v | ),
v € V(G) are distinct. The minimum k for which there is a resolving
k-partition of V(G) is the partition dimension of G, and is denoted
by pd(G). A partition Il = {S1,S2,...,S5k} is a resolving path k-
partition for G if it is a resolving partition and each subgraph induced
by Si, 1 < i < k, is a path. The minimum & for which there exists
a path resolving k-partition of V(G) is the path partition dimension
of G, denoted by ppd(G). In this paper path partition dimensions of
trees and the existence of graphs with given path partition, partition
and metric dimension, respectively are studied.

Keywords: distance, metric dimension, partition dimension, resolving
partition, path partition dimension, resolving path partition.
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1 Introduction

As described in [8] and [3], dividing the vertex set of a graph into classes
according to some prescribed rule is a fundamental process in graph theory.
Perhaps the best known example of this process is graph coloring. In [4],
the vertices of a connected graph are represented by other criterion, namely
through partitions of vertex set and distances between each vertex and the
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subsets in the partition. Thus a new concept is introduced - resolving
partition for a graph.

Let G be a connected graph with vertex set V(G) and edge set E(G).
For any two vertices  and v in G, let d(u, v) be the distance between u and
v. The diameter of G, denoted by d(G) is the greatest distance between any
two vertices of G. For a subset S of V(G) and a vertex v of G, the distance
d(v, S) between v and S is defined as d(v, S) = min{d(v,z) | z € S}.

For an ordered k-partition IT = {5}, S5,...,Sk} and a vertex v of G,
the representation of v with respect to II is the k-vector

(v | TI) = (d(v, $1), d(v, Sa), . . . d(v, Sk)).

Partition IT is called a resolving k-partition for G if the k-vectors r(v | IT),
v € V(G) are distinct. The minimum k for which there is a resolving k-
partition of V(G) is the partition dimension of G and is denoted by pd(G).
A resolving partition of V(G) containing pd(G) classes is called a minimum
resolving partition.

In [7] is considered a particular case of resolving partitions - connected
resolving partitions.

Partition IT = {8}, S2,...,Sk} is a connected resolving k-partition if it
is a resolving partition and each subgraph induced by §;, 1 < i < k, is
connected in G. The minimum k for which there is a connected resolving
k partition of V(G) is the connected partition dimension of G, denoted by
cpd(G).

Another type of resolving partitions, mentioned in (7] as topic for study,
is resolving path partitions.

Partition IT = {5}, S2,..., Sk} is a resolving path k-partition if it is a
resolving partition and each subgraph induced by S;, for 1 <i <k, is a
path. The minimum k for which there exists a resolving path k-partition
of V(G) is the path partition dimension of G, denoted by ppd(G). A resolv-
ing path partition of V(G) containing ppd(G) classes is called a minimum
resolving path partition.

Partition dimension of a graph is related to an older type of dimension
of a graph, introduced by Slater in [10] and later in [9], and independently
by Harary and Melter in (5] - metric dimension of a graph.

For an ordered set W = {w,ws,... wi} of vertices of G and a vertex
v € V(G), the metric representation of v with respect to W is the k-
vector r(v | W) = (d(v, w1),d(v,w2),...,d(v,wg)). If all vertices of G have
distinct representations, then W is called a resolving set for G. A resolving
set containing a minimum number of vertices is called a minimum resolving
set or a basis for G. The number of vertices in a basis for G is the metric
dimension of G and is denoted by dim(G).

IfII = {S1,S2,...,5k} is a partition of V(G) and u,ug,...,ur are 7
distinct vertices, we say that u;,us,...,u, are separated by classes Sj,,
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-y Si, of partition II if the g-vectors (d(up, Sy, ), d(up, Si,), - - - , d(up, Si,)),
1 < p £ r are distinct.

A partition IT = {8}, Ss,...,Sk} of V(G) is an induced-path partition
of G if each subgraph induced by S;, 1 < i < k, is a path. Hence, a re-
solving path partition is an induced-path partition which is also a resolving
partition. The minimum cardinality of an induced-path partition of G is
called the induced-path number of G and is denoted by p(G). The concept
of induced-path number was introduced by Chartrand et al. [2].

Next, we will use the term path partition for a tree T instead of induced-
path partition, since any subpath of T is an induced path in T'.

In [12] all graphs with path partition dimension 2, n or n — 1 were
characterized. '

In this paper we will study path partition dimension of trees and the
existence of graphs with given path partition dimension.

2 Path partition dimension of trees

First we remind some definitions and notation from (7).

Let G be a connected graph. A vertex of degree at least 3 of G is called
major vertez of G. A vertex u of degree one of G is called a terminal vertex
of a major vertex v of G if d(u,v) < d(u,w), for every major vertex w # v
of G (v is the closest major vertex to u). The terminal degree of a major
vertex v, denoted by terg(v) or, if G is known, by ter(v), is the number of
terminal vertices of v. A major vertex v with ter(v) > 0 is said to be an
ezterior major vertez of G. We will call an exterior major vertex v with
ter(v) > 1 a branched major vertez of G.

We denote by ¢(G) the sum of terminal degrees of the major vertices
of G, by g4(G) the sum of terminal degrees of the branched major vertices
of G, by ex(G) the number of exterior major vertices of G and by ez(G)
the number of branched major vertices of G.

For an exterior major vertex v of G a path Q to one of its terminal
vertices u is called terminal path for vertex v.

For a tree T with p = exy(T) branched major vertices we denote by
B(T) = {v1,v2,...,v,} the set of branched major vertices of T. For 1 <
i < p we denote by k; = ter(v;) and by u;;, u, ..., ujk, the terminal
vertices of v;, by P;; the path from v; to u;, for 1 < j < k;, with z;; the
vertex of F;; adjacent with v; and by Q;; the subpath of P;; from z;; to
uij (i.e., Qij = Pij — v;). For a branched major vertex v;, 1 < i < p, the
paths Q;j;, 1 £ j < k; are the terminal paths of vertex v;.

For example, the tree from figure 1 has 3 exterior major vertices: vy, u
and v,. Only v; and v; are branched major vertices: ter(v;) = ter(vz) = 2.
The terminal paths for v, are Q;; and @12 and for vy are x93, u2; and zoo.
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We denote by T},.. j,, where 1 < j; < k;, V1<i<p the tree obtained
from T by removing all its terminal paths excepting Q;;;, 1 <i < p.

We will show that in order to find a minimum resolving path partition
for tree T we need to build a certain minimum induced-path partition for
Til---jp'

First, we remind that in (2] a formula for the induced-path number of
a tree T is given.

Theorem 2.1 ([2]) Let T be a tree and let H be the forest induced by the
vertices of T having degree 3 or more. Let H' be a spanning sub-forest of
H of mazimum size such that degp:(v) < degr(v) — 2 for every vertez v of
H. Then

p(T) =1+ |E(H) + 3 (degr(v) -2 — degsr(u)).
veV(H)

Next we prove a recursive formula for p(T"), which also gives a recursive
method to determine a minimum path partition for T', usefull in finding a
minimum resolving path partition for a tree.

Theorem 2.2 For a tree T with n vertices we have

{ oo(T) — exp(T) + p(T"), fT#Po,n21
p(T)y=¢ 1, fT=PFP,,n>1

0, ifn=0,

where T’ is the tree obtained from T by removing all its branched major
vertices and their terminal paths.

Proof: Let T be a tree with n > 1 vertices, T # P,.

It suffices to prove that any minimum path partition II' of T' can be
transformed into a minimum path partition II of T such that, for every
branched major vertex v; of T, 1 < i < p, the following property P(II)
holds:

20



P(II): <« Every vertex set V(Qy;), 1 < j < k; is a class of II with two
exceptions, say V(Q;;) and V(Q2), and vertices from V(Q;1 )UV (Qi2)U{v;}
form a class of II’>.

Indeed, let IT’ be a minimum path partition that does not satisfy the
required property for every branched major vertex. Let I = {iy,...,ix}
be the set of indices of the branched major vertices that do not verify the
property P(IT"). Since IT' has minimum number of classes and a path Q;
can be extended only through vertex v;, it is easy to see that every branched
major vertex v; with ¢ € I satisfies the following property:

<K All the sets V(Qy;), 1 < j < k; are classes of I’ with one exception,
say V(Q;1), and there exists a path L; from v; such that V(L;)NV(Q;;) =0
for every 1 < j < k; and V(Q;;) U V(L;) is a class of IT">>.

We consider

"= I'- (J{V(Qu), V(Qu) UV(L)} U
iel
U U{V(Qu) UV(Qi2) U {v:}, V(Ls) — {v:}}
iel

The number of branched major vertices that do not verify the property
P(I1") is smaller than the number of branched major vertices that do not
verify the property P(Il'). Thus, by applying the above transformation a
finite number of times, we obtain a path partition IT such that every vertex
satisfies P(II). W]

Remark 2.3 For a tree T we have
op(T) — exp(T) = o(T) — ex(T) = |term(T)| — ex(T)
where term(T) is the set of terminal vertices of T.

Corollary 2.4 Let T be tree and T’ be the tree obtained from T by
eliminating all its branched major vertices and their terminal paths. Then
the path partition II,(T) recursively defined as follows

v;€B(T) j=3
U II,(T"), if T is not a path

tery(vi)
U ({V(Qil) UV(Qi2) U {vw}}u U {V(Qij)}) U
IL(T) =

{V(T)}, i T is a path
is a minimum path partition.

Remark 2.5 For a tree T the number p(T}, ...;,) does not depend of indices
Jiy-- s Jp-
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If T is the path z),...,z, then ppd(T) = 2, a minimum resolving path
partition being {z1}, {z2,...,2a}.

Theorem 2.6 For a tree T which is not isomorphic to a path we have
ppd(T) = oy(T) — exs(T) + p(Tis...5,)
where 3; € {1,...,terr(v;)}, for 1 <i<p.

Proof: Let T be a tree different from a path.

Since a terminal path Q;; can be extended only through vertex v;,
vertices from a set V(Q;;), 1 <i < p, 1 < j < k; have distinct distances to
any other fixed vertex of T. Moreover, with the above notation, any two
distinct vertices z;j, and z;,, adjacent to vertex v; have equal distances to
any fixed vertex from V(T) — (V(Qij;,) U V(Qij,))-

Hence each set V(Qy;), 1 <i < p, 1 < j < k; forms a separate class
in any minimum resolving path partition, with at most one exception for
every branched major vertex v;, 1 <i < p.

It follows that

ppd(T) = Z (ter(v) = 1)+ p(T1 .. 1) = 0(T) —exo(T) +p(T1 ... 1)
—~ ——

veB(T) M M
We consider the partition
I={V(Qy)l1<i<p2<j<k}UIL(T] 1) (1)
S

P
where II, is given by Corollary 2.4.
We will prove that II is a resolving partition. Since IT, has p(T7 1)
S

classes, we shall deduce that i

ppd(T) = 0u(T) — ezp(T) + p(T1 . . .1)-
P
Indeed, vertices from a class V(Qy;), 1 <i < p, 2 < j < k; are separated

by any other class of II.
We denote by T =Ty 1, pV = ez, (T(V) the number of branched
S

P
major vertices of T(1), vgl), o0, L, v;H) the branched major vertices

of T and QS) their terminal paths. We also denote by T(? the tree

obtained from T(!) by removing all its branched major vertices and their
terminal paths.

22



If T() is a path, its vertices are separated by classes V{(Q12) and V(Q22)
if exs(T) > 2 or by V(Qi2) and V(Q13) otherwise (since in this case
terr(vy) 2 3).

If T is not a path, by Corollary 2.4, we have

L= U {(ve)uved)uiPhu
vPeB(Tm)
ter (1) (v?))
U V@) u m(ar®).

=3

Vertices from any class from IT,(T!)) —II,(T?) are separated by classes
of I1. Indeed, vertices from V(Qg)), 3<ji< terT(l)(vgl)) are separated by
class {V(Q)uV(QP)u {vM}}, for any 1 < i < p®.

Since Q{1 and Q) are terminal paths in T(1), there exists a branched
major vertex v of T such that v, € V(Q(l)) or v, € V(Q(l)) Moreover,
since v( ) has degree at least 3, there exists a vertex z ¢ V(Qg)) U V(Qﬁ;))
adjacent with v(l). Then vertices from V(Qm) U V(Qg,)) U {v,gl)} are
separated by the class that contains = and class {V(Qa2)}-

It remains to prove that vertices from classes of II,(T(?) have distinct

representations with respect to II.
Recursively, for ¢ > 2, we have

LI@)=  |J {{(v@uveP) uPhu
v eB(T@)
ter (o) (vi7) (2)
U (V@) u m(Teth)

=3

if T(9 is not a path, where T(9*1) is the tree obtained from T® by removing
all its branched major vertices and their terminal paths and

IL(T@) = (V(T@)}

if 7@ is a path.

Assume T(9 is not a path.

We denote by p(? = ex,(T@) the number of branched major vertices
of T, by v(‘” (q), " v(‘(’g) the branched major vertices of 7% and by

(a @ (@

) and u,;’, T,;" adjacent with

ng) their terminal paths, with extremities T,
v(e)
;4
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Vertices from any class from IT,(T9) — II,(T@*Y)) are separated by
classes of II. Indeed, vertices from V(Qg)), 3<j<Lterpa (v,(q)) are sepa-
rated by class {V(Q?)UV(QP)U{v{?}}, for any 1 < i < p@). Moreover,
since Q2 and Q) are terminal paths in T, there exists a branched

major vertex v{?™2 of T@=1 such that v{7~" is adjacent with u{ or with

u{®. Then vertices from V(QP)uV(QP)u {v{9} are separated by class
V@I UVQE ) U (i},

If T(9 is a path we can similarly prove that vertices from V(T(9)) are
separated by classes of IT,(T(@~1)) — IL,(T®).

By induction, it follows that the vertices from classes of I1,(T(?) have
distinct representations with respect to II, hence II is a resolving partition.
o

Corollary 2.7 For a tree T which is not isomorphic to a path we have
ppd(T) = dim(T) + p(Ty..,)

where 3; € {1,...,terp(v;)}, for1 <i<p.

Proof: By [1], for a tree T which is not isomorphic to a path we have

dim(T) = o(T) — ex(T).

By Theorem 2.6, since 04(T) — exs(T) = o(T) — ex(T') it follows that
ppd(T) = dim(T) + p(Ty,..5,)

where j; € {1,...,terp(v)}, for 1 <i < p. ]

Next we describe a linear time algorithm for finding a minimum re-
solving path partition of a tree T with n vertices based on the proof of
Theorem 2.6. Let us remark that in {6] a linear time algorithm for finding
the induced-path number for graphs whose blocks are complete graphs,
cycles or complete bipartite graphs is presented.

Denote by deg the vector of degrees and by ter the vector of terminal
degrees.

We assume the tree is represented using adjacency lists.

The algorithm also uses the following lists:

LBranched - the list of all branched vertices of the current tree

LTerminal - the list of all terminal vertices of the current tree

L - a vector of lists, £[u] containing the terminal paths of vertex u in
the current tree.

We assume that we have a function EXTEND(Q, v) having as parame-
ters a path Q and a vertex v adjacent with one of the extremities of Q@ that
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extends the path Q through vertex v until a vertex vo such that deglvg] # 2.
Vertex vp is not added to Q. The function returns the vertex vg.

Also we consider two procedures - BUILD_.TERMINAL_PATHS and
EXTEND_TERMINAL_PATHS - as follows.

Procedure BUILD_TERMINAL_PATHS builds all terminal paths in T'
starting with terminal vertices from list LTerminal and store them in
list £, if T is not a path, or adds class V(T') to the partition IT and the
algorithm stops, if T is a path; the terminal degrees of vertices and the list
of branched major vertices LBranched are updated according to the new
terminal paths discovered:
procedure BUILD_TERMINAL_PATHS

for every terminal vertex u in LT erminal do
let @Q be the path consisting of only vertex u
let v be the vertex adjacent to u in T
v := EXTEND(Q, v)
if deg[v] > 3 then
add Q to L[v]
ter[v] = ter[v] + 1
if (ter[v] = 2) then add v to LBranched
else
add vertex v to Q
add class V(Q) to partition II and STOP.
LTerminal =0
endprocedure

Procedure EXTEND_TERMINAL_PATHS(LToEzxtend) has as pa-
rameter a list o vertices LToExtend and extends the paths from L[v] (which
were terminal paths at previous step of algorithm) to terminal paths in the
current tree, for every vertex v in LToEztend; the terminal degrees of
vertices and the list of branched major vertices LBranched are updated
according to the new terminal paths discovered:
procedure EXTEND_TERMINAL_PATHS(LT oExtend)

let LBranchedNew be an empty list
while LToEztend is not empty do
extract a vertex v from LToEzxtend
if L[v] # @ then
remove the path Q from L[v]
ter[v] := ter[v] — 1
vo := EXTEND(Q, v)
if deg[vo] > 3 then
add Q to L[wo]
ter[vo) := ter{vo} + 1
if (ter[vo] = 2) then
add v to LBranchedNew
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else
add vertex vp to @
add class V(Q) to partition IT and STOP.
LBranched := LBranchedNew

endprocedure

Then the algorithms has the following steps:
1. Initialize
ter[u] := 0 for every u € V(T),
I=0.
LTerminal = 0; LBranched =0
L[u] = 0 for every u € V(T).
2. Calculate the degree deg[u] for every u € V(T).
3. If T is a path then let = be a terminal vertex in T'; the partition II with
classes {z} and V(T') — {z} is a minimum resolving path partition for T
STOP.
4. Add all terminal vertices of T to list LTerminal
5. BUILD_.TERMINAL_PATHS
6. Build classes from terminal paths as in (1) as follows:

for each vertex v in LBranched do
for each path @ in L[v] with one exception do
remove Q from L{v]

T=T-Q
add class V(Q) to partition IT
terfv] ;=1

7. Extend the remaining paths from £ to terminal paths in the current
tree and determine all major branched vertices for the current tree:

EXTEND_TERMINAL_PATHS(L Branched)

8. While the current path is not a tree (hence still have branched major
vertices) recursively add classes to II as in (2) and update the terminal
paths for the new tree:

while LBranched is not empty
for every v in LBranched do
extract two paths Q; and Q; from L[v]
add class V(Q1) U V(Q2) U {v} to partition II
for every path Q in L[v] do
remove Q from L[v]
T:=T-Q
add class V(Q) to partition II
T:=T-(Q1UQU{v})
let LPreviousMajor be an empty list which will contain the
non-terminal vertices from which major vertices were removed;
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for every v in LBranched do
if there exists the vertex u from the current tree
that was adjacent to v then
if deg[u] = 1 then
if v is not in LTerminal then
add u to LTerminal

else
if deg[u] > 1 then
if u is not in LPreviousMajor then
add u to LPreviousMajor
else
add class {u} to partition IT and STOP.
LBranched =9

EXTEND_TERMINAL_PATHS(LPreviousMajor)
BUILD_.TERMINAL_PATHS

endwhile

Obviously the above algorithm has the complexity O(n), since the
operations of building or removing a path have the complexity equal to
the length of path and the paths considered are edge-disjoint.

Examples

1. Let S,(p1,--.,Pn) be the thorn star obtained from the star S, with
terminal vertices vy, vs, ..., v, by attaching p; > 2 new terminal vertices

to each vertex v;, 1 < i< n.
We have

PPA(Sa(p1,- - pa)) = 35— 1)+ p(Sa(l, 1., 1)) =
i=1

n n
=Zp,~—n+n—1=zpi—1-
t=1 i=1

2. Let P,(p1,.-.,pn) be the caterpillar obtained from the path P, with
vertices vy, vg, ..., U, by attaching p; > 2 new terminal vertices to each
vertex v;, 1 <7 < n. We have

pPd(Pa(p1y---,pa)) =) _(pi— 1) +p(Pa(1,1,...,1)) =

i=1

=Zpi—n+p(Pn(1,1,...,1))

i=1
and, by Theorem 2.2, if n > 4 we have
p(Pn(1,1,...,1)) =2+ p(Pn-4(1,1,...,1)).
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More,
p(P3(1,1,1)) =2+ p(Po) =2
p(P(1,1)) = p(Ps) =1
p(Pi(1)) = p(P) = 1.
It follows that
2k, if n =4k

p(Pa(1,1,...,1)) =4 2k+1, ifn=4dk+1orn=4k+2
% +2, ifn=4k+3

hence

n

pi — 2k, ifn=4korn=4k+1
1

ppd(Pﬂ(pl"'-ap‘n)) = iﬁ
Y pi-2%-1, ifn=dk+20rn=4k+3

i=1

3 Existence of graphs with given path partition
dimension

Theorem 3.1 a) For any two integers a and b such that 3 < a < b there
erists a connected graph G such that pd(G) = a and ppd(G) = b.

b) For any two integers a and b such that 3 < a < b there ezists a
connected graph G such that dim(G) = a and ppd(G) = b.

Proof: Let a and b be two integers such that 3 < a < b. We consider two
cases.
Casela<b.

a), b) We consider tree T from figure 2.

Yo b4 y2 Y2i-a-1)-1  Y2(b-a-1)
l R L)
Vo \ V2 V2@-a-1)-1  Vab-a-1)
X m
uz
Ua.)
Uy
Figure 2
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The external major vertices of T are z, vg, vy, ..., V(b—a~1)- For external
major vertex z, its terminal vertices are u;, 1 < j < a, for V2(b—a—1)
terminal vertices are yj(;_o-1) and ug, and external major vertex v; has
one terminal vertex y;, for each 0 < ¢ < 2(b—a — 1) — 1. It follows that
ter(z) = a, ter(v;) =1, forany 0 <i < 2(b—a—1) -1, ter(vyp—q_1)) = 2.
By Theorem 2.6 we have

ppd(T) = ter(z) + ter(vy(p—a-1)) — 2+ p(T") = a + p(T"),

where T” is the tree obtained from T by eliminating all its branched major
vertices and their terminal paths, with one exception for each external

terminal vertex.

By Theorem 2.2 we obtain p(T’) = b — a, a minimum path partition of
T’ having classes {yo,v0,Z,%1}, {¥2i-1,V2i-1,V2i,¥2i}, 1 <t <b—a—1.

It follows that ppd(T) = b.

In order to determine partition dimension of T', let II be a resolving
partition of T. Since vertices u,...,us have the same distances to each
of the other vertices of T, these vertices must belong to different classes
of II. It follows that pd(T) > a. Moreover, partition with classes S; =
{v1,%0,91,- - -, Y2(6—a-1) }» S2 = {u2, %, %0, 1, ..., V2(p—a—1), 0}, {u3}, ...
{¢a+1} is a resolving partition, since d(u;,u3) = 2, d(y;,u3) = i + 3, for
0<i<2b—a-1),d(r,uz) =1, dlug,us) = 2, d(vs,u3) = i + 2, for
0<i<2b—-a-1), duguz) = 2(b—-a—1)+ 3 and d(uz,S) = 2,
d(vo, S1) = 1. Hence pd(T) = a.

By (1], we also have

dim(T) =o(T)—ext(T) = a.

Case 2 a =b.
a) Consider the graph G = K,_; o—1. We have [4],[12]

pd(G) = ppd(G) = a.
b) Consider the graph G with vertex set
V(G) = {z1,...,Zat1,¥1,- - -+ Ya, U1, Uz, U3, Ug, V1, V2 }
and edge set

E(G)= ({zizjll<i<j<a+1}—{zizap1}) U {zigi|l <i<a}u
U{wius|l <4 < 5 <4} U {uv1, ugvs, usTy, uaZas1 },

as illustrated in figure 3.
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]
Vi Y X,Z ........ X3
Uy U4
{ % : Kn*l'{xlxvl}

U, s Xa+h\ A

Va i

Ya
Figure 3

Since any two vertices y; and y;, 2 < i # j < a have equal distances
to all the other vertices except z; and z;, it follows that a basis of G must
contain at least one of vertices x;, y; for each 2 < ¢ < a with one exception,
and vertices y; and y; cannot belong to the same class in a resolving path
partition of G.

Similarly, a basis of G must contain one of vertices vy, uy, v2, u2 and ver-
tices v; and v, must belong to different classes in a resolving path partition
of G.

It follows that

dim(G)2a—-2+1=a-1,

and, since from the way G was defined a path from a vertex y;,2 <i < ato
any other terminal vertex y;, vy or v must contain one of the two vertices
Ty Or To41, We also have

ppd(G) 2a-1+1=a.

But vertices z; and z,.1 have equal distances to vertices z;,y;,for2 <i < a
and to vertices vy, u;,vo, ug, hence

dim(G) > a.
It is easy to verify that the set {y2,...,%a—1,v1,Z1} is a resolving set
for G. It follows that
dim(G) = a.

Also, the partition with classes {yl »T1,U4,U1, 01 }1 {ya& Ta, Ta+1y U3, U2, U2},
{%i,z:}, for 2 <i < a—11is a resolving path partition, hence

ppd(G) = a = dim(G).
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Theorem 3.2 For any two integers a and b such that 3 < a < b there
exists a connected graph G such that p(G) = a and ppd(G) = b.

Proof: Let a and b be two integers such that 3 < a < b. We consider two

cases.
Case 1: a < b. Let G = P, 143(b-a—1) + Ka—1. Denote by n =a+1+
3(b—a-1), z1,...,Ts—1 vertices of K, and by 4,...,yn vertices of P,
(figure 4).

ViV A Vo

Figure 4

Then p(G) = a, a path partition of G with a classes being: {z;,v:}, for
1<i<a-—1, {¥a---syn}

We observe that if a class in a resolving path partition IT of G has three
elements {yi, ¥i+1,Yit+2}, 1 < ¢ < n—2, vertices y;, ¥i+1, Yi+2 have distinct
representations with respect to Il only if 2 < i < n —3 and y;—; and y;43
are not in the same class with any vertex z;, 1 < j < a —1. It follows that
ppd(G) 2 a—1+(b—a—1)+2 = b. The path partition with classes {z;, y;},
1< <a- 11 {ya}) {ya+3k+1’ya+3k+2a ya+3k+3}a 0< k < b-a- 21 {yn}
is a resolving partition, hence ppd(G) = b.

Case 2: a = b. Let G, be the graph obtained from the star S, by
attaching a new terminal vertex x to one of the terminal vertices of the
star and two new terminal vertices ¥ and z to z (figure 5).

y
X
z
Figure 5
By Theorems 2.2 and 2.6 we obtain ppd(G,) = p(G,) = a. a
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