Enumeration of non-isomorphic Semigraphs in Γ_4

K. KAYATHRI

Department of Mathematics

Thiagarajar College, Madurai-625 009

E-mail: kayathrikanagavel@yahoo.com

S. Pethanachi Selvam

Department of Mathematics

The Standard Fireworks Rajaratnam College for Women

Sivakasi - 626 123.

E-mail: pethanachiselvam@yahoo.com

Abstract

A semigraph G is edge complete if every pair of edges in G are adjacent. In this paper, we enumerate the non isomorphic semigraphs in one type of edge complete (p,3) semigraphs without isolated vertices.

Keywords: Semigraph, edge complete, *m*-vertex, end vertex.

1 Introduction

Sampathkumar [5, 6, 7, 8] introduced a new generalization of graphs called semigraphs. The edges of a graph G can be interpreted in the following two ways:

- A. Each edge $\{u, v\}$ of G is a 2-element subset of the vertex set V of G.
- B. Edges of G are 2-tuples (u, v) of vertices of G satisfying the following: (u, v) and (u', v') are equal if and only if (i) u = u' and v = v' or u = v' and v = u'.

The Hypergraph theory [1] generalizes graphs using the approach A, whereas the semigraph theory generalizes graphs using the approach B.

Sampathkumar posed the problem of enumerating the edge complete semigraphs with $p \geq 6$. Edge complete (p,2) semigraphs are studied in [2] and the classification of edge complete (p,3) semigraphs is studied in

[3, 4]. In this paper we enumerate the non-isomorphic edge complete (p,3) semigraphs in one particular category.

2 Definitions

A semigraph G is an ordered pair (V, X) consisting of a non-empty set V of vertices and a set X of edges where X consists of n-tuples (u_1, u_2, \ldots, u_n) of distinct elements belonging to the set V for various $n \geq 2$, with the following conditions:

- (1) Any *n*-tuple $(u_1, u_2, \ldots, u_n) = (u_n, u_{n-1}, \ldots, u_1)$ and
- (2) Any two such tuples have at most one element in common. A semi-graph with p vertices and q edges is referred to as a (p,q) semigraph.

Let $E = (v_1, v_2, \ldots, v_n)$ be an edge of G. The end vertices of E are v_1 and v_n ; and the *middle vertices* or *m-vertices* of E are $v_i, 2 \le i \le n-1$.

In diagrammatical representations of semigraphs, thick dots denote end vertices of an edge and small circles denote middle vertices of an edge.

If an m-vertex of an edge E_1 is an end vertex of another edge E_2 , we draw a *small tangent* to the circle at the end of the edge E_2 .

If a vertex v is an m-vertex of more than one edge of G, say E_1, E_2, \ldots, E_t , then v is represented as a *small regular polygon* with 2t corners c_1, c_2, \ldots, c_{2t} with the convention that the jordon curve representing the edge E_i meets the polygon precisely at c_i and $c_{i+t}, i \in \{1, 2, \ldots, t\}$. (refer to Fig. (i)).

A vertex which is not a middle vertex of any edge is called a *strictly end* vertex.

A vertex which is not an end vertex of any edge is called a *strictly middle* vertex.

A vertex which does not lie in any edge is called an isolated vertex.

If $E = (v_1, v_2, \ldots, v_n)$ is an edge, then a partial edge of E, denoted by $E(v_i, v_j)$, is defined as $E(v_i, v_j) = (v_i, v_{i+1}, \ldots, v_j)$, where $1 \le i \le j \le n$.

Let $G_1 = (V_1, X_1)$ and $G_2 = (V_2, X_2)$ be two semigraphs. G_1 is isomorphic to G_2 if there exists a bijection $f : V_1 \to V_2$ such that $E = (v_1, v_2, \ldots, v_n)$ is an edge in G_1 iff $(f(v_1), f(v_2), \ldots, f(v_n))$ is an edge in G_2 . In this case, we denote $(f(v_1), f(v_2), \ldots, f(v_n))$ as f(E).

Two edges are adjacent if they have a common vertex. A semigraph G is edge complete if every pair of edges in G are adjacent.

3 Edge Complete (p,3) Semigraphs

Let Γ denote the class of all edge complete (p,3) semigraphs in which all edges have a common vertex. For every $G \in \Gamma$, let x denote the common vertex of all the three edges namely E_1, E_2, E_3 . We shall categorize the semigraphs in Γ according to the position of x in E_1, E_2, E_3 respectively. Let e, m denote the positions 'end', 'middle' respectively.

The label of a semigraph G in Γ , denoted by l(G), is an ordered triple containing the position of x in E_1, E_2, E_3 in order.

Let L' denote the set of all possible labelings of semigraphs in Γ . Then $|L'|=2^3=8$.

We partition L' such that $L' = \bigcup_{j=1}^{4} L'_{j}$, where L'_{j} 's are defined as follows:

$$L_1' = \{(e, e, e)\}; L_2' = \{(m, m, m)\}; \\ L_3' = \{(m, e, m), (m, m, e), (e, m, m)\}; L_4' = \{(e, m, e), (e, e, m), (m, e, e)\}.$$

3.1 Isomorphism of semigraphs in Γ

Theorem 3.1.1. Any semigraph G in Γ with the labeling (η_1, η_2, η_3) is isomorphic to a semigraph in Γ with the labeling (η_3, η_1, η_2) and to a semigraph in Γ with the labeling (η_2, η_3, η_1) .

Proof. We prove the result for only one case, and the proof is similar in all the other cases. Let $(\eta_1, \eta_2, \eta_3) = (e, m, m)$. Then E_1, E_2 and E_3 are of the following form: $E_1 = (x, u_1, \ldots, u_f, z_1), E_2 = (z_2, v_1, \ldots, v_i, x, v_{i+1}, \ldots, v_{i+j}, z_3), E_3 = (z_4, w_1, \ldots, w_k, x, w_{k+1}, \ldots, w_{k+l}, z_5)$. (Now $V(G) = \{x, z_1, z_2, z_3, z_4, z_5, u_1, \ldots, u_f, v_1, \ldots, v_{i+j}, w_1, \ldots, w_{k+l}\}$ and $X(G) = \{E_1, E_2, E_3\}$). Then consider the semigraph G' = (V', X') in Γ with $V' = \{x', z'_1, z'_2, z'_3, cz'_4, z'_5, u'_1, \ldots, u'_f, v'_1, \ldots, v'_{i+j}, w'_1, \ldots, w'_{k+l}\}, X' = \{E'_1, E'_2, E'_3\}$), where $E'_1 = (z'_4, w'_1, \ldots, w'_k, x', w'_{k+1}, \ldots, w'_{k+l}, z'_5), E'_2 = (x', u'_1, \ldots, u'_f, z'_1), E'_3 = (z'_2, v'_1, \ldots, v'_i, x', v'_{i+1}, \ldots, v'_{i+j}, z'_3)$. Now $l(G') = (m, e, m) = (\eta_3, \eta_1, \eta_2)$. Define a bijection $F : V \to V'$ by F(v) = v', for all $v \in V$.

Then $F(E_1)=E_2'$. Similarly, $F(E_2)=E_3'$, $F(E_3)=E_1'$ and so $G\cong G'$. Repeating the procedure for G', G is also isomorphic to a semigraph G'' with the labeling (η_2,η_3,η_1) . (refer to Fig (ii))

3.2 Classification of semigraphs in Γ

Using the partition of L', we shall partition Γ into 4 subclasses such that semigraphs in different subclasses are non-isomorphic.

We define the following subfamilies of $\Gamma: \Gamma_i = \{G \in \Gamma | l(G) \in L_i'\}$, for i = 1, 2, 3, 4. $\Gamma_1' = \Gamma_1; \Gamma_2' = \Gamma_2; \Gamma_3' = \{G \in \Gamma | l(G) = (e, m, m)\}; \Gamma_4' = \{G \in \Gamma | l(G) = (m, e, e)\}$. Note that $\Gamma_i' \subseteq \Gamma_i$ for i = 1, 2, 3, 4.

Lemma 3.2.1. For i = 3, 4, the number of non-isomorphic semigraphs in Γ_i is the same as the number of non-isomorphic semigraphs in Γ'_i .

Proof. We prove the result for i=4. The proof is similar in the other case. Let $G \in \Gamma_4/\Gamma_4'$ and let $l(G)=(\eta_1,\eta_2,\eta_3)$. Now, $l(G)\in\{(e,e,m),(e,m,e)\}$. We shall consider both possibilities.

- (i) Suppose $(\eta_1, \eta_2, \eta_3) = (e, e, m)$. By Theorem 3.1.1, there exists a semigraph G' with $l(G') = (\eta_3, \eta_1, \eta_2) = (m, e, e)$. Now, $G' \in \Gamma'_4$ and $G \cong G'$.
- (ii) Suppose $(\eta_1, \eta_2, \eta_3) = (e, m, e)$. By Theorem 3.1.1, there exists a semigraph G' with $l(G') = (\eta_2, \eta_3, \eta_1) = (m, e, e)$. Now, $G' \in \Gamma'_4$ and $G \cong G'$.

Thus, in both cases, for every semigraph $G \in \Gamma_4/\Gamma_4'$, there exists a semigraph G' in Γ_4' which is isomorphic to G. This completes the proof. \square

3.3 Non-isomorphic semigraphs in Γ_4

We enumerate the non-isomorphic semigraphs in Γ_4 without isolated vertices. As the number of non-isomorphic semigraphs in Γ_4 is the same as the number of non-isomorphic semigraphs in Γ'_4 , we shall enumerate the non-isomorphic semigraphs in Γ'_4 .

For every $G \in \Gamma_4'$, l(G) = (m, e, e) and x is the common vertex which is an m-vertex of E_1 and end vertices of E_2 and E_3 . Let the labels of the pair of end vertices of E_1 , E_2 , E_3 respectively be $(z_1, z_2), (z_4, x), (z_3, x)$. Then E_1, E_2, E_3 are of the following form: $E_1 = (z_1, \ldots, x, \ldots, z_2), E_2 = (z_4, \ldots, x), E_3 = (z_3, \ldots, x)$.

Let k, i respectively denote the number of m-vertices in the edges E_2 and E_3 ; and let f, g respectively denote the number of m-vertices in the partial edges $E_1(z_1, x)$, $E_1(x, z_2)$, where f + g + k + i = p - 5. (Note that $p \ge 5$).

Now any semigraph in Γ'_4 can be denoted by C_{fgki} .

For non-negative integers f, g, k, i with f + g + k + i = p - 5, up to isomorphism, there is just one semigraph C_{fgki} in Γ'_4 (of order p = f + g + k + i + 5).

Hence, C_{faki} can be thought of as an unlabelled semigraph in Γ'_4 .

Let $\mathcal B$ denote the family of all unlabelled semigraphs C_{fgki} in Γ_4' of order p with f+g+k+i=p-5. Then the number of non-isomorphic semigraphs in Γ_4 is the same as the number of non-isomorphic semigraphs in $\mathcal B$.

3.3.1 Subfamilies of \mathcal{B}

For every $G(=C_{fgki}) \in \mathcal{B}$, let $G^{(1)}, G^{(2)}, G^{(3)}, G^{(4)}$ denote the following semigraphs in $\mathcal{B}: G^{(1)} = G = C_{fgki}, G^{(2)} = C_{fgik}, G^{(3)} = C_{gfki}, G^{(4)} = C_{gfik}$.

We define the following subfamilies of B:

$$\begin{split} \mathcal{B}_1 &= \{G \in \mathcal{B}/G^{(1)} = G^{(2)}\}, \\ \mathcal{B}_2 &= \{G \in \mathcal{B}/G^{(1)} = G^{(3)}\}, \\ \mathcal{B}_3 &= \{G \in \mathcal{B}/G^{(1)} = G^{(2)} = G^{(3)} = G^{(4)}\}. \end{split}$$

3.3.2 Isomorphism of semigraphs in B

Lemma 3.3.1. Let $G \in \mathcal{B}$. Then

(i)
$$G \in \mathcal{B}_1 \Leftrightarrow k = i$$

(ii)
$$G \in \mathcal{B}_2 \Leftrightarrow f = q$$

(iii)
$$G \in \mathcal{B}_3 \Leftrightarrow f = q \text{ and } k = i$$
.

Proof. Proof is obvious.

Theorem 3.3.1. For every $G \in \mathcal{B}$, we have

(i)
$$G^{(1)} = G^{(2)} \Leftrightarrow G^{(3)} = G^{(4)}$$

(ii)
$$G^{(1)} = G^{(3)} \Leftrightarrow G^{(2)} = G^{(4)}$$

(iii)
$$G^{(1)} = G^{(4)} \Leftrightarrow G \in \mathcal{B}_3$$

(iv)
$$G^{(2)} = G^{(3)} \Leftrightarrow G \in \mathcal{B}_3$$
.

Proof. (i) Let $G(=C_{fgki}) \in \mathcal{B}$.

 $G^{(1)} = G^{(2)}$ implies that k = i. Then $G^{(3)} = C_{gfki} = C_{gfik} = G^{(4)}$. The other implication can be proved in the similar way.

Proof is similar for (ii)

(iii) $G^{(1)} = G^{(4)}$ implies that f = g and k = i.

Now $G^{(2)} = C_{fgik} = C_{fgki} = G^{(4)}$. Similarly $G^{(3)} = C_{gfki} = C_{fgki} = G^{(1)}$. Hence $G \in \mathcal{B}_3$. The other implication is obvious from the definition of \mathcal{B}_3 .

Proof is similar for (iv).

Note. $\mathcal{B}_3 \subseteq \mathcal{B}_i$, for i = 1, 2.

Theorem 3.3.2. Let $G = C_{fgki}$ and $H = C_{f'g'k'i'}$ be two semigraphs in \mathcal{B} , where $(f, g, k, i) \neq (f', g', k', i')$. Then $G \cong H$ if and only if $H = G^{(t)}$ for some $t, t \in \{2, 3, 4\}$.

Proof. Though G and H are unlabelled semigraphs, we assign labels to vertices and edges in G and H for the purpose of referring to them.

Let
$$G = C_{fgki} = (V, X)$$
 and $H = C_{f'g'k'i'} = (V', X')$ with $V = \{x, z_1, z_2, z_3, z_4, u_1, \dots, u_{f+g}, v_1, \dots, v_i, w_1, \dots, w_k\},\ X = \{E_1, E_2, E_3\},\ E_1 = (z_1, u_1, \dots, u_f, x, u_{f+1}, \dots, u_{f+g}, z_2),$

```
E_2 = (z_4, w_1, \dots, w_k, x),
E_3 = (z_3, v_1, \dots, v_i, x),
V' = \{x', z'_1, z'_2, z'_3, z'_4, u'_1, \dots, u'_{f'+g'}, v'_1, \dots, v'_{i'}, w'_1, \dots, w'_{k'}\}
X' = \{E'_1, E'_2, E'_3\},
E'_1 = (z'_1, u'_1, \dots, u'_{f'}, x', u'_{f'+1}, \dots, u'_{f'+g'}, z'_2),
E'_2 = (z'_4, w'_1, \dots, w'_{k'}, x'),
E'_3 = (z'_3, v'_1, \dots, v'_{i'}, x')
and f, g, k, i, f', g', k', i' are all non-negative integers with f + g + k + i = f' + g' + k' + i' = p - 5.
```


 $H=H_{f'g'k'i'}$

Fig. (iv)

Suppose $G \cong H$. Then there exists a bijection $F: V \to V'$ such that $\{F(E_1), F(E_2), F(E_3)\} = \{E_1', E_2', E_3'\}$. Since x and x' respectively are the

common vertices of E_1, E_2, E_3 and E'_1, E'_2, E'_3 , we have F(x) = x'.

Moreover x is a middle vertex of E_1 and so F(x)(=x') is also a middle vertex in $F(E_1)$ and hence $F(E_1) = E_1'$. Now we have one of the following two cases:

```
\begin{array}{l} \text{(i) } (F(z_1),F(u_1),\ldots,F(u_f),F(x),F(u_{f+1}),\ldots,F(u_{f+g}),F(z_2)) \\ = (z_1',u_1',\ldots,u_{f'}',x',u_{f'+1}',\ldots,u_{f'+g'}',z_2') \\ \text{(ii) } (F(z_1),F(u_1),F(u_2),\ldots,F(u_f),F(x),F(u_{f+1}),\ldots,F(u_{f+g}),F(z_2)) \\ = (z_2',u_{f'+g'}',\ldots,u_{f'+1}',x',u_{f'}',\ldots,u_1'z_1') \\ \text{If (i) is true then } f'=f \text{ and } g'=g. \text{ Then } \{F(E_2),F(E_3)\} = \{E_2',E_3'\} \end{array}
```

If (i) is true then f' = f and g' = g. Then $\{F(E_2), F(E_3)\} = \{E'_2, E'_3\}$ and so either $F(E_2) = E'_2$ and $F(E_3) = E'_3$ or $F(E_2) = E'_3$ and $F(E_3) = E'_2$. If $F(E_2) = E'_2$ and $F(E_3) = E'_3$ then k = k' and i = i'. So (f, g, k, i) = (f', g', k', i'), a contradiction. If $F(E_2) = E'_3$ and $F(E_3) = E'_2$ then i' = k and k' = i and so $H = C_{fgik}$. Since H and G are unlabelled semigraphs in \mathcal{B} , it follows that $H = G^{(2)}$.

If (ii) is true then f' = g and g' = f. Then $\{F(E_2), F(E_3)\} = \{E'_2, E'_3\}$. If $F(E_2) = E'_2$ and $F(E_3) = E'_3$ then k' = k and i' = i. So $H = C_{gfki} = G^{(3)}$. If $F(E_2) = E'_3$ and $F(E_3) = E'_2$ then i' = k and k' = i. So $H = C_{gfik} = G^{(4)}$.

Conversely suppose $H = G^{(2)}$. Then f' = f, g' = g, k' = i, i' = k.

We define a bijection $F: V \to V'$ by

```
F(z_1) = z_1',
F(z_2) = z_2',
F(z_3) = z_4',
F(z_4) = z_3',
F(u_\alpha) = u_\alpha', 1 \le \alpha \le f + g,
F(w_\alpha) = v_\alpha', 1 \le \alpha \le k,
F(v_\alpha) = w_\alpha', 1 \le \alpha \le i.
F(E_1) = (F(z_1), F(u_1), \dots, F(u_f), F(x), F(u_{f+1}), \dots, F(u_{f+g}), F(z_2))
= (z_1'u_1', \dots, u_{f'}', x_i', u_{f'+1}', \dots, u_{f'+g'}', z_2') = E_1'.
F(E_2) = (F(z_4), F(w_1), \dots, F(w_k), F(x)) = (z_3', v_1', \dots, v_{i'}', x_i') = E_3'
F(E_3) = (F(z_3), F(v_1), \dots, F(v_i), F(x)) = (z_4', w_1', \dots, w_{k'}', x_i') = E_2'
and so G \cong H.
```

Similarly when $H = G^{(t)}$ for t = 3, 4, we can show that $G \cong H$. This completes the proof.

Corollary 3.3.3. If G is a semigraph in \mathcal{B}_3 then G is not isomorphic to any other semigraph in \mathcal{B} .

Proof. Since $G^{(1)} = G^{(2)} = G^{(3)} = G^{(4)}$ for every $G \in \mathcal{B}_3$, the result follows from Theorem 3.3.2.

3.3.3 Non-isomorphism of semigraphs in \mathcal{B}

Lemma 3.3.2. $\mathcal{B}_1 \cap \mathcal{B}_2 = \mathcal{B}_3$.

Proof. Let $G \in \mathcal{B}_1 \cap \mathcal{B}_2$. Then $G^{(1)} = G^{(2)}$ and $G^{(1)} = G^{(3)}$. Using Theorem 3.3.1(ii), $G^{(2)} = G^{(4)}$. Hence $G^{(1)} = G^{(4)}$ and so $G \in \mathcal{B}_3$. Thus $\mathcal{B}_1 \cap \mathcal{B}_2 \subseteq \mathcal{B}_3$. Obviously $\mathcal{B}_3 \subseteq \mathcal{B}_1 \cap \mathcal{B}_2$ and so $\mathcal{B}_1 \cap \mathcal{B}_2 = \mathcal{B}_3$.

In all the following results, we set $G = C_{f_1g_1k_1i_1}$ and $H = C_{f_2g_2k_2i_2}$.

Lemma 3.3.3. (i) If $G \in \mathcal{B}_1 \backslash \mathcal{B}_3$ then $G^{(3)} (= G^{(4)}) \in \mathcal{B}_1 \backslash \mathcal{B}_3$ and $G \neq G^{(3)}$,

- (ii) If $G \in \mathcal{B}_1 \backslash \mathcal{B}_3$ and $H \in \mathcal{B}_1 \backslash \mathcal{B}_3$ be two distinct semigraphs then $G \cong H$ if and only if $H = G^{(3)}$.
- (iii) If $G \in \mathcal{B}_2 \backslash \mathcal{B}_3$ then $G^{(2)}(=G^{(4)}) \in \mathcal{B}_2 \backslash \mathcal{B}_3$ and $G \neq G^{(2)}$.
- (iv) If $G \in \mathcal{B}_2 \backslash \mathcal{B}_3$ and $H \in \mathcal{B}_2 \backslash \mathcal{B}_3$ be two distinct semigraphs then $G \cong H$ if and only if $H = G^{(2)}$.

Proof. (i) Since $G \in \mathcal{B}_1 \setminus \mathcal{B}_3$ by Theorem 3.3.1(i) and (iii),

$$G^{(1)} = G^{(2)}, G^{(3)} = G^{(4)} \text{ and } G^{(1)} \neq G^{(4)}$$
 (1)

Also by Lemma 3.3.1(i) and (iii),

$$k_1 = i_1 \text{ and } f_1 \neq g_1 \tag{2}$$

Let $H = G^{(3)}$. Then by (1) $H = G^{(4)}$ and $H \neq G$. Now $H = G^{(3)}$ implies that

$$f_2 = g_1, g_2 = f_1, k_2 = k_1, i_2 = i_1$$
 (3)

Using (2) and (3), $k_2 = i_2$ and $f_2 \neq g_2$. So $H(=G^{(3)}) \in \mathcal{B}_1 \setminus \mathcal{B}_3$.

(ii) Suppose $G \cong H$ and $G \neq H$.

Since $G \in \mathcal{B}_1 \setminus \mathcal{B}_3$, (1) and (2) holds. Since $G \cong H, H = G^{(t)}$ for some $t \in \{3, 4\}$. But $H \neq G$ and so by (1), $H = G^{(3)}$.

Conversely let $H = G^3$. Then by Theorem 3.3.2, $G \cong H$. Similarly we can prove (iii) and (iv).

Lemma 3.3.4. For i = 1, 2, the number of non-isomorphic semigraphs in $\mathcal{B}_i \setminus \mathcal{B}_3$ is $\frac{1}{2} |\mathcal{B}_i \setminus \mathcal{B}_3|$.

Proof. Proof follows from Lemma 3.3.3.

Lemma 3.3.5. If $G \in \mathcal{B}_1 \backslash \mathcal{B}_3$ and $H \in \mathcal{B}_2 \backslash \mathcal{B}_3$ then G is not isomorphic to H.

Proof. Assume that $G \cong H$. Then $G = H^{(t)}$, for some $t \in \{2,3,4\}$. By Lemma 3.3.2, $G \neq H$. Also $H^{(1)} = H^{(3)}$ and by Theorem 3.3.1 (ii), $H^{(2)} = H^{(4)}$. Hence $G = H^{(2)}$. Then

$$f_1 = f_2, g_1 = g_2, k_1 = i_2, i_1 = k_2$$
 (1)

Since $G \in \mathcal{B}_1 \setminus \mathcal{B}_3$, $G^{(1)} = G^{(2)}$ and so

$$k_1 = i_1 \tag{2}$$

By using (1) and (2), $f_1 = f_2$, $g_1 = g_2$, $i_1 = i_2$, $k_1 = k_2$. So G = H, which is a contradiction.

Lemma 3.3.6. If $G \in \mathcal{B} \setminus \bigcup_{i=1}^{2} \mathcal{B}_{i}$ and $H \in \bigcup_{i=1}^{2} \mathcal{B}_{i}$ then G is not isomorphic to H.

Proof. On the contrary, suppose that $G \cong H$. By hypothesis , $G \neq H$. Let $H \in \mathcal{B}_1$. Then

$$k_2 = i_2 \tag{1}$$

Also $H^{(1)}=H^{(2)},H^{(3)}=H^{(4)}.$ Since $G\neq H$ and $G\cong H$, we have $G=H^{(3)}.$ Then

$$f_1 = g_2, g_1 = f_2, k_1 = k_2, i_1 = i_2$$
 (2)

(1) and (2) implies $k_1 = i_1$ and so $G \in \mathcal{B}_1$, a contradiction. Let $H \in \mathcal{B}_2$. Then

$$f_2 = g_2 \tag{3}$$

Also $H^{(1)}=H^{(3)},H^{(2)}=H^{(4)}.$ Since $G\neq H$ and $G\cong H$, we have $G=H^{(2)}.$ Then

$$f_1 = f_2, g_1 = g_2, k_1 = i_2, i_1 = k_2$$
 (4)

(3) and (4) implies $f_1 = g_1$ and so $G \in \mathcal{B}_2$, a contradiction.

Lemma 3.3.7. Let $G \in \mathcal{B} \setminus \bigcup_{i=1}^{2} \mathcal{B}_{i}$. If $H \neq G$ and $H \cong G$ then $H \in \mathcal{B} \setminus \bigcup_{i=1}^{2} \mathcal{B}_{i}$.

Proof. Proof follows from Lemma 3.3.6.

Enumeration 3.3.4

Theorem 3.3.4. The number of distinct semigraphs in B is given by $T = \frac{1}{6}(p-4)(p-3)(p-2).$

Proof. For every $G \in \mathcal{B}$, f + g + k + i = p - 5. Hence T =The number of non-negative integer solutions of this equation. So

T =
$$\begin{pmatrix} 4+p-5-1\\ p-5 \end{pmatrix}$$
 = $\begin{pmatrix} p-2\\ 3 \end{pmatrix}$ = $\frac{1}{6}(p-4)(p-3)(p-2)$.

Lemma 3.3.8. For i = 1, 2, the number of distinct semigraphs in \mathcal{B}_i is given by $T_1 = \begin{cases} \left(\frac{p-3}{2}\right)^2 & \text{if } p \text{ is odd} \\ \left(\frac{p-4}{2}\right)\left(\frac{p-2}{2}\right) & \text{if } p \text{ is even.} \end{cases}$

Proof. We prove the result for i=1 and the result is similar for i=2. Let $G \in \mathcal{B}_1$. Then k = i. So f + g + 2i = p - 5. The number of non-negative integer solutions of this equation is the same as the number of non-negative integer solutions of the equation $x_1 + x_2 + x_3 = p - 5$ with the constraint that x_3 is even. This can be determined using the counting technique as follows:

Define
$$f_1(x) = f_2(x) = x^0 + x^1 + x^2 + \dots = (1 - x)^{-1}$$

 $f_3(x) = x^0 + x^2 + x^4 + \dots = (1 - x^2)^{-1}$ and
 $f(x) = f_1(x) \cdot f_2(x) \cdot f_3(x) = (1 - x)^{-2} \cdot (1 - x^2)^{-1}$.

The required solution is the coefficient of x^{p-5} in f(x).

Now
$$f(x) = \sum_{r=0}^{\infty} {r+1 \choose r} x^r \sum_{s=0}^{\infty} x^{2s}$$
.

The general term in the R.H.S is $(r+1)x^{r+2s}$. We need the coefficient of x^{p-5} . So r + 2s = p - 5. Case i. p is odd.

Then r is even and
$$0 \le r \le p-5$$
. So $T_1 = \sum_{\substack{r=0 \ r \text{ is even}}}^{p-5} r+1 = \sum_{n=1}^{\frac{p-3}{2}} 2n-1$.

On simplification, we get $T_1 = \left(\frac{p-3}{2}\right)^2$. Case ii. p is even.

Then
$$r$$
 is odd and $0 \le r \le p-5$. So $T_1 = \sum_{\substack{r=0 \ r \text{ is odd}}}^{p-5} r+1 = \sum_{n=1}^{\frac{p-4}{2}} 2n$. On simplification $T_1 = \left(\frac{p-4}{2}\right)\left(\frac{p-2}{4}\right)$

Lemma 3.3.9. The number of distinct semigraphs in \mathcal{B}_3 is given by

$$T_2 = \left\{ \begin{array}{ll} \left(\frac{p-3}{2}\right) & \text{if } p \text{ is odd} \\ 0 & \text{if } p \text{ is even.} \end{array} \right.$$

Proof. Let $G \in \mathcal{B}_3$. Then f = g and k = i. So 2f + 2k = p - 5, ie f + $k = \frac{p-5}{2}$ and p is odd. The number of non-negative integer solutions is $\left(\begin{array}{c} 2 + \frac{p-5}{2} - 1 \\ \frac{p-5}{2} \end{array}\right) = \left(\begin{array}{c} \frac{p-5}{2} + 1 \\ \frac{p-5}{2} \end{array}\right) = \frac{p-3}{2}$

Theorem 3.3.5. For $p \ge 5$, the number of non-isomorphic semigraphs in Γ_4 is given by $S = \left\{ \begin{array}{ll} \frac{1}{24}p(p-2)(p-4) & \text{if p is even} \\ \frac{1}{24}(p-1)(p-2)((p-3) & \text{if p is odd.} \end{array} \right.$

Proof. The number of non-isomorphic semigraphs in Γ_4 is the same as the number of non-isomorphic semigraphs in B. Hence S=Number of nonisomorphic semigraphs in \mathcal{B} .

Let $G \in \mathcal{B} \setminus \bigcup_{i=1}^{2} \mathcal{B}_{i}$. Then by using Theorem 3.3.1, $G^{(t)}$'s are all distinct for t = 1, 2, 3, 4. Also by Theorem 3.3.2, these four semigraphs are isomorphic.

Moreover by Lemma 3.3.7. $G^{(t)}$'s are all in $\mathcal{B}\setminus\bigcup_{i=1}^{2}\mathcal{B}_{i}$. Hence the number of non-isomorphic semigraphs in $\mathcal{B}\setminus\bigcup_{i=1}^2\mathcal{B}_i$ is $\frac{1}{4}|\mathcal{B}\setminus\bigcup_{i=1}^2\mathcal{B}_i|$.

Now $|\mathcal{B}\setminus \bigcup_{i=1}^{2} \mathcal{B}_{i}| = |\mathcal{B}| - |\bigcup_{i=1}^{2} \mathcal{B}_{i}| = |\mathcal{B}| - \left[\sum_{i=1}^{2} |\mathcal{B}_{i}| - |\mathcal{B}_{1} \cap \mathcal{B}_{2}|\right] = T - [2T_{1} - T_{2}]$, using Lemmas 3.3.2,3.3.8,3.3.9 and Theorem 3.3.4. Hence the number of non-isomorphic semigraphs in $\mathcal{B}\setminus\bigcup_{i=1}^{2}\mathcal{B}_{i}$ is $\frac{1}{4}[T-2T_{1}+T_{2}]$.

Using Lemmas 3.3.4,3.3.5 and Corollary 3.3.3, the number of non-isomorphic semigraphs in $\bigcup_{i=1}^2 \mathcal{B}_i$ is equal to $\frac{1}{2}|\mathcal{B}_1 \setminus \mathcal{B}_3| + \frac{1}{2}|\mathcal{B}_2 \setminus \mathcal{B}_3| + |\mathcal{B}_3| = \frac{T_1 - T_2}{2} + \frac{T_1 - T_2}{2} + \frac{T_1 - T_2}{2} + \frac{T_2 - T_3}{2} + \frac{T_1 - T_2}{2} + \frac{T_1 - T_2}{2} + \frac{T_2 - T_3}{2} + \frac{T_1 - T_2}{2} + \frac{T_1 - T_2}{2} + \frac{T_2 - T_3}{2} + \frac{T_1 - T_2}{2} + \frac{T_1 - T_2}{2} + \frac{T_2 - T_3}{2} + \frac{T_1 - T_2}{2} + \frac{T_2 - T_3}{2} + \frac{T_1 - T_2}{2} + \frac{T_1 - T_2}{2} + \frac{T_2 - T_3}{2} + \frac{T_1 - T_2}{2} + \frac{T_1 -$ $T_2 = T_1$.

By Lemma 3.3.6, the number of non-isomorphic semigraphs in ${\cal B}$ is given by

$$S = \frac{1}{4}[T - 2T_1 + T_2] + T_1 = \frac{1}{4}[T + 2T_1 + T_2].$$

Case i. p is even.

$$S = \frac{1}{4} \left[\frac{1}{6} (p-4)(p-3)(p-2) + 2 \left(\frac{p-4}{2} \right) \left(\frac{p-2}{2} \right) \right].$$
 On simplification, we get $S = \frac{1}{24} p(p-2)(p-4).$

Case ii. p is odd.

Simplifying, we get
$$S = \frac{1}{4} \left[\frac{1}{6} (p-4)(p-3)(p-2) + 2\left(\frac{p-3}{2}\right)^2 + \frac{p-3}{2} \right]$$
.

References

- [1] C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.
- [2] K. Kayathri and S. Pethanachi Selvam, Edge complete (p, 2) semigraphs, Ars Combinatoria, 84(2007), 65-76.
- [3] K. Kayathri and S. Pethanachi Selvam, Edge complete (p,3) semigraphs, Acta Ciencia Indica, XXXIIIM(2) (2007), 621-631.
- [4] K. Kayathri and S. Pethanachi Selvam, Edge complete semigraphs, Journal of Mathematics and System Sciences, 3(2) (2007), 20-27.
- [5] E. Sampathkumar, Semingraphs and their applications, DST project, DST/MS/022/94, Department of Science and Technology, Govt. of India, New Mehrauli Road, New Delhi.
- [6] E. Sampathkumar, Semigraphs, SERC Research Highlights, Department of Science and Technology, New Delhi, June 2003, 370-389.
- [7] E. Sampathkumar, Semigraphs, Combinatorial Optimization (Ed. M.M. Shikare and B.N. Waphare), Narosa Publishing House, New Delhi, (2004), 125-139.
- [8] E. Sampathkumar and L. Pushpalatha, Matrix representation of semigraphs, Advanced studies in contemporary mathematics, 14(1)(2007), 103-109.