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Abstract

[n the paper, we give the definition of acyclic total coloring and
acyclic total chromatic number of a graph. It is proved that the
acyclic total chromatic number of a planar graph G with maximum
A(G) and girth g is at most A(G)+2if A > 12,or A > 6and g > 4,
or A >5and g > 5, or g > 6. Moreover, if G is a series-parallel
graph with A > 3 or a planar graph with A > 3 and g > 12, then
the acyclic total chromatic number of G is A(G) + 1.

Keywords: acyclic total coloring, girth, planar graph, series-
parallel graph

1 Introduction

In the paper, all graphs are finite, simple and undirected. We use V(G),
E(G), 4(G), A(G) (simply for A) to denote the vertex set, the edge set,
the minimum degree and the maximum degree of a graph G. If uv € E(G),
then u is said to be the neighbor of v. We use N(v) to denote the set
of neighbors of a vertex v, and d(v) = |N(v)| to denote the degree of v.
A k-verter is a vertex of degree k. Similarly, a > k-vertex is a vertex of
degree at least k, and a < k-vertez is a vertex of degree at most k.

A proper k-vertex-coloring of a graph G is a mapping ¢ : V(G) —
{1,2,---k} such that no two adjaccnt vertices receive the same color. A
proper vertex coloring of a graph G is called acyclic if there is no 2-colored
cycle in G. The acyclic vertex chromatic number x,(G) is the smallest
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integer A such that G has an acyclic vertex coloring. A proper k-edge-
coloring of a graph G is a mapping ¢ : E(G) = {1,2,---k} such that no
two adjacent edges receive the same color. A proper edge coloring of a
graph G is called acyelic if there is no 2-colored cycle in G. The acyclic
edge chromatic number x,(G) is the smallest integer k such that G has
an acyclic edge coloring.

Griinbaum [1] posed the acyclic vertex coloring con_]ecture which as-
serted that cvery planar graph has an acyclic 5-coloring. The conjecture
was proved by Borodin [2]. For any graphs, some results are known re-
cently. Fertin and Raspaud (3| showed that any graph of maximum degree
5 has acyclic chromatic number at most 9, and they gave a linear time
algorithm that achicves this bound.

The acyclic edge coloring was introduced by Alon et al. in [4], and
they proved that x,(G) < 64A(G) for all graphs. Molloy and Reed (5]
showed that x/(G) < 16A(G) using the same method. In 2001, Alon,
Sudakov and Zaks [6] proposed the acyclic edge coloring conjecture which
stated that for any graph G, A(G) < x4(G) < A(G) + 2. They proved in
the same paper that this conjecture was true for almost all A(G)-regular
graphs G, and all A(G)-regular graphs, whose girth (length of shortest
cycle) is at least cA(G)log A(G) for some constant c¢. Alon and Zaks (7]
proved that determining the acyclic edge chromatic number of an arbitrary
graph is an N P-complete problem, even determining whether x;(G) < 3
for an arbitrary graph G. For planar graphs, Fiedorowicz, Haluszczak and
Narayanan |8] proved that x,(G) < A(G) + 6 if g(G)(length of shortest
cycle of G)> 4 as well as G has an edge-partition into two forests. Hou,
etc [9] showed that x4 (G) < maz{2A(G) — 2,A + 22}, x,(G) < A(G) +2
if g(G) > 5, and x4, (G) < A(G) + 1 if g(G) > 7. Furthermore, x,(G) <
A(G) + 1 if G is scrics-parallel graph.

A proper total k-coloring of a graph G is a mapping ¢ : E(G)UV(G) =
{1,2,-- -k} such that no two adjacent or incident elements receive the same
color. The total chromatic number of G, x"”(G), is the smallest integer k
such that G has a total k-coloring. For total colorings of graphs, Behzad
[10] and Vizing [11] posed independently the famous total coloring conjec-
turc which asserted that for any graph G, A(G) +1 < x"(G) < A(G) + 2.
Clecarly, the lower bound is trivial. The upper bound has not been proved
for all values of A. Considering the colorings above, we have an idea of
combining acyclic vertex (cdge) coloring with total coloring. So we propose
the following coloring.

Definition 1. An acyclic total coloring of a graph G is a proper total
coloring such that for any cycle of G, there are at least 4 colors appeared on
its vertices and edges. The acyclic total chromatic number of G, denoted
by x”(G), is the smallest integer k such that G has an acyclic total coloring
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using k colors.

In the paper, we mainly consider the acyclic total coloring of planar
graphs. It is obtained that the acyclic total chromatic number of a planar
graph G is at most A(G})+2if A>12,or A>6andg>4,0orA>5
and g > 5. or g > 6. Moreover, if G is a series-planar graph or a planar
graph with g > 12 and A > 3, then its acyclic total chromatic number is
A + 1. On the basis of these results, we pose a conjecture on acyclic total
coloring,.

Conjecture 2. For any graph G, A(G)+1 < x(G) < A(G) + 2.

It is obvious that for any tree T, x.(T) = x"(T). If Cy is a cycle of
order n, then x/(C,) = 4. For bipartite graphs, we have the following
theorem.

Theorem 3. Let G be a bipartite graph with two partite sets X and Y.
Then xi(G) < A+2.

Proof. Here, it suffices to give an acyclic total coloring of G as follows. Let
k = A(G) + 2 and L be the color set {1,2,--- ,k} for simplicity. First, we
color cvery vertex of X with color 1 and color every vertex of Y with color
2. Then we color cvery edges of G using 3,4, -, k colors such that it is a
proper edge coloring. Obviously, it is an acyclic total (A + 2) coloring. O

2 Planar Graphs

In the scetion, we always assume that any graph G is planar and is embed-
ded in the plane. We use F(G) to denote the face set of G. The degree of
a face f, denoted by d(f), is the number of edges incident with it, where
cach cut-cdge is counted twice. A k(> k, or < k)-face is a face of degree
(at least, or at most) k. Let f is a 3-face. We use §(f) to denote the least
degrec of vertices which are incident with f. A (i, < j)-edge uv € E(G) is
the edge such that d{u) = ¢ and d(v) < 5.

Theorem 4. Let G be a planar graph with mazimum degree A and girth
g. Then x!(G) < A + 2 if one of the following conditions holds.

(i) A>12 (ii) A > 6 and g > 4;

(iii) A>5and g > 5; (iv) g > 6.

Proof. Let G be a minimal counterexample to the theorem. Then G is
2-conuected. Let t = A(G) + 2 and let L be the color set {1,2,---,t} for
simplicity. First, we shall prove the following lemma.
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Lemma 5. G does not contain a k-verter u with neighbors uy,ug,- -+ ,ux,
d(uy) < d(ug) - -+ < d(ux), such that one of the following is true.
(/) IfA >3, thenk<2.
(by IfA>5,thenk=3andd(u)<A-1.
(¢) IfA>6,thenk=4,d(u) <A -3 andd(uz) <A-1.
(d)y IfA > 8, thenk=5,du) <A—-4,du) <A-2and
d(uz) < A-1.

Proof. Suppose, to be contrary, that such a k-vertex u does exists. By the
minimality of G, G’ = G — uu; has an acyclic total coloring ¢ with colors
from L. For any v € V(G), let ®(v) = {¢(v)} U{¢(uvv)lu € N(v)}. In the
following, we will extend ¢ to an acyclic total coloring ¢ of G with A(G)+2
colors, which is a contradiction. First, we erase the color on vertex u, and
let o(x) = ¢(x) for any = € (V(GYUJE(G)N(V(G)UE(G)). For two
adjacent cdges wr and wy, if o(z) = p(wy) and ¢(y) = p(wz), then we
call these two cdges @ pair of paratactic edges, denoted by wz||wy.
Then, we will recolor some edges of G’ such that there is no a pair of
paratactic cdges incident with u as follows. For (a), we do nothing since
dg(u) < 1. For (b), if uug|luus, then let p(uug) € L\(®(u2) U {p(u3)}).

For (c), we have that A > 6, k =4, d(u1) < A —3 and d(u) <A - 1.
Without loss of generality(WLOG), let ¢(uu;) = ¢, (i = 2,3,4). First, if
uugluug, let p(uus) € L\®(us) to obtain that us,u,,uus, uuy are colored
at lcast three colors. If p(uug) = 2, let p(uug) € L\(®(u2) U {2,4}).
Then, if wus||uug, let p(uug) € L\(P(uz) U {p(uus)}) (since d(uz) < A-1,
[®(u2) U {p(rus)}| < A+ 1). If uus|luus, it can be settled similarly.

For (d). we have A > 8, k = 5, d(u;) < A — 4, d(ug) £ A -2, and
d(us) < A — 1. Without loss of generality, let ¢(uu;) = i, (¢ = 2,3,4,5).
We consider the following cases.

Case 1. There arc two pair of paratactic edges incident with w.
Subcase 1.1. uug||uuy and uusj|uus (the case that vus|luus and uusljuuy
can be settled similarly).

Let o(uus) € L\(®(u3) U {4}) and @(uug) € L\(®(u2) U {p(uus),5}).
Subcase 1.2. wuup|luus and uugljuus, that is, ¢(uz) = 3, ¢(u3z) = 2 and
é(uq) = 5, ¢(us) = 4.

Let p(tuug) € L\®(ua). If pluug) € {2,3}, let p(uuz) € L\(P(u2) U
{(uaq).5}) since d(ug) < A — 2. If p(uuy) = 3, then we can recolor edge
uug such that @(uug) € L\(®(uz) U {5}). If p(uuyg) = 2, let p(uuz) €
L\(®(ug) U {5}).

Case 2. There is only onc pair of paratactic edges incident with .
Subcase 2.1. uug||uus.
Let @(uwug) € L\(P(ug) U {4, 5}).
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Subcase 2.2. uuy|luug (the case that uuq|uus can be settled similarly).

Let o(uny) € L\(®(ug2) U {3,5}) since d(uz) < A - 2.

Subcase 2.3. uusl|luuy (the case that uus|luus can be settled similarly).

Let o(uus) € L\(®(usz) U {5}). Then p(uus) & {3,4,5}. If p(uuz) =2,
let p(uuy) € L\(P(u2) U {4,5}). It is clearly that p(uup) € {2,4,5}. If
p(uug) = 3 and ¢(ug) = 4, or ¢(uz) = 5 and ¢(us) = @(uug), then it
return to Subcase 2.2.

Subcase 2.4. uuql|uus.

Let p(uty) = ¢1 € L\®(uyq). If c; ¢ {2, 3}, then we have done. Suppose
that ¢; = 3. Let p(uug) = f € L\(®(u3)U{5}). It is clearly that f & {3,5}.
If f =4 and ¢(ug) = 5, then it return to Subcase 2.3. If ¢(uz) = f
and ¢(u3) = 2, then it return to Subcase 2.1. If f = 2, let p(uug) =
h € L\(®(uz) U {3,5}). It is clearly that h ¢ {2,3,5}. If h = 4 and
d(uz) = 5, then it return to Subcase 2.2. Suppose that ¢; = 2. Let
pluug) = p € L\(®(uz) U {3,5}) by d(u2) < A — 2. It is clearly that
p € {2,3,5}. If p = 4 and ¢(ug) = 5, then it return to Subcase 2.2. If
&(us) = p and ¢(uy) = 3, then it return to Subcase 2.1.

Thus, we recolor G’ such that there is no a pair of paratactic edges
incident with ». Now, let I' = {p(uu2),- - ,(uuk)}. Finally, we begin to
color uwy and recolor u as follows.

For (a) and (b), we first color uu; such that if ¢(u;) € I', WLOG,
assume that o(uug) = ¢(ur), let p(uur) € L\(®(u;) U {p(uz2)} UT). Oth-
crwise. let o(uu)) € L\(®(w;) UT). Later, let p(u) € L\{p(u;), p(uu;) :
1<i<k).

For (c) and (d), we first recolor u such that o(u) € L\({¢(u;), p(uy;) :
2 <1 < k} U {p(u1)}). Then color uu; such that if ¢(v;) € I', WLOG,
assume that p(uuz) = ¢(u1), let p(uur) € L\(P(u1) UT U {@(u2), ¢(u)}).
Otherwisc, let p(uu;) € L\(®(u1) UT U {p(u)}).

According to the above coloring, we obtain that for any i and j(1 <i <
J < k). {p(u), pluw), o(u,), o(uns), o(u)}| > 4. Hence, ¢ is an acyclic
total coloring of G with A(G) + 2 colors. O

Now we are ready to prove (i) of the theorem. By Euler’s formula
V|- |E| + |F| = 2, we have

Y ) =49+ D (d(f)-4) = -4(V| - |E| +|F|) = -8 < 0. (1)

veV(G) fEF(G)

Now we define w(z) to be the initial charge function to cach z € V(G)u
F(G). Let w(v) = d(v)—4 for v € V(G) and w(f) = d(f)—4 for f € F(G).
In the following, we will reassign a new charge denoted by w'(z) to each
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z € V(G) U F(G) according to the discharging rules. Since our rules only
move charges around, and do not affect the sum, we have

Yo Y@= Y w@<0 (2)

2eV(G)UF(G) zeV(G)UF(G)

If we can show that w'(z) > 0 for each z € V(G)UF(G), then we obtain
a contradiction to (2), completing the proof.
A (i,< j,> k) face uvw is a 3-face such that d(u) =i < d(v) < j <
k < d(w). Clearly §(uvw) = i. The other kind of 3-faces may be defined
similarly. For simplicity, some special 3-faces are defined as follows. Let
fa = (3,A,A), fb = (41S A"'3,A)7 fc = (4)2 A“2,2 A_2)1 fd = (S,S
A-4,<A=-2),fe=05<A-4,2>2A-1), ff=(52A-3,>A-3)
and f, = (> 6,> 6,> 6). By Lemma 5, any a 3-face must be a f,-face, or
fr-face, or f.-face, or fi-face, or fe-face, or fy-face, or fg-face.
For (i), the discharging rules are defined as follows.
R1-1: From each A-vertex to each of its adjacent 3-vertices,
transfer -1:;
R1-2: From each vertex v with 4 < d(v) < (A — 1) to each of
its incident 3-faces, transfer i%%‘-é
R1-3: From each A-vertex to each of its incident 3-faces f, or
fe, transfer %; to each of its incident 3-faces f., transfer
%; to each of its incident 3-faces fy, transfer %; to each
of its incident 3-faces f,, transfer 3.
R1-4: From each A-vertex to each of its incident (4,4,A) 3-
ga.ccs f», transfer 1, and to the other 3-faces f;, transfer

3.
R1-5: From each A-vertex v through its adjacent 5-vertex u
to cach 3-face f; which is incident with the 5-vertex u,

2
transfer 5

Let v be a vertex of G. We can get d(v) > 3 by Lemma 5(a). If d(v) = 3,
then cach ncighbor of v is of maximum degree by Lemma 5(b). If 4-vertex
v is adjacent to a vertex u with d(u) € (A — 3), then the other adjacent
vertices of v must be A-vertices by Lemma 5(c). If 5-vertex v is adjacent
to a vertex v with d(u) < (A —4) and a vertex w with d(w) < (A - 2),
then the other adjacent vertices of v must be A-vertices by Lemma 5(d).

If d(v) = 3, then v can reccive % from each adjacent vertex by R1-1.
So w'(v) 2 w(w)+ 5 x3 =0 If4 < d(w) < (A1), then v can be
incident with at most d(v) 3-faces. So it follows by R1-2 that w'(v) >
d(v)—
w(v) — (J?v)‘l x d(v) =0.

If d(v) = A > 12, then v can distribute value to 3-faces, 3-vertices by
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R1-1 to R1-4 and 5-vertices by R1-5. Here, by means of an average ideal,
we divide all the value, which v distribute to faces and vertices, by the
amount of all faces which v is incident with. Now the value we consider is
on an avcrage face, called as value on an average face. In the following,
we try to get the value on an average face in all cases.

When » is adjacent to one 3-vertex, v can distribute value to one 3-
vertex and at most two 3-faces f, by Lemma 5(b). Therefore, on an average
face, v distribute value (3 + 3 x 2)/2 = 2 by R1-1 and R1-3. When v is
incident with (4,4, A) faces, and at the same time, v must be incident with
two (4,A,A) faces by Lemma 5(c). So, on an average face, v distribute
value (1 + 3 x 2)/3 = 2 by R1-3 and R1-4. When v is incident with one
(4,5, A) face, and at the same time, v may be incident with one (4,5, A)
faces and two (4, A, A) faces by R1-3 and R1-4. v also can distribute to a
5-vertex i,, by R1-5. So, on an average face, v distribute value (% X2+
ix24 %)/4 = L2 < 2. When v is incident with (4,5, A) faces, and

5

at the samc time, v may be incident with one (5,5, A) face, one (4,5,4)
facc and two (4,A,A) faces by R1-3 and R1-4. v also can distribute to
two 5-vertices % x 2 by R1-5. So, on an average face, v distribute value
(B+5x2+3x2+ A x2)/5 =128 < 2. When v is incident with (5,5,4)
faces, and at the same time, v may be incident with two (5,5, A) faces by
R1-3. v also can distribute to four 5-vertices 325 x 4 by R1-5. So, on an
average face, v distribute value (% x 3+ % x 4)/3 = 1‘% < % It is clearly
in the other cases, v will distribute less than that of above cases. While the
average of any two cases is at most %, we can see, on any an average face,
v distribute at most 5. So w'(v) > w(v) — § x d(v) = 1 x d(v) —4 > 0.

Let f be a face of G. Suppose that d(f) = 3. If §(f) = 3, f must
be a 3-face f, by Lemma 5(b). So f can receive -;— x 2 from its incident
A-vertices by R1-3. If 8(f) = 4, f could be a 3-face f, or f. by Lemma
5(c). So f can rcceive 1 by R1-4 while f is (4,4,A) face, or receive at
least (% + 3) by R1-2 and R1-4 while f is the other 3-face f,, and f can
receive at least 2 x min{-;, 3} from its incident (> (A — 2))-vertices by
R1-2 and R1-3 while f is 3-face f.. If 6(f) = 5, f could be a 3-face f4, fe,
or f; by Lemma 5(d). So f can receive § ,1, 2 from each of its incident
5,6, 7-vertex by R1-2 respectively. And a 5-vertex, which is incident with
a 3-face fy, must be adjacent to three A-vertices by Lemma 5(d). So fy
could receive (;,% x 3+ %) = % from the 5-vertex and three A-vertices by
R1-5 and R1-2. Hence fq can get at least § x 3 = 1. If f is 3-face f., f can
receive at least § + 3 + min{2, £} = 1 by R1-3 and R1-2. If f is 3-face
fr, f can receive at least é +2x min{g, %} =1by R1-2 and R1-3. If f is
3-face f,, f can reccive at least 3 x 3 = 1. Hence f can get at least 1 in
any cascs. If d(f) > 4, we can easy to get that w'(f) = w(f) > 0.

Hence we have w'(z) > 0 for each £ € V(G) U F(G), a contradiction

275



If we can show that w"/(x) > 0 for each z € V(G), then we obtain a

contradiction to (6), completing the proof.
For (iii), the discharging rule is defined as follows.

R3-1: From each A-vertex v to each of its adjacent 3-vertices,
transfer %

Let v be a vertex of G. Then d(v) > 3. If d(v) = 3, then w"'(v) =
w(v) +3x 3 =0. If4 < d(v) <A -1, then w”(v) = w(v) > 0. If
dv) = A > o, then w"”/(v) > w(v) — 3 x d(v) = § xd(v) - 10 > L2 > 0.
Hence we have w”/(z) > 0 for cach ¢ € V(G), a contradiction with (6).
This contradiction proves (iii).

Now we arc ready to prove (iv). By Euler’s formula |V - |E| + |F| = 2,
W“;d;‘ 2 vev(c)(24(v) = 6) + 3 sep(c) (d(f) — 6) = —6(|V| - |E| +|F]) =
-1

D (dw)-6)< > (2dw)-6)+ > (d(f)~6)=-12<0.

veV(G) veV(G) fEF(G)

It implics that 6(G) < 2. If A > 3, then it contradicts with Lemma 5(a).
Otherwise, A = 2, it is obvious that x,(G) < A(G) + 2, a contradiction,
too. Hence (iv) holds. O

Lemma 6. Let G be a planar graph with 6(G) > 2 and g(G) > 12. Then
(1) G contains a 2-vertex with neighbors are 2-vertices, or
(2) G contains a path wwwzyz with d(z) = 3 and d(v) = d(w) = d(y) =
2.

Proof. Let G be a countercxample to the lemma. Let w(v) = 5d(v) — 12 if
v € V(G) and w(f) =d(f) — 12if f € F(G). Then we have

Yo () -12) < Y (5dv) - 12)+ Y (d(f) - 12) = -24 <.

veV(G) veV(G) JEF(G)
Now the discharging rules are defined as follows.

R4-1: From each 3-vertex u to each of its adjacent 2-vertex v,
transfer 1 if v is adjacent to at least two 2-vertices; 2
otherwise.

R4-2: From cach vertex v with d(v) > 4 to each of its adjacent
2-vertex, transfer 2.

We shall get a contradiction by proving that w**(z) > 0 for each z €
V(G) U F(G). Let v be a vertex of G. Suppose that d(v) = 2. If two
neighbors of v are of degree at least 3, then w**(v) > w(v) +2 x1 = 0.
Otherwise, w**(v) > w(v) +2 = 0. If d(v) = 3, then w**(v) > w(v) —
max{3 x 1,2} = 0. If d(v) > 4, then w**(v) > w(v) —d(v) x 2 = d(v) x 3 —
12 > 0. Hence, w**(f) > 0. (]
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Theorem 7. Let G be a planar graph with girth g > 12. Then x2(G) <
max{4,A + 1}.

Proof. It is clearly that x”(G) < 4if A < 2. So we assume that A > 3. Let
G be a minimal counterexample to the theorem. Then G is 2-connected
and has minimum degree at least 2. Let k& = max{4,A + 1} and let L
be the color set {1,2,---,k} for simplicity. By lemma 6, we consider the
following two cascs.

Case 1. Suppose G contains a 2-vertex u with neighbors are 2-vertices v
and w.

Let N(w)\{«} = {z} and N(w)\{u} = {y}. Let G' = G — {u}. By
the minimality of G, G’ has an acycllc total coloring ¢ with colors from
L. In the following, we will extend ¢ to an acyclic total coloring ¢ of G
with A(G) + 1 colors, which is a contradiction. First, let ¢(z) = ¢(z) for
any z € (V(G')UJ E(G’ )\{v w} Then, 1f|{¢(z) d(zv), d(wy), d(y)} £ 3,
let p(v) = p(w) € L\{¢(x), d(zv), p(wy), 6(y)}, ¥(wv) € L\{p(v), $(zv)},
pluw) € L\{p(uv), p(w), ¢(wy )} and so(u) 6 L\{sa(v) p(uv), p(uw)}. Oth-
erwise, lot o(v) = p(uw) = ¢(y), p(w) = d(wy), p(w) = é(z), p(u) =
é(vx). Since |{p(uv), d(u), p(uw), ¢(w)}| = 4, ¢ is an acyclic total coloring
of G.

Case 2. G contains a path wwwzyz with d(z) = 3 and d(v) = d(w) =
d(y) = 2.

Let N(z)\{w,y} = {z1}. By the minimality of G, G* = G — vw has
an acyclic total coloring ¢ with colors from L. Suppose A(G) > 4. If
{p(u), p(uv), p(v)} = {$(w), p(wz), d(z)}, let dp(vw) € L\{d(w), $(wz),
o(x)}. Othcrw:sc, let ¢(vw) € L\{¢(uv) o(v), (w), p(wz)}. Thus ¢ is
extended to an acyclic total coloring, which is a contradiction. So we have
A(G) = 3. In the following, we also extend ¢ to an acyclic total coloring ¢
of G with 4 colors, which is a contradiction. First, let ¢(z) = ¢(z) for any

V(G"YUE(G )\ {v, w}.
Subcase 2.1. ¢(uv) # ¢(x) (the case that ¢(wz) # ¢(u) can be settled
similarly).

If ¢p(uv) = d(wzx), let p(v) € L\{¢(u), d(uv), d(z)}, p(w) € L\{¢(z)
d(wz), p(v)} and p(vw) € L\{go(v <p(w) ¢(uv)}. Otherwise, if ¢(u) #
d(wz), let p(v) = d(wz), p(vw) = ¢(z) and p(w) € L\{$(wv), $(wz),
#(z)}. Otherwise, let p(w) = ¢(uwv), p(vw) = é(z) and p(v) € L\{$(wv),
¢(wz), ¢(x)}.

Subcase 2.2. ¢(uv) = ¢(z) and ¢(wz) = ¢(u).

WLOG, assume that ¢(z) = 1, ¢(wz) = 2, ¢(zz,) = 3 and ¢(zy) = 4.

Supposc that ¢(wz) = 2 € {¢(y),d(yz)}. Let p(wz) = 4 and w(zy) = 2,
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and at the same time, if ¢(z) # 4, let o(y) = 4. Suppose that ¢(yz) = 2.
Then ¢(y) = 3. If ¢(z1) = 2, let p(z) = 4 and p(zy) = 1. Otherwise, we
have ¢(2:1) = 4, and let o{zy) = 1, ¢(z) = 2, and p(wz) = 4. Suppose that
d(y) = 2. If ¢(2) # 4, let p(wz) = ¢(y) = 4 and p(zy) = 2. Otherwise,
if ¢(yz) = 1, let (y) = 3, p(wz) = 4 and p(zy) = 2. Otherwise, we have
#(yz) = 3. Thus, if ¢(z1) = 2, let p(z) = 4 and ¢(zy) = 1. Otherwise,
let p(wa) = o(y) = 1 and (z) = 2. For all above discussions, we have
p(uv) £ p(x) or p(wr) # @(u). It deduces to Subcase 2.1. O

3 Series-parallel Graphs

A graph is a scries-parallel graph (in short SP) if it contains no subgraphs
homeomorphic to K;. Duffin [12]showed that a connected SP graph can
be obtained from a k; by repeatedly applying the following operation: in-
serting a vertex into an edge (series) or duplicating an edge by a path of
length 2 (parallcl). By the operation or by the definition of SP graph, it
is casy to sce that the connectivity of any SP graph is at most 2. Wu [13]
obtained a structural property on SP graphs as follows.

Lemma 8. |13] Let G be a 2-connected series-parallel graph of order at
least 4. Then

(1) G has two adjacent 2-vertices u and v, or

(2) G has a 3-cycle vwvu such that d(u) = 2 and d(v) = 3, or

(3) G has a 4-cycle uzvyu such that d(u) = 2 and d(v) = 2, or

(4) G has a 4-vertez w, N(w)={u,v,z,y}, such that d(u) = d(v) = 2,
N(u) = {z,w} end N(v) = {w,y}.

Lemma 9. (13| Let G be a 2-connected series-parallel graph having A(G) =
3. Then G has a cycle such that there are just two 3-vertices on it.

Now we shall prove the following theorem.

Theorem 10. Let G be a series-parallel graph with mazimum degree A.
Then x!!/(G)=A+1if A>3.

Proof. We shall prove the theorem by induction on |V(G)|. We assume that
G is 2-conncected. Let £ = A(G) + 1 and L be the color set {1,2,--- ,k}
for simplicity.
Case 1. A > 4.

By lemma 8, we consider the following cases.

Subcase 1.1. G has two adjacent 2-vertices u and v.

Let N(u)\{v} = {z} and N(v)\{u} = {y}. Then G’ =G —u+zvis
also a 2-connccted scrics-parallel graph. By the induction hypothesis of G,
G’ has an acyclic total coloring ¢ with colors from L. Let ¢(zu) = ¢(zv),
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o(u) € L\{¢(zu), ¢(vy), 8(2),¢(v)} and $(uv) € L\{d(zu), d(vy), (u),
o(v)}. Since [{¢(uw), d(v), d(uzx), d(vy)} = 4, ¢ is extended to an acyclic
total coloring of G with & colors.

Subcase 1.2. G has a 3-cycle vwvu such that d(u) = 2 and d(v) = 3.

Let {y} = N(v)\{w,u}. Then G’ = G — u is also a 2-connected series-
parallel graph. By the induction hypothesis of G, G’ has an acyclic to-
tal coloring ¢ with colors from L. First, let ¢(vw) € L\®(w). Then, if
d(uw) € &(v), let p(uv) € L\(P(v)U{d(wu), p(w)}. Otherwise, let p(uv) €
L\(®(v) U{¢(wu)}. Finally, let ¢(u) € L\{$(wu), $(wv), d(w), §(v)}. So ¢

is extended to an acyclic total coloring of G with k colors.

Subcase 1.3. G has a 4-cycle uzvyu such that d(u) = 2 and d(v) = 2.

By the induction hypothesis of G, G’ = G\{u,v} has an acyclic total
coloring ¢ with colors from L. We choose two colors o, as from L\®(z)
and two colors B, B2 from L\®(y). If [{a1,a2,B1,B2}| < 3, WLOG, as-
sume that o = By, let ¢(uz) = ¢(vy) = a1, ¢(uy) = B2 and ¢(vz) =
ay. Otherwise, that is |[{a1,a2,B1,B82}] = 4, assume that o1 # ¢(y)
and By # ¢(x), and let ¢(uz) = a1, ¢(vz) = az, #(uy) = B2 and
#(vy) = fi. Finally, let ¢(u) € L\{#(ux), (uy), ¢(z), ¢(y)} and ¢(v) €
L\{¢(vx), p(vy), &(2), &(y)}. Since |{$(u), d(uz), p(wy), d(z), é(y)}| = 4
and [{¢(v), ¢(vz), d(vy), #(z), d(y)}| = 4, we obtain an acyclic total color-
ing of G with A(G) + 1 colors.

Subcase 1.4. G has a 4-vertex w, N(w)={u,v,z,y}, such that d(u) =
d(v) =2, N(u) = {z,w} and N(v) = {w,y}.

By the induction hypothesis of G, G’ = G\{u, v} has an acyclic total
coloring ¢ with colors from L. Without loss of generality, let ¢(wz) = 1,
H{wy) = 2 and ¢(w) = 3. First, let ¢p(uz) € L\®(z) and ¢(vy) €
L\®(y). Supposc that ¢(uz) = ¢(vy), WLOG, assume that ¢(uzx) = 4(the
casc that ¢(ur) = 3 can be settled similarly). Then we recolor edge
wz, ux, w such that ¢(wz) = 4, ¢(uz) =1 and ¢(w) € L\{4,2,é(z), ¢(y)}.
Since ¢(uz) = P(vy) = 4, ¢(z) # 4 and ¢(y) # 4. It follows that
H{é(v), p(wz), p(wy), d(w)}| = 4 and ¢ is also an acyclic total coloring
of G'. So wec can assume that ¢(ux) # ¢(vy).

If {¢(uz),d(vy)} N {1,2,3} = B, let dp(uw) = $(vy), ¢(wv) = ¢(ux),
#(u) = 1 and ¢(v) = 2. Otherwise, WLOG, assume that ¢(uz) € {2,3}.
First, if ¢(vy) # 3, let o(wv) € L\{1,2,3,¢(vy)}. Otherwise, let p(wv) €
L\{1,2,3.¢6(y)}. Then, let ¢(v) = 2. In the following, let ¢(uw) €
L\{1,2,3,¢(wv)}. If ¢(uw) # ¢(z) or d(uz) # 3, let ¢(u) = 1. Oth-
erwise, let ¢(u) € L\{1,2,3, #(wu)}. It is easy to check that we extend ¢
to an acyclic total coloring of G with A(G) + 1 colors.

Case 2. A =3.
An acyclic total 4-coloring ¢ of G is called neat if for any two adjacent
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2-vertices wy and wa, N(w;) = {w], w2} and N(w2) = {w),w,}, we have
d(wrwy) # d(wawp) and |[{p(w1), S(wrw]), d(wz), p(wow)}| = 3. In the
following, we will construct a neat acyclic total 4-coloring ¢ of a 2-connected
scrics-parallel graph G with maximum degree 3.

Let n; be the number of i-vertices of G, where ¢ = 2,3. Suppose that
ng = 2. Let u,v be the two 3-vertices. Then G consists of three disjoint
paths connecting u and v. If |V(G)| < 8, the result is trivial. Suppose that
|[V(G)| > 8. Then there must be a u-v path uw;ws - - - wiv such that k > 4,
or k=3 and uv ¢ E(G). If k > 4, then G* = G — {w), w2, w3} + vwy is
also a 2-connected scrics-parallel graph of maximum degree 3, and by the
induction hypothesis, G* has a neat acyclic total 4-coloring ¢. Without loss
of gencerality, assume that ¢(uwy) = 1, ¢(u) = 2 and ¢(w,) = 3. First, let
d(uwr) = d(wswy) = p(ws) = 1, (w1) = ¢(ws) = 4. Then, if k > 4 and
d(waws) = 2, let p(wywe) = 2 and p(wows) = 3, otherwise let p(wyws) =3
and ¢(wows) = 2. Thus ¢ is extended to a neat acyclic total 4-coloring of
G. If k = 3 and uwv ¢ E(G), let G* = G—{w;, ws, w3} +uv and its coloring
is the same as above.

Supposc that ny > 4. By Lemma 9, let ujuz---u,u; (n > 3) be a
longest cycle of G such that d(u;) = d(ux) = 3forsome k(2 < n/2+1 < k <
n). Supposc that 5 < k <n or k > 6. Then G* = G — {ug,u3, us} +uus
is also a 2-connected series-parallel graph of maximum degree 3. So by the
induction hypothesis, G* has a neat total 4-coloring ¢. Without loss of
generality, assume that ¢(ujus) = 1, ¢(u1) = 2 and ¢(us) = 3. First, let
(/)(ul'u.g) = rb('u.4u5) = d)(u;;) =1, ¢>(UQ) = ¢(U4) = 4. Then, if some edge
incident with us is colored with color 2, let ¢(uou3) = 2 and ¢(uauyq) = 3,
otherwise let ¢(ugus) = 3 and ¢(uzuy) = 2. Thus ¢ is extended to a neat
acyclic total 4-coloring of G.

Supposc that &k = n < 5. Let G** = G — {ug, -+ ,un—1}. Then
G** is also a 2-connected series-parallel graph of maximum degree 3. By
the induction hypothesis, G** has a neat acyclic total 4-coloring ¢. Since
dg-- (1) = dg--(un) = 2, we can color ujuz, up—1u, such that ¢(ujuz) €
L\®(u;) and ¢(un_1u,) € L\®(u,). Without loss of generality, assume
that ¢(uiuz) = é(u,) = 1, ¢(u1) = 2 and G(up—_1u,) = 3. If k = 3, let
dluz) = 4. If k = 4, let d(ug) = 3, dp(uguz) = 2 and ¢(u3z) = 4. If k = 5,
let o(uz) = 1, ¢(uzus) = d(uq) = 2, $(uz) = 3 and ¢(ugug) = 4. So ¢ is
extended to a neat acyclic total 4-coloring of G.

Ifk <nand k <5, thenn=%k+1=40orn=k+1=235, or
n = k + 2 = 6. These can be settled similarly, we omit here. Hence we
complcete the proof. O

281



References

[1] B. Grunbaum, Acyclic colorings of planar graphs, Israsel Journal of
Mathematics 14(1973), 390-408.

[2] O. V. Borodin, On acyclic colorings of planar graphs, Discrete Mathe-
matics 25(1979), 211-236.

[3] G. Fertin and A. Raspaud, Acyclic coloring of graphs of maximum
degree five: Nine colors are enough, Information Processing Letters
105(2008), 65-72.

[4] N. Alon, C. J. H. McDiarmid and B. A. Reed, Acyclic coloring of graphs,
Random Structurcs Algorithms 2(1991), 277-288.

[5] M. Molloy and B. Reed, Further Algorithmic Aspects of the Local
Lemma, Proceedings of the 30th Annual ACM Symposium on Theory
of Computing, May 1998, 524-529.

[6] N. Alon, B. Sudakov and A. Zaks, Acyclic edge colorings of graphs, J.
Graph Theory 37(2001), 157-167.

[7] N. Alon and A. Zaks, Algorithmic aspects of acyclic edge colorings,
Algorithmica 32(2002), 611-614.

[8] A. Ficdorowicz, M. Haluszczak and N. Narayanan, About acyclic edge
colorings of planar graphs, Information Processing Letters 108(2008),
412-417.

[9] J. F. Hou, J. L. Wu, G. Z. Liu and B. Liu, Acyclic edge colorings of
planar graphs and series-paralled graphs, Science in China Series A:
Mathematics 38(2008), 1335-1346.

[10] M. Behzad, Graphs and their chromatic numbers, Dissertation for the
Doctoral Degree, Michigan: Michigan State University, 1965,10-20.

[11] V. G. Vizing, On an estimate of the chromatic class of a p-graph(in
Russian), Metody Diskret Analiz 3(1964), 25-30.

[12] R. J. Duffin, Topology of scries-parallel networks, J. Math Anal. Appl.
10(1965), 303-318.

[13] J. L. Wu, Total coloring of series-parallel graphs, ARS Combinatoria
73(2004), 215-217.

[14] X. Y. Sun, J. L. Wu, Acyclic total colorings of planar graphs without
| cycles, Acta Mathematica Sinica, English Series, actepted.

282



