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Abstract
A semigraph G is edge complete if every pair of edges in G are ad-
jacent. In this paper, we enumerate the non isomorphic semigraphs
in one type of edge complete (p,3) semigraphs without isolated ver-
tices.
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1 Introduction

Sampathkumar [5, 6, 7, 8] introduced a new generalization of graphs called
semigraphs. The edges of a graph G can be interpreted in the following
two ways:
A. Each edge {u,v} of G is a 2-element subset of the vertex set V of G.
B. Edges of G are 2-tuples (u, v) of vertices of G satisfying the following:
(u,v) and (v/,v’) are equal if and only if ({) u = v’ and v =v' or u = v’
and v =/,
The Hypergraph theory [1] generalizes graphs using the approach A, whereas
the semigraph theory generalizes graphs using the approach B.
Sampathkumar posed the problem of enumerating the edge complete
semigraphs with p > 6. Edge complete (p,2) semigraphs are studied in
[2] and the classification of edge complete (p,3) semigraphs is studied in
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[3, 4]. In this paper we enumerate the non-isomorphic edge complete (p, 3)
semigraphs in one particular category.

2 Definitions

A semigraph G is an ordered pair (V, X) consisting of a non-empty set V'
of vertices and a set X of edges where X consists of n-tuples (uy,u2,...,un)
of distinct elements belonging to the set V for various n > 2, with the
following conditions:

(1)Any n-tuple (u1,u2,...,un) = (Un,Un—1,...,u%1) and

(2)Any two such tuples have at most one element in common. A semi-
graph with p vertices and g edges is referred to as a (p, q) semigraph.

Let E = (v1,v2,...,Vn) be an edge of G. The end vertices of E are v;
and v,,; and the middle vertices or m-vertices of E are v;,2<i<n-—1.

In diagrammatical representations of semigraphs, thick dots denote end
vertices of an edge and small circles denote middle vertices of an edge.

If an m-vertex of an edge E; is an end vertex of another edge E3, we
draw a small tangent to the circle at the end of the edge Es.

If a vertex v is an m-vertex of more than one edge of G, say F1, E», . .., E,
then v is represented as a small regular polygon with 2t corners ¢y, ¢3,...,c2:
with the convention that the jordon curve representing the edge E; meets
the polygon precisely at ¢; and ¢;y¢,i € {1,2,...,t}. (refer to Fig. (i)).

Fig. (i)

A vertex which is not a middle vertex of any edge is called a strictly end
vertez.

A vertex which is not an end vertex of any edge is called a strictly middle
verter.
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A vertex which does not lie in any edge is called an isolated vertex.

If E = (v1,v2,...,v,) is an edge, then a partial edge of E, denoted by
E(v;,v;), is defined as F(v;,v;) = (vi,Vig1,...,v;), where 1 <i < j < n.

Let G, = (4, X)) and G; = (V2,X2) be two semigraphs. G, is iso-
morphic to G if there exists a bijection f : V; - V, such that F =
(v1,v2,...,vn) is an edge in Gy iff (f(v1), f(v2),...,f(va)) is an edge in
G3. In this case, we denote (f(v1), f(v2),...,f(vn)) as f(E).

Two edges are adjacent if they have a common vertex. A semigraph G
is edge complete if every pair of edges in G are adjacent.

3 Edge Complete (p,3) Semigraphs

Let T denote the class of all edge complete (p,3) semigraphs in which all
edges have a common vertex. For every G € T, let = denote the common
vertex of all the three edges namely Ei, Eo, E3. We shall categorize the
semigraphs in " according to the position of z in E;, F3, E3 respectively.
Let e, m denote the positions ’end’, 'middle’ respectively.

The label of a semigraph G in T', denoted by I(G), is an ordered triple
containing the position of z in E4, Ey, E3 in order.

Let L' denote the set of all possible labelings of semigraphs in I'. Then
|L'| = 2% = 8.

4
We partition L’ such that L' = U L}, where L}’s are defined as follows:

i=1
Lll = {(e’ €, e)};L’ = {(m’ m, m)},
3= {(m’ e,m), (m, m,e), (e, m’m)};Lfi = {(e’ma e), (e,e,m), (m,e, e)}'

3.1 Isomorphism of semigraphs in I

Theorem 3.1.1. Any semigraph G inI" with the labeling (71, 72,73) is iso-
morphic to a semigraph in T with the labeling (n3,m1,72) and to a semigraph
in T with the labeling (n2,n3,m)-

Proof. We prove the result for only one case, and the proof is similar in
all the other cases. Let(n;,72,73) = (e,m,m). Then E), E> and E;3 are of
the following form: E; = (z,u,...,uy, 21), B2 = (22,v1,..., ¥4, 2, Vi41 - . -,
Vitjr 23), B3 = (24, w1,. .., Wk, T, Wkt1 - - -, Wit 25). (Now V(G) = {z, 2y,
22,23, 24,25, ULy -+« y Ufy V1, -« -, Vi W1,y - - -, Wit} and X(G) = {Ey, Ey,
E3}). Then consider the semigraph G’ = (V/, X’) in T with V' = {2/, 21,
25, 23,C24, 2, Uy - - -y Up, Uy o 3 Vigjy Wy oo W 1, X' = {EY, E3, ES}),
where Ef = (23, w], ..., Wi, T, Whyy - s Wiy 25), By = (2,0, ..., 4}, 20),
Ey = (2,v], ..., 0,2\ v ...,v23). Now U(G') = (m,e,m)
= (m3,M,7n2). Define a bijection F : V — V' by F(v) =/, forall v € V.
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Then F(E;) = Ej. Similarly, F(E;) = Ej, F(Es) = Ef and so G = G'.
Repeating the procedure for G/, G is also isomorphic to a semigraph G"

with the labeling (72,73, m). (refer to Fig (ii)) a
E
E, z Zzz
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EY
14 "
E3 z" z‘

"
u', w':

z] V!

3.2 Classification of semigraphs in I

Using the partition of L', we shall partition I into 4 subclasses such that
semigraphs in different subclasses are non-isomorphic.

We define the following subfamilies of ' : I'; = {G € I'|{(G) € L}, for

i=1,2,3,4.T) =Ty;T5 =TT = {G €T|I(G) = (e,m,m)}; T} = {G €
T)l(G) = (m,e,e)}. Note that T, CT; for i = 1,2, 3,4.

Lemma 3.2.1. Fori = 3,4, the number of non-isomorphic semigraphs in
T'; is the same as the number of non-isomorphic semigraphs in T}.

Proof. We prove the result for i = 4. The proof is similar in the other case.
Let G € T4/T and let I(G) = (m, 12, m3)- Now, I(G) € {(e,e,m), (e, m,€)}.
We shall consider both possibilities.

(i) Suppose (m1,7m2,m3) = (e,e,m). By Theorem 3.1.1, there exists a
semigraph G’ with {(G') = (n3,m1,72) = (m,e,e). Now, G’ € T, and G =
G.

(ii) Suppose(n1,72,m3) = (e,m,e). By Theorem 3.1.1, there exists a
semigraph G’ with {(G') = (12,13, m) = (m,e,e). Now, G' € T} and G =
G

Thus, in both cases, for every semigraph G € TI'y/I"}, there exists a
semigraph G’ in Iy which is isomorphic to G. This completes the proof. O
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3.3 Non-isomorphic semigraphs in Iy

We enumerate the non-isomorphic semigraphs in I’y without isolated ver-
tices. As the number of non-isomorphic semigraphs in I'y is the same as
the number of non-isomorphic semigraphs in T'j, we shall enumerate the
non-isomorphic semigraphs in I';.

For every G € T'},l(G) = (m,e,e) and z is the common vertex which
is an m-vertex of F; and end vertices of E2 and Ej3. Let the labels of
the pair of end vertices of E, E», E3 respectively be (21, 22), (24, T), (23, Z).
Then E,, E;, E; are of the following form: By = (z1,...,%,...,22), B2 =
(24--.,%), E3 = (23,...,%).

E,

E
ez, z

Pt O-————0" o—=e E,
z, X z,
Fig. (iii)

Let k, i respectively denote the number of m-vertices in the edges E>
and E3; and let f, g respectively denote the number of m-vertices in the
partial edges E)(z1,z), E1(x, 22), where f + g + k 4+ i = p — 5. (Note that
p25).

Now any semigraph in I'j can be denoted by Cpgs.

For non-negative integers f,g,k,i with f+g+k+i=p -5, up to
isomorphism, there is just one semigraph Cygx; in T’y (of order p= f+ g+
k+1i+5).

Hence, Cjgi: can be thought of as an unlabelled semigraph in I';.

Let B denote the family of all unlabelled semigraphs Cyg; in 'y of order
p with f+g+k+1i = p—5. Then the number of non-isomorphic semigraphs
in T4 is the same as the number of non-isomorphic semigraphs in B.

3.3.1 Subfamilies of B

For every G(= Cygri) € B, let GM,G?),G®,GW denote the following
semigraphs in B : G) = G = Cfgri, G® = Cygik, G® = Cyp1i, GW =
Corik.

We define the following subfamilies of B :
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B, = {G € B/GW) = G},
By = {G € B/GY) = G®},
B3 ={GeB/GN =G =GO = GW}.

3.3.2 Isomorphism of semigraphs in B
Lemma 3.3.1. Let G € B. Then
(i) GeB, k=1
(i) GeBa &= f=g
(i) GEBs & f=g and k=1.
Proof. Proof is obvious. O
Theorem 3.3.1. For every G € B, we have
(i) GV = G? & GG = GW
(#) GV = G® & ¢ =M
(iii) GV = GW & G € B;
(iv) G@ =GO & G e B;.

Proof. (i) Let G(= Cyqk:i) € B.

GW = G implies that k = i. Then G®) = Cyppi = Cypix, = G The
other implication can be proved in the similar way.

Proof is similar for (ii)

(iii) GV = G® implies that f = g and k = 1.

Now G = Crgit = Crgri = G@, Similarly G® = Corri = Crgri =
G, Hence G € Bs. The other implication is obvious from the definition
of Ba.

Proof is similar for (iv). a

Note. B3 C B;,fori=1,2.

Theorem 3.3.2. Let G = Cygi and H = Cprgprr be two semigraphs in
B, where (f,g,k,%) # (f',¢',k',i'). Then G = H if and only if H = G
for some t, t € {2,3,4}.

Proof. Though G and H are unlabelled semigraphs, we assign labels to
vertices and edges in G and H for the purpose of referring to them.
Let G = Crgri = (V,X) and H = Crigiprir = (V', X') with
= {x,21,22,23,24,’U,1,. ey Ufpgy V1o, Uy W, . .,'Wk},
X= {E19E21 Ea}:
E] = (zl,ul, ey UF T ULy ey Uf g 22),
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E2 = (Z4,U)1,---,1Uk,$),

E3= (23,'01,...,’01‘,23),

V! = {a:’,z;,zé,zé,zi,u'l,...,u’f,_l_g,,v’l,...,vg,,w'l,...,w{c,}

X’={Ei’ ér tli}’

E{ = (z{,u’l,...,u'f,,a:’,u'f,“,...,u},_,_g,,zé),

E} = (z4,w},..., wp, '),

Ef = (25,v),...,V,2')
and f,g,k,i, f',g',K',i are all non-negative integers with f + g+ k+1i =
ff+d+K+i=p-5.

H=Hfg'k'i'

Fig. (iv)

Suppose G = H. Then'there exists a bijection F : V — V! such that
{F(E\), F(E2), F(E3)} = {E}, Ej}, E3}. Since z and z' respectively are the
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common vertices of Ey, Eg, E3 and Ej}, B}, Ej, we have F(z) = z'.

Moreover z is a middle vertex of E; and so F(:v)(—- z') is also a middle
vertex in F(E;) and hence F(E,) = E{. Now we have one of the following
two cases:

() (F(z1), F(w),...., F (w) F(z), Flus41),- - Flugig), F(22))

= (21, U1,y U, @y Uy Wy, 20)

(ii) (F(=1), F(ul) F(uz), F(uf) F(z) Flugs1), - ) F(tsig), F(22))
= (zz,uf,_,_g,, “f'+1r df ., u12])

If (i) is true then f'= f and ¢’ = g. Then {F(E), F(Ea)} = {Ej, }

and so either F(E,) = E} and F(E3) = Ej or F(E;) = E} and F(E3) =
If F(E;) = Ej and F(E3) = Ejthenk =k and i = z So (f,9,k, z) =
(f',g',K',i'), a contradiction. If F(E;) = E} and F(E;) = Ef theni' =k
and k' =iandso H = (r i Since H and G are unlabelled semigraphs in
B, it follows that H = G g

If (ii) is true then f' = g and ¢’ = f. Then {F(E2), F(E3)} = {Ej, E}}.
If F(Ey) = Ej and F(E3) = Fj then k' = k and ¢/ = 4. So H = Cypri =
G®. If F(BE;) = E} and F(E3) = E} then i = kand ¥ = i. So H =
Cosrir = G

Conversely suppose H = G, Then f' = f,¢' = g,k =14,9 = k.

We define a bijection F : V — V' by

F(z) =z,
F(z) = 25,
F(23) = 2},
F(z) = zé’
F(z) =4,

Flua)=u,,1<a< f+g,

Fwe) =v,,1<a <k,

Fva)=w,,1<a <.

F(Ey) = (F(z1), F(w), ..., F(ug), F(@), F(g11), ..., F(ugg), F(22))

= (ziu’l,...,u’,,z’,u}.ﬂ, ,uf, 1, 25) = ET.

F(Bp) = (F(z2), F(w1), .., F(wy), F() = (25,0}, .., th, o) = B}

F(E3) = (F(Zs),F('Ul), F(vi) F(x)) = (24,11)1, . ,'w;c,,z’) = Eé
and so G = H.

Similarly when H = G for t = 3,4, we can show that G = H. This
completes the proof. O

Corollary 3.3.3. If G is a semigraph in By then G is not isomorphic to
any other semigraph in B.

Proof. Since GV = G2 = G®) = G for every G € Ba, the result follows
from Theorem 3.3.2. O
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3.3.3 Non-isomorphism of semigraphs in B
Lemma 3.3.2. B;NB; = Bs.

Proof. Let G € ByNB,. Then G = G@ and G = GB). Using Theorem
3.3.1(ii), G® = G, Hence G(V) = G and so G € Bs. Thus B,NB; C Bs.
Obviously Bz C B; N B; and so By N By = Bs. O

In all the following results, we set G = Cf,g,x,i, @nd H = Cr,g,k5i,-

Lemma 3.3.3. (i) If G € B;\Ba then G®)(= GW) € B)\B;s and G #
G®,

(i) If G € B{\B3 and H € B;,\Bs be two distinct semigraphs then G = H
if and only if H = G®.

(i) If G € By\Bs then GO (= GW) € B;\B; and G # G®.

(i) If G € Bo\Bs and H € By\Bj3 be two distinct semigraphs then G = H
if and only if H = G,

Proof. (i) Since G € B;\Bs by Theorem 3.3.1(i) and (iii),
G = ¢ G® = GW gnd GV £ GW (1)
Also by Lemma 3.3.1(i) and (iii),
ky =141 and f1 # g1 2

Let H = G®. Then by (1) H = G® and H # G. Now H = G® implies
that
f2=01,02= fi,ke =ki,ia=1% (3)

Using (2) and (3), k2 = iz and f2 # ga. So H(= G®) € B,\Bs.

(ii) Suppose G = H and G # H.

Since G € B;\Bs, (1) and (2) holds. Since G = H,H = G®) for some
t € {3,4}. But H # G and so by (1), H =G®.

Conversely let H = G3. Then by Theorem 3.3.2, G & H. Similarly we
can prove (iii) and (iv). a

Lemma 3.3.4. For i = 1,2, the number of non-isomorphic semigraphs in
35\33 is -12-|B,\Ba|

Proof. Proof follows from Lemma 3.3.3. O

Lemma 3.8.5. If G € B;\B3s and H € By\Bs then G is not isomorphic to
H.
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Proof. Assume that G = H. Then G = H®, for some ¢t € {2,3,4}. By
Lemma 3.3.2, G # H. Also HY) = H®) and by Theorem 3.3.1 (ii), H® =
H®), Hence G = H®. Then

h=rfag=g,k =i, =k (1)
Since G € B1\B3,GV) = G? and so
ki =1 (2)

By using (1) and (2), fi = f2, 01 = g2,%1 = 42, k1 = k2. So G = H, which is
a contradiction. O

2 2
Lemma 3.3.6. If G € B\ |J B; and H € |J B; then G is not isomorphic
i=1 i=1
to H.
Proof. On the contrary, suppose that G = H. By hypothesis , G # H.

Let H € B;. Then
ko = ig (1)

Also HY = H@ HE) = H@, Since G # H and G = H, we have
G = H®, Then
Hi=g,0=fo,ki=k,i1=1dp (2)
(1) and (2) implies k; = 4; and so G € By, a contradiction.
Let H € B;. Then
fa=g2 (3)
Also HY = H®) H® = H®, Since G # H and G = H, we have
G = H®. Then
fi=fagn=g2.k =i =k (4)
(3) and (4) implies f; = g; and so G € By, a contradiction. a

2
Lemma 3.3.7. Let G € B\ UB;. If H # G and H = G then H €
i=1
2
B\ U B..

i=1

Proof. Proof follows from Lemma 3.3.6. (]
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3.3.4 Enumeration
Theorem 3.3.4. The number of distinct semigraphs in B is given by
T=3@-4p-3)(p-2).

Proof. For every G € B,f+ g+ k+i=p— 5. Hence T= The number of
non-negative integer solutions of this equation. So

T=(4+"‘5‘1)=(”’2)=%(p—4)(p—3)<p—2). =

p—35 3
Lemma 3.3.8. For i = 1,2, the number of distinct semigraphs in B; is
-3)2 e
given by Ty = B> if p is odd

(2%—4) (’;—2) if p is even.

Proof. We prove the result for i = 1 and the result is similar for { = 2. Let
G € B;. Then k = i. So f + g + 2i = p— 5. The number of non-negative
integer solutions of this equation is the same as the number of non-negative
integer solutions of the equation z; + z3 + 3 = p — 5 with the constraint
that z3 is even. This can be determined using the counting technique as
follows:
Define fi(z) = fo(z) =2+ ' + 22+ =(1-2)!
falz) =2 +z?+ 28+ = (1 ~2%)"! and
f(z) = f1(2) - fa(a) - fale) = (1 =2)72 - (1 - 22)L.
The required solution is the coefficient of zP~° in f(z).
=] T +1 o0
Now f(z)= ( . )x' onz“.
r= I=l
The general term in the R.H.S is (r + 1)z"+2*. We need the coefficient
of 275, Sor +2s=p—5.
Case i. p is odd.

~3

Thenriseven and 0 <r <p-5.80T) = pZE r+l1=>% 2n-1.
r i::gen n=1
On simplification, we get T} = ("—;-:i)2
Case ii. p is even. .
Thenrisodd and 0 <r <p-5.S0T) = ?Zs r+1= 3 2n. On
r is odd n=
simplification Ty = (252) (%2) O

Lemma 3.3.9. The number of distinct semigraphs in B3 is given by

T, = (B52)  ifpis odd
271 o0 if p is even.
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Proof. LetGeBg Then f =gand k =4 So 2f +2k=p—5,ie f+
k= ”—2—- and p is odd. The number of non-negative integer solutions is

2+255 -1 BS54 _3
(&)= (%)= .

Theorem 3.3.5. For p > 5, the number of non-isomorphic semigraphs in
_{ Aol -2)(p-9) if p is even
Lo i gen by 5 = { 200 0 s b

Proof. The number of non-isomorphic semigraphs in I'y is the same as
the number of non-isomorphic semigraphs in B. Hence S=Number of non-

isomorphic semigraphs in B.

Let G € B\ U B;. Then by using Theorem 3.3.1, G{)’s are all distinct
fort=1,2,3,4. Also by Theorem 3.3.2, these four semigraphs are isomor-
phic.

Moreover by Lemma 3.3.7. G®)’s are all in B\ [2) B;. Hence the number

i=1

2 2
of non-isomorphic semigraphs in B\ U B; is 1B\ U By

Now |8\ U 5 = 181 - | U &l = 181 - EIBI—IBmBzI]~T—
27 - T3, usmg Lemmas 332338339 a.nd Theorem 3.3.4. Hence the

number of non-isomorphic semigraphs in B\ U B; is [T — 2T} + To).

Using Lemmas 3.3.4,3.3.5 and Corollary 3. 3 3 the number of non-isomorphic
semigraphs in U B; is equal to §|B1\Ba|+3|B2\Bs|+|Bs| = LzTa+ TizTa

A}

r=1. '

By Lemma 3.3.6, the number of non-isomorphic semigraphs in B is given
by

= %[T -2+ TR)+T = %[T +2T1 + T3

Case i. p is even.

S =1 [} -9 -3)p-2)+2(5*) (57)].

On s1mphﬁcat10n, we get S = 34p(p — )(p —4).
Case ii. p is odd.

S=4[ip-9E-3E-2+2(52) + 23],
Simplifying, we get $ = 4 (p—1)(p - 2)(p - 3). m|
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