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Abstract

Let G be a graph and #(G,z) its permanental polynomial. A
vertex-deleted subgraph of G is a subgraph G — v obtained by delet-
ing from G vertex v and all edges incident to it. In this paper, we
show that the derivative of permanental polynomial of G equals the
sum of permanental polynomials of all vertex-deleted subgraphs of
G. Furthermore, we discuss permanental polynomial version of Gut-
man’s problem [Research problem 134, Discrete math. 88 (1991)
105-106], and give a solution.
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1 Introduction

By a graph G we mean a simple undirected graph, with vertex set
V(G) = {v1,v2,...,vn} and edge set E(G) = {ey,e2,...,emn}. For notation
and terminologies not defined here, we refer the readers to (7).

The permanent of an nxn matrix M with entries m;; (i, = 1,2,--- ,n)
is defined by

per(M) = Z H mia(i);

o i=1

where the sum is taken over all permutations ¢ of {1,2,---,n}. In con-
trast to determinants, computing permanents, even of matrices in which

all entries are 0 or 1, is #P-complete [25].
Let A(G) denote the adjacency matrix of G. The characteristic poly-

nomial of G is defined by

#(G,z) = det(xI — A(G) = i ax(@)z"k, (1)
k=0

1 The corresponding author. E-mail: mathtzwu@163.com.
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where [ is the unit matrix of order n. Analogously, one defines the perma-
nental polynomial of G, 7(G, z), as

7(G,z) = per(z] — A(G)) = 5"_: be(G)z™ . (2)

k=0

A Sachs graph is a simple graph, each component of which is 1 or 2-
regular. In other words, the components are single edges and cycles. Let
H be a graph with k vertices. Denote by w(H) the number of components
in H and by ¢(H) the number of cycles in H. Merris et al. obtained
a modified Sachs theorem on the permanental polynomial of a graph as
follows.

n
Theorem 1. (/22]) Let G be a graph with (G, z) = Y bi(G)z"~*. Then
k=0

b(G) = (1) > 2,1 <k <, (3)
H

where the sum is taken over all Sachs subgraphs H of G on k vertices.

Graph polynomials play an outstanding role in mathematical chem-
istry. The characteristic polynomials of graphs are extensively examined,
see [7, 8, 9, 10, 23, 24]. The permanental polynomials of graphs were first
systematically studied by Merris et al. [22], and the study of analogous
objects in chemical literature were started by Kasum et al. [16]. Let G be
a tree with n vertices, Merris et al. [22] proved that

In/2) [n/2)
if ¢(G,z)= Z agnz™ % then n(G,z)= Z (-1)*agez™ 2.
k=0 k=0

This result was generalized by Borowiechi [2] as follows. If G is a bipar-
tite graph containing no cycle of length 4¢, t € {1,2,...}, and ¢(G,z) =
ELZ/OZJ agez™ 2%, then n(G,z) = Ek:gj(—l)kagkx"'z’“. Up to now, somne
papers about the permanental polynomial and its potential applications
have been published [1, 3, 4, 5, 20, 17, 21, 26, 27, 28]. In general it is
difficulty to compute the permanent per(z] — A).

For any graph polynomial, it is of interest to characterize its expres-
sion of the derivative. Clarke [6] first examined the derivative of the
characteristic polynomial. Gutman and Hosoya [12] examined the deriva-
tive of the matching polynomial. Hoede and Li [15] gave the forimnulas
of derivatives of the clique polynomial and the independence polynomial.
Furthermore, Li and Gutman [18] introduced a general graph polynomial
as follows. Let f(A) be a complex-valued function defined on the set
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of all graphs A such that A; = A, implies f(A;) = f(A2). Let G be
a graph on n vertices and S(G) the set of all subgraphs of G. Define
5¢(G) = {AlA € S(G) and |V(A)| = K} and p(G,k) = Tpes,(c) F(A).
The general graph polynomial of G is defined as

P(G,z) =Y _p(G,k)z"*.
k=0

It is easy to verify that the characteristic, matching, clique and indepen-
dence polynomials are just special cases of general graph polynomial. Ad-
ditionally, Li and Gutman gave the formula of derivative of P(G, z), which

has the following expression:

d
PG z)= ) p(G-vz2) @
veV(G)
Let
£(A) = (—1)!Viged)  if all components of A are 1 or 2-regular,
o otherwise.

The resulting polynomial is the permanental polynomial. That is
P(G,z) = n(G,z),
which implies, by (4), that
Theorem 2. Let G be a graph. Then
d
—m(G,z)= Y (G -v,z1). (5)

dz
veEV(G)

Gutman [13] proposed a research problem which is stated as follows.
By m(G, k) we denote the number of k-matchings of the graph G. The
matching polynomial of the graph G is defined as

53
a(G,x) = Z(_l)km(c’ k)m"—2k,
k=0
Define
L3)
a(G,z,9) = Y _(~1)*m(G, k)z"~*y*.

k=0
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It is not difficult to determine that

%ﬁl:- > aG-u-v,z,y) (6)

uwv€E(G)

If G is a bipartite graph, then the characteristic polynomial of G can be
written as

L%]
#(G,z) =D _(-1)*a(G, k)z" .
k=0
Define

L3]
$(G,z,y) = D _(—1)*a(G, k)z" "y,
k=0

Is there a formula for 8¢(G, ,y)/8y analogous to (6)? Li and Zhang [19]
gave a solution to the above problem. Additionally, Gutman et al. [14] used
a different method to answer the above problem for an arbitrary graph. The
solution is demonstrated as follows.

G
d( a,z,y) = - > ¢(G-u-v,z,y) (7)
Y w€E(G)
- Z |C|yj%_—2¢(G -V(C),z,y).
Ce¥9(G)

Note that oG, z,y) = y*/2a(G,zy~'/2). For any graph G, we may define
the permanental-polynomial-equivalent of (G, z,y) as:

n(G,z,y) = Y _ be(G)z"*y*/2,
=0

Is there a formula for 87 (G, z,y)/dy analogous to (6) or (7)?
In this paper, we answer the above problem, and give an expression of
on(G,z,y)/0y as follows.

Theorem 3. Let 4(G) be the set consisting of all cycles in G. Then

TEEY o Y a@-u-vay ®
Yy uv€ E(G)
+ 3 (-)9C (G - V(C),3,y).
CeY(G)
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2 Proof of Theorem 3

We will prove it by comparing the coefficients of z"~*y*/2—! on the
two sides of Eq. (8). By Theorem 1, we know that the coefficient on the
left-hand side of Eq. (8) is

SH(G) = 5 (=D} T 298,
H

where the sum is taken over all Sachs subgraphs H of G on k vertices.
Let |C| be the number of edges or vertices in C. By checking Eq. (8),
we can obtain that the coefficient in the first sum on the right-hand side of

Eq. (8) is
> bea(G-u-v),

uvEE(G)

and the coefficient in the second sum on the right-hand side of Eq. (8) is

> (~1)€Clbe-ici(G - V(C)).
Ce¥(C)

Thus, we know that the coefficient on the right-hand side of Eq. (8) is

Yo a(G-u-v)+ Y. (=1)Clbeoic)(G - V(C))

uv€E(G) CeY(G)
= > ()P 2y H7 (-1)9lo)(-1)kiel Y 2H, (g)
uweE(G) H' Ce¥4(G) H'

where H' takes over all Sachs subgraphs of G —u—v with k—2 vertices, and
H" over all Sachs subgraphs of G — V(C) with k — |C| vertices. Therefore,
(9) can be written as

D, (DR 2 37 (-1)9lo|(-1)k1o 320, (1)
weE(G) H Ce¥4(G) H

where the first sum H takes over all Sachs subgraphs of G with k vertices
containing the single edge uv as a componment, and the second sum H
runs over all Sachs subgraphs of G which has k vertices and contains cycle
C. Since uv takes over all edges of G, and C runs over the set 4(G), (10)
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can be written as

z (_l)kzzc(H)+ Z (_I)IC[|C|(_1)I¢—|C|Z2C(H)—1

uwveE(G) H Ce¥4(G) H
= S - Y 2°<”>+Z"—§l(-1)’° Y- 2elH)
H uwvCH H CCH

(- T2 ( TR '%)

wCH CCH

= (-1F) 2o (w(H) —c(H)+ ) 13—') (11)

H CCcH

where H runs over all Sachs subgraphs of G with k vertices. Since H
contains w(H) — ¢(H) single edges and c(H) cycles, we have that

§=w(H) —e(H)+ Y '—g—' (12)
CCH

By (11) and (12), we obtain that the coefficient on the right-hand side of

(8) is
ko 1)k S getH)
7(=1) D2,
H
This completes the proof of Theorem 3.
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