Remarks on the complexity of signed k-independence on graphs

Chuan-Min Lee¹

Department of Computer and Communication Engineering
Ming Chuan University
5 De Ming Rd., Guishan District, Taoyuan City 333, Taiwan.
TEL: +886-3-350-7001 ext.3432
Email: joneslee@mail.mcu.edu.tw

Abstract

This paper is motivated by the concept of the signed k-independence problem and dedicated to the complexity of the problem on graphs. We show that the problem is linear-time solvable for any strongly chordal graph with a strong elimination ordering and polynomial-time solvable for distance-hereditary graphs. For any fixed positive integer $k \geq 1$, we show that the signed k-independence problem on chordal graphs and bipartite planar graphs is NP-complete. Furthermore, we show that even when restricted to chordal graphs or bipartite planar graphs, the signed k-independence problem, parameterized by a positive integer k and weight κ , is not fixed parameter tractable.

Keywords: Signed k-independence, Fixed parameter tractable, Strongly chordal graph

1. Introduction

Let G = (V, E) be a finite, undirected, simple graph. For any vertex $v \in V$, the open neighborhood of v in G is $N_G(v) = \{u \in V | (u, v) \in E\}$ and the closed neighborhood of v in G is $N_G[v] = N_G(v) \cup \{v\}$. The degree of a vertex v in G is $deg_G(v) = |N_G(v)|$. We also use V(G) and E(G) to denote the vertex set and the edge set of G, respectively. Let Y be a subset of real numbers. Let $f: V \to Y$ be a function of a graph G = (V, E) which assigns to each $v \in V$ a value in Y. The set Y is called the weight set

¹This research was partially supported under Research Grants: NSC-102-2221-E-130-004 and MOST-103-2221-E-130-009 in Taiwan.

of f. Let $f(S) = \sum_{u \in S} f(u)$ for any subset S of V. The weight of f is f(V). Let k be a positive integer. A function $f: V \to \{-1,1\}$ is a signed k-independence function of G if $f(N_G[v]) \le k-1$ for every $v \in V$. The signed k-independence number of G, denoted by $\alpha_s^k(G)$, is the maximum weight of a signed k-independence function of G. The signed k-independence problem is to find a signed k-independence function of G of maximum weight. The signed k-independence number was introduced by Volkmann [11]. The special case k=2 was introduced by Zelinka in [14] as a certain dual to the signed domination number of a graph. The upper and lower bounds on the signed 2-independence number or signed k-independence number can be found in [6, 10, 11, 13, 14]. From the algorithmic point of view, the signed 1-independence problem is NP-complete for general graphs, while it is linear-time solvable for trees [7].

This paper is dedicated to the complexity of the signed k-independence problem on graphs. In Section 2, we show that the signed k-independence problem on chordal graphs and bipartite planar graphs is NP-complete for any fixed positive integer $k \geq 1$. In Section 3, we study a general framework called \mathcal{R} -independence to solve the signed k-independence problem in linear time for any strongly chordal graph with a strong elimination ordering.

Definition 1. Let ℓ , d, I_1 be fixed integers and ℓ , d > 0. Let Y be the weight set $\{I_1, I_1 + d, I_1 + 2d, \ldots, I_1 + (\ell-1) \cdot d\}$. Suppose that G = (V, E) is a graph and \mathcal{R} is a function which assigns to each $v \in V$ an integer $\mathcal{R}(v)$. An \mathcal{R} -independence function of G is a function $f: V \to Y$ if $f(N_G[v]) \leq \mathcal{R}(v)$ for every vertex $v \in V$. The \mathcal{R} -independence number of G, denoted by $\alpha_{\mathcal{R}}(G)$, is the maximum weight of an \mathcal{R} -independence function of G. The \mathcal{R} -independence problem is to find an \mathcal{R} -independence function of G of maximum weight.

It is clear that the signed k-independence problem is a special case of the \mathcal{R} -independence problem. We develop a linear-time algorithm for the \mathcal{R} -independence problem on strongly chordal graphs. In Section 4, we develop a polynomial-time algorithm for the signed k-independence problem on distance-hereditary graphs. In Section 5, we show that even when restricted to chordal graphs or bipartite planar graphs, the signed k-independence problem, parameterized by a positive integer k and weight κ , is not fixed parameter tractable.

2. NP-completeness results

In this section, we present NP-completeness results for bipartite planar graphs and chordal graphs. Before presenting the NP-completeness results, we restate the domination problem and the signed k-independence problem as decision problems.

- (1) The domination problem: Instance: A graph G = (V, E) and a positive integer κ . Question: Is $\gamma(G) \leq \kappa$?
- (2) The signed k-independence problem: Instance: A graph G = (V, E), a positive integer k, an integer κ . Question: Is $\alpha_s^k(G) \ge \kappa$?

Theorem 1. The signed 1-independence problem is NP-complete for bipartite planar graphs and chordal graphs.

Proof. The signed 1-independence problem on bipartite planar graphs (respectively, chordal graphs) is clearly in NP. It is known that the domination problem is NP-complete for bipartite planar graphs [12] (respectively, chordal graphs [1]). In the following, we show the NP-completeness of the signed 1-independence problem on bipartite planar graphs (respectively, chordal graphs) by a polynomial-time reduction from the domination problem on bipartite planar graphs (respectively, chordal graphs).

Given a bipartite planar graph (respectively, chordal graph) G = (V, E), we construct a graph H by adding to each vertex v of G a set of $deg_G(v)$ paths of length three, say, $v - v_{i_1} - v_{i_2} - v_{i_3}$ for $1 \le i \le deg_G(v)$. That is, $V(H) = V \cup (\bigcup_{v \in V} \{v_{i_1}, v_{i_2}, v_{i_3} | 1 \le i \le deg_G(v)\})$ and $E(H) = E \cup (\bigcup_{v \in V} \{(v, v_{i_1}), (v_{i_1}, v_{i_2}), (v_{i_2}, v_{i_3}) | 1 \le i \le deg_G(v)\})$. Clearly, H is a bipartite planar graph (respectively, chordal graph) and the construction of H can be done in polynomial-time. Let |V| = n and |E| = m.

Let D be a dominating set of G of $\gamma(G)$ vertices. Let f be a function of H such that for each vertex $v \in V$, f(v) = -1 if $v \in D$, f(v) = 1 if $v \in V \setminus D$, and $f(v_{i_1}) = f(v_{i_2}) = -1$ and $f(v_{i_3}) = 1$ for $1 \le i \le deg_G(v)$. It can be easily verified that f is a signed 1-independence function. Then, $\alpha_s^1(H) \ge (n - \gamma(G)) - \gamma(G) - \left(\sum_{v \in V} deg_G(v)\right) = n - 2m - 2\gamma(G)$.

Conversely, it can be verified by contradiction that there exists a maximum signed 1-independence function f of H such that for each vertex $v \in V$, $f(v_{i_1}) = f(v_{i_2}) = -1$ and $f(v_{i_3}) = 1$ for $1 \le i \le deg_G(v)$. Notice that $|N_G[v]| = deg_G(v) + 1$ and $|N_H[v]| = 2 \cdot deg_G(v) + 1$ for every vertex $v \in V$. The function f assigns the value -1 to at least one vertex of $N_G[v]$ for every $v \in V$. The set $\{v \in V | f(v) = -1\}$ is a dominating set of G. Let $k_1 = |\{v \in V | f(v) = -1\}|$. The weight of f is $\alpha_s^1(H) = (-\sum_{v \in V} deg_G(v)) + ((n-k_1)-k_1)) = n-2m-2k_1$. Then, $\gamma(G) \le k_1 = \frac{n-2m-\alpha_s^1(H)}{2}$. We obtain $\alpha_s^1(H) \le n-2m-2\gamma(G)$.

Following the discussion above, $\alpha_s^1(H) = n - 2m - 2\gamma(G)$. Hence, for any positive integer κ , $\gamma(G) \leq \kappa$ if and only if $\alpha_s^1(H) \geq n - 2m - 2\kappa$. \square

Theorem 2. For any fixed positive integer $k \geq 2$, the signed k-independence problem is NP-complete for chordal graphs and bipartite planar graphs.

Proof. The signed k-independence problem on bipartite planar graphs (respectively, chordal graphs) is clearly in NP. By Theorem 1, the signed 1-independence problem is NP-complete for chordal graphs and bipartite planar graphs. In the following, we show the NP-completeness of the signed k-independence problem on bipartite planar graphs (respectively, chordal graphs) by a polynomial-time reduction from the signed (k-1)-independence problem on bipartite planar graphs (respectively, chordal graphs).

Let G = (V, E) be a bipartite planar graph (respectively, chordal graph). We construct a graph H by creating a new vertex v' for each vertex $v \in V$ and connecting v and v' with an edge. Then, $V(H) = V \cup \{v' \mid v \in V\}$ and $E(H) = E \cup \{(v, v') \mid v \in V\}$. Clearly, H is a bipartite planar graph (respectively, chordal graph) and the construction of H can be done in polynomial time.

Let |V|=n and |E|=m. Suppose that f is a maximum signed k-independence function of H. Let $v \in V$ be a vertex such that f(v')=-1. We consider the following two cases.

Case 1: f(v) = 1. Let $f': V(H) \to \{-1,1\}$ be a function of H such that f'(v) = -1, f'(v') = 1, and f'(x) = f(x) for every $x \in V \setminus \{v, v'\}$. The function f' is still a maximum signed k-independence function of H.

Case 2: f(v) = -1. Suppose that there exists a vertex $y \in N_G(v)$ such that f(y) = 1. Let $f': V(H) \to \{-1,1\}$ be a function of H such that f'(y) = -1, f'(v') = 1, and f'(x) = f(x) for every $x \in V \setminus \{y,v'\}$. The function f' is still a maximum signed k-independence function of H. Suppose that there does not exist a vertex $y \in N_G(v)$ such that f(y) = 1. Let $f': V(H) \to \{-1,1\}$ be a function of H such that f'(v') = 1 and f'(x) = f(x) for every $x \in V \setminus \{v'\}$. It can be easily verified that f' is a signed k-independence function of H and the weight of f' is larger than that of f. It contradicts the assumption that f is a maximum signed k-independence function of H.

We therefore know that there exists a maximum signed k-independence function h of H such that h(v')=1 for each vertex $v\in V$. Let $g:V\to \{-1,1\}$ be a function of G such that g(v)=h(v) for every $v\in V$. For each vertex $v\in V$, $g(N_G[v])=h(N_G[v])-h(v)\leq (k-1)-1=k-2$. The function g is a signed (k-1)-independence function of G and it necessarily has the maximum weight among all signed (k-1)-independence functions of G. We have $\alpha_s^k(H)=\alpha_s^{k-1}(G)+n$. Hence, for any integer κ , $\alpha_s^{k-1}(G)\geq \kappa$ if and only if $\alpha_s^k(H)\geq n+\kappa$.

3. Strongly chordal graphs

Let G = (V, E) be a graph. A *clique* is a subset of pairwise adjacent vertices of V. A vertex v is *simplicial* if all vertices of $N_G[v]$ form a clique.

The ordering (v_1, v_2, \ldots, v_n) of the vertices of V is a perfect elimination ordering of G if for all $i \in \{1, \ldots, n\}$, v_i is a simplicial vertex of the subgraph G_i of G induced by $\{v_i, v_{i+1}, \ldots, v_n\}$. Let $N_i[v]$ denote the closed neighborhood of v in G_i . A perfect elimination ordering is called a strong elimination ordering if it has the following property:

For $i \leq j \leq k$ if v_j and v_k belong to $N_i[v_i]$ in G_i , then $N_i[v_j] \subseteq N_i[v_k]$. Farber [5] showed that a graph is *strongly chordal* if and only if it admits a strong elimination ordering. So far, the fastest algorithm to recognize a strongly chordal graph and give a strong elimination ordering takes $O(m \log n)$ [8] or $O(n^2)$ time [9]. Strongly chordal graphs include many interesting classes of graphs such as trees, block graphs, interval graphs, and directed path graphs [2]. In the following, we give Algorithm MRI $(G, \mathcal{R}, I_1, \ell, d)$ to solve the \mathcal{R} -independence problem in linear-time for a strongly chordal graph G with a strong elimination ordering (v_1, v_2, \ldots, v_n) .

Algorithm $MRI(G, \mathcal{R}, I_1, \ell, d)$

```
1: for i = 1 to n do
 2:
         f(v_i) \leftarrow I_1;
 3: end for
 4: for i = 1 to n do
 5:
         if f(N_G[v_i]) > \mathcal{R}(v_i) then
 6:
              stop and return the infeasibility of the problem;
 7:
         end if
 8: end for
 9: for i = 1 to n do
         M \leftarrow \min\{\mathcal{R}(v) - f(N_G[v]) | v \in N_G[v_i]\};
10:
         f(v_i) \leftarrow \min\{I_1 + \lfloor \frac{M}{d} \rfloor \cdot d, I_1 + (\ell - 1) \cdot d\};
11:
12: end for
13: return the function f;
```

Lemma 1. If the function f initialized by Algorithm MRI in Steps 1-3 is not an \mathcal{R} -independence function of a strongly chordal graph G = (V, E), then G has no \mathcal{R} -independence function.

Proof. The function f initialized by Algorithm MRI in Steps 1-3 assigns the minimum value in Y to vertex v_i for $1 \le i \le n$. The function f therefore has the minimum weight among all \mathcal{R} -independence functions of G if f is an \mathcal{R} -independence function of G. If there is a vertex $v_i \in V$ with $f(N_G[v_i]) > \mathcal{R}(v_i)$, then f is not an \mathcal{R} -independence function of G and thus we cannot find any \mathcal{R} -independence function in G.

Lemma 2. The function f returned from Step 13 of Algorithm MRI is an \mathbb{R} -independence function of a strongly chordal graph G = (V, E).

Proof. By Algorithm MRI, the function f initialized in Steps 1-3 is an \mathcal{R} -independence function of G if the algorithm does not stop in Step 6. In Steps 9-12, the algorithm processes vertices in strong elimination ordering v_1, v_2, \ldots, v_n to increase the weight of the function f. Obviously, the function f at the beginning of the first iteration of Steps 9-12 is an \mathcal{R} -independence function of G. We assume that the function f of f-th iteration of Steps 9-12 is an f-independence function of f for f for f in the following, we show that at the end of the f-th iteration of Steps 9-12, the new function f obtained by changing the value of $f(v_i)$ in Step 11 is still an f-independence function of f. Notice that the function f at the end of f-th iteration of Steps 9-12 is the function f at the beginning of the f-th iteration.

Let $\mathcal{B} = \min\{I_1 + \lfloor \frac{M}{d} \rfloor \cdot d, I_1 + (\ell-1) \cdot d\}$. Then $\mathcal{B} \leq I_1 + \lfloor \frac{M}{d} \rfloor \cdot d$. We have $\mathcal{B} \leq I_1 + \lfloor \frac{M}{d} \rfloor \cdot d$ and thus $M \geq \mathcal{B} - I_1$. Since $M = \min\{\mathcal{R}(v) - f(N_G[v]) | v \in N_G[v_i]\}$, $\mathcal{R}(v) - f(N_G[v]) \geq M \geq \mathcal{B} - I_1$ for every $v \in N_G[v_i]$. We have $f(N_G[v]) - I_1 + \mathcal{B} \leq \mathcal{R}(v)$ for every $v \in N_G[v_i]$. Notice that $f(v_i) = I_1$ before the execution of Step 11. Therefore, the new function f obtained by replacing the value of $f(v_i)$ with \mathcal{B} in Step 11 is still an \mathcal{R} -independence function of G. Following the discussion above, the lemma holds. \square

Lemma 3. Let ℓ , d, I_1 be fixed integers and ℓ , d > 0. Let Y be the weight set $\{I_1, I_1 + d, I_1 + 2d, \dots, I_1 + (\ell-1) \cdot d\}$. The function $f: V \to Y$ returned from Algorithm MRI is a maximum \mathcal{R} -independence function of a strongly chordal graph G = (V, E).

Proof. By Lemma 2, the function f returned from Algorithm MRI is an \mathcal{R} -independence function of G. In the following, we show that f is a maximum \mathcal{R} -independence function of G. Among all maximum \mathcal{R} -independence functions of G, we let h be a maximum \mathcal{R} -independence function of G such that the number of vertices in $\{v|v\in V, f(v)=h(v)\}$ is maximum. We claim that f(v)=h(v) for every $v\in V$. Assume for contrary that W is a nonempty set of all vertices w with $f(w)\neq h(w)$. Suppose that t is the smallest index such that $v_t\in W$. We consider the following cases.

Case 1: $h(v_t) > f(v_t)$. The value of $f(v_t)$ is finalized in Step 11 at t-iteration of Algorithm MRI (where an *iteration* here of the algorithm is understood as one iteration of Steps 9-12). At t-th iteration of Algorithm MRI, $M = \min\{\mathcal{R}(v) - f(N_G[v]) | v \in N_G[v_t]\}$ and $f(v_t) = \min\{I_1 + \lfloor \frac{M}{d} \rfloor \cdot d$, $I_1 + (\ell - 1) \cdot d$. We consider the following two subcases:

Case 1.1: $f(v_t) = I_1 + (\ell - 1) \cdot d$. Then $h(v_t) > f(v_t) = I_1 + (\ell - 1) \cdot d$, which contradicts the assumption that $h(v_t) \in Y$ since $I_1 + (\ell - 1) \cdot d$ is the largest value in Y.

Case 1.2: $f(v_t) = I_1 + \lfloor \frac{M}{d} \rfloor \cdot d$. Then $h(v_t) \geq f(v_t) + d = I_1 + (\lfloor \frac{M}{d} \rfloor + 1) \cdot d$. Let v_c be a vertex in $N_G[v_t]$ such that $M = \mathcal{R}(v_c) - f(N_G[v_c])$. Notice that $f(v_t) = I_1$ before the execution of Step 11 at the t-th iteration.

Therefore, $f(N_G[v_c] \setminus \{v_t\}) = \mathcal{R}(v_c) - M - I_1$ before the execution of Step 11 at the t-iteration. Since only the value of $f(v_t)$ was changed at the t-th iteration, $f(N_G[v_c] \setminus \{v_t\})$ is still equal to $\mathcal{R}(v_c) - M - I_1$ at the end of t-th iteration.

Notice that $h(v_x) = f(v_x)$ for every index x < t. At the end of the t-th iteration, $h(v_x) \ge f(v_x) = I_1$ for every index x > t. Then,

$$\begin{array}{ll} h(N_G[v_c]) & \geq & f(N_G[v_c] \setminus \{v_t\}) + h(v_t) \\ & \geq & f(N_G[v_c] \setminus \{v_t\}) + I_1 + \left(\lfloor \frac{M}{d} \rfloor + 1 \right) \cdot d \\ & > & (\mathcal{R}(v_c) - M - I_1) + I_1 + \left(\frac{M}{d} \right) \cdot d \\ & = & \mathcal{R}(v_c) \end{array}$$

Hence, $h(N_G[v_c]) > \mathcal{R}(v_c)$, which contradicts the assumption that h is an \mathcal{R} -independence function of G.

Case 2: $f(v_t) > h(v_t)$. Let $Y = \{a_1, a_2, \ldots, a_\ell\}$ where $a_1 = I_1$, $a_2 = I_1 + d$, ..., $a_\ell = I_1 + (\ell - 1) \cdot d$. Let $h(v_t) = a_i$ and $f(v_t) = a_j$ for $1 \le i < j \le \ell$. Let $P = \{v | v \in N_G[v_t], h(N_G[v]) - a_i + a_j > \mathcal{R}(v)\}$. Clearly, $P \ne \emptyset$. Otherwise, $h(N_G[v]) - a_i + a_j \le \mathcal{R}(v)$ for every $v \in N_G[v_t]$ and there is an \mathcal{R} -independence function g with g(V) > h(V) by setting $g(v_t) = h(v_t) - a_i + a_j = a_j$ and g(v) = h(v) for every vertex $v \in V \setminus \{v_t\}$, which contradicts the assumption that h is a maximum \mathcal{R} -independence function of G.

Notice that $h(v_x) = f(v_x)$ for every index x < t. For every vertex $v \in P$, $h(N_G[v]) - a_i + a_j > \mathcal{R}(v)$ and $f(N_G[v]) \leq \mathcal{R}(v)$. We know that $N_G[v] \cap \{v_x | v_x \in W, t < x, \text{ and } h(v_x) > f(v_x)\} \neq \emptyset$ for every $v \in P$.

Let s be the smallest index of vertices in P. Let b be the smallest index of $N_G[v_s] \cap \{v_x | v_x \in W, t < x, \text{ and } h(v_x) > f(v_x)\}$. Notice that $P \subseteq N_G[v_t]$. Since $h(v_t)$, $f(v_t)$, $h(v_b)$, and $f(v_b)$ are in Y, there exist two positive integers c_1 and c_2 such that $f(v_t) = h(v_t) + c_1 \cdot d$ and $h(v_b) = f(v_b) + c_2 \cdot d$. We define a function h' as follows.

- (1) If $c_1 \le c_2$, $h'(v_t) = h(v_t) + c_1 \cdot d = f(v_t)$, $h'(v_b) = h(v_b) c_1 \cdot d$ and h'(v) = h(v) for every $v \in V \setminus \{v_t, v_b\}$.
- (2) If $c_1 > c_2$, $h'(v_t) = h(v_t) + c_2 \cdot d$, $h'(v_b) = h(v_b) c_2 \cdot d = f(v_b)$, and h'(v) = h(v) for every $v \in V \setminus \{v_t, v_b\}$.

Clearly, h(V) = h'(V) and $|\{v|v \in V, f(v) = h'(v)\}| \ge |\{v|v \in V, f(v) = h(v)\}| + 1$. We prove $h'(N_G[v]) \ge \mathcal{R}(v)$ for every vertex $v \in V$ by showing that $P \subseteq N_G[v_b]$. There are two cases.

Case 2.1: $s \le t$. Then $s \le t < b$. By definition of the strong elimination ordering, $N_s[v_t] \subseteq N_s[v_b]$. Since $P \subseteq N_s[v_t]$, we have $P \subseteq N_s[v_b] \subseteq N_G[v_b]$.

Case 2.2: s > t. By the definition of a strong elimination ordering, $N_t[v_s] \subseteq N_t[v]$ for every vertex $v \in P$. Since $v_b \in N_t[v_s]$, $v_b \in N_t[v]$ for every vertex $v \in P$. In other words, $P \subseteq N_G[v_b]$.

Hence, h' is a maximum \mathcal{R} -independence function such that the number of vertices in $\{v|v\in V, f(v)=h'(v)\}$ is larger than that of vertices in $\{v|v\in V, f(v)=h(v)\}$, a contradiction to the assumption that the number of vertices in $\{v|v\in V, f(v)=h(v)\}$ is maximum.

Following the discussion above, W does not exist. Hence, f is a maximum \mathcal{R} -independence function of G.

Theorem 3. Let G = (V, E) be a strongly chordal graph with |V| = n and |E| = m. Algorithm MRI solves the R-independence problem on G in O(n+m) time if a strong elimination ordering is given.

Proof. In a practical implementation of Algorithm MRI, we use $d(v_i)$ to keep track of $f(N_G[v_i])$ for each vertex $v_i \in V$ and use $m(v_i)$ to keep track of $\mathcal{R}(v_i) - d(v_i)$. Following the initialization of a function f in Steps 1-3, we initialize $d(v_i) = (|N_G[v_i]|) \cdot I_1$ and $m(v_i) = \mathcal{R}(v_i) - d(v_i)$.

The initialization of $d(v_i)$ and $m(v_i)$ can be done in $O(deg_G(v_i)+1)$ time. While $f(v_i)$ is replaced by $\mathcal{B}=\min\{I_1+\lfloor\frac{M}{d}\rfloor\cdot d,I_1+(\ell-1)\cdot d\},$ d(v) and m(v) are respectively increased by $\mathcal{B}-I_1$ for every vertex $v\in N_G[v_i]$. This can be done in $O(deg_G(v_i)+1)$ time. At i-th iteration, $1\leq i\leq n, M$ can be computed in $O(deg_G(v_i)+1)$ time by verifying m(v) for every vertex $v\in N_G[v_i]$. Hence, the running time of Algorithm MRI is $O(\sum_{v_i\in V}(deg_G(v_i)+1))=O(n+m)$.

4. Distance-hereditary graphs

A graph is distance-hereditary if any two distinct vertices have the same distance in every connected induced subgraph containing them. In 1997, Chang et al. [3] showed that distance-hereditary graphs can be defined recursively.

Theorem 4 ([3]). Distance-hereditary graphs can be defined recursively as follows:

- 1. A graph consisting of only one vertex is distance-hereditary, and the twin set is the vertex itself.
- 2. If G_1 and G_2 are disjoint distance-hereditary graphs with the twin sets $TS(G_1)$ and $TS(G_2)$, respectively, then the graph $G = G_1 \cup G_2$ is a distance-hereditary graph and the twin set of G is $TS(G_1) \cup TS(G_2)$. G is said to be obtained from G_1 and G_2 by a false twin operation.
- 3. If G_1 and G_2 are disjoint distance-hereditary graphs with the twin sets $TS(G_1)$ and $TS(G_2)$, respectively, then the graph G obtained by connecting every vertex of $TS(G_1)$ to all vertices of $TS(G_2)$ is a distance-hereditary graph, and the twin set of G is $TS(G_1) \cup TS(G_2)$. G is said to be obtained from G_1 and G_2 by a true twin operation.

4. If G_1 and G_2 are disjoint distance-hereditary graphs with the twin sets $TS(G_1)$ and $TS(G_2)$, respectively, then the graph G obtained by connecting every vertex of $TS(G_1)$ to all vertices of $TS(G_2)$ is a distance-hereditary graph, and the twin set of G is $TS(G_1)$. G is said to be obtained from G_1 and G_2 by a pendant vertex operation.

By Theorem 4, a distance-hereditary graph G has its own twin set TS(G). The twin set TS(G) is a subset of vertices of G and it is defined recursively. The construction of G from disjoint distance-hereditary graphs G_1 and G_2 as described in Theorem 4 involves only the twin sets of G_1 and G_2 .

Following Theorem 4, a binary ordered decomposition tree can be obtained in linear time [3]. In this decomposition tree, each leaf is a single vertex graph, and each internal node represents one of the three operations: pendant vertex operation (labeled by P), true twin operation (labeled by T), and false twin operation (labeled by F). This ordered decomposition tree is called a PTF-tree. It has 2n-1 tree nodes. Hence, a PTF-tree of a distance-hereditary graph can be obtained in linear time [3]. Let G = (V, E) be a distance-hereditary graph. We assume that a PTF-tree for G is part of the input.

Definition 2. Suppose that G=(V,E) is a distance-hereditary graph and TS(G) is the twin set of G. Let k be a positive integer and let a, b, and c be integers such that $0 \le a, b \le n$ and $-n \le c \le n$. An (a,b,c,k)-function $f:V \to \{1,-1\}$ of G is a function satisfying the following three conditions.

- (1) a + b = |TS(G)|.
- (2) The function f assigns the value 1 to a vertices in TS(G) and assigns the value -1 to b vertices in TS(G).
- (3) For a vertex $v \in V$, $f(N_G[v]) + c \le k 1$ if $v \in TS(G)$; otherwise $f(N_G[v]) \le k 1$.

We define $\alpha_s(G, a, b, c, k) = \max\{f(V(G)) \mid f \text{ is an } (a, b, c, k)\text{-function of } G\}$. If there does not exist an (a, b, c, k)-function of G, then $\alpha_s(G, a, b, c, k) = -\infty$. Clearly, $\alpha_s^k(G) = \max\{\alpha_s(G, a, b, 0, k) \mid 0 \le a, b \le |TS(G)|\}$.

We give the following lemmas to compute $\alpha_s(G, a, b, c, k)$ for a distance-hereditary graph G.

Lemma 4. Suppose that G = (V, E) is a graph of only one vertex v. Then,

$$\alpha_s(G,a,b,c,k) = \left\{ \begin{array}{ll} 1 & \text{if } a=1, \ b=0, \ and \ c \leq k-2; \\ -1 & \text{if } a=0, \ b=1, \ and \ c \leq k; \\ -\infty & \text{otherwise.} \end{array} \right.$$

Proof. This follows from the definition.

Lemma 5. Suppose that G = (V, E) is formed from two disjoint distance-hereditary graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ by a false twin operation. Then, $\alpha_s(G, a, b, c, k) = \max\{\alpha_s(G_1, a_1, b_1, c, k) + \alpha_s(G_2, a_2, b_2, c, k)\}$, where $a_1 + a_2 = a$ and $b_1 + b_2 = b$.

Proof. This follows from the definition.

Lemma 6. Suppose that G = (V, E) is formed from two disjoint distance-hereditary graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ by a true twin operation. Then, $\alpha_s(G, a, b, c, k) = \max\{\alpha_s(G_1, a_1, b_1, c + a_2 - b_2, k) + \alpha_s(G_2, a_2, b_2, c + a_1 - b_1, k)\}$, where $a_1 + a_2 = a$ and $b_1 + b_2 = b$.

Proof. In this case, the graph G is formed from G_1 and G_2 by connecting every vertex in $TS(G_1)$ to all vertices in $TS(G_2)$, and $TS(G) = TS(G_1) \cup TS(G_2)$.

Assume that f_1 is an $(a_1, b_1, c + a_2 - b_2, k)$ -function of G_1 of maximum weight and f_2 is an $(a_2, b_2, c + a_1 - b_1, k)$ -function of G_2 of maximum weight. We define a function f of G as follows: $f(v) = f_1(v)$ if $v \in V_1$ and $f(v) = f_2(v)$ if $v \in V_2$. Let $a = a_1 + a_2$ and $b = b_1 + b_2$. Then, |TS(G)| = a + b and f assigns the value 1 (respectively, -1) to a (respectively, b) vertices in TS(G).

By Definition 2, it is clear that $f(N_G[v]) = f_1(N_{G_1}[v]) \le k-1$ for every vertex $v \in V_1 \setminus TS(G_1)$ and $f(N_G[v]) = f_2(N_{G_2}[v]) \le k-1$ for every vertex $v \in V_2 \setminus TS(G_2)$.

We now consider a vertex $v \in TS(G_1)$. By Definition 2, $f_1(N_{G_1}[v]) + (c+a_2-b_2) \leq k-1$. Note that $N_G[v] \cap V_2 = TS(G_2)$. Then, $f(N_G[v]) = f_1(N_{G_1}[v]) + a_2 - b_2 \leq k-1-c$. We have $f(N_G[v]) + c \leq k-1$. Similarly, we can prove that $f(N_G[v]) + c \leq k-1$ for every vertex $v \in TS(G_2)$. The function f is therefore an (a,b,c,k)-function of G. Hence, $\alpha_s(G,a,b,c,k) \geq \max\{\alpha_s(G_1,a_1,b_1,c+a_2-b_2,k)+\alpha_s(G_2,a_2,b_2,c+a_1-b_1,k)\}$, where $a_1+a_2=a$ and $b_1+b_2=b$.

Conversely, we let f be an (a,b,c,k)-function of G of maximum weight. Let f_1 be the function of G_1 defined by $f_1(v) = f(v)$ for every vertex $v \in V_1$ and let f_2 be the function of G_2 defined by $f_2(v) = f(v)$ for every vertex $v \in V_2$. Note that $TS(G) = TS(G_1) \cup TS(G_2)$. Let $a_1 + a_2 = a$ and $b_1 + b_2 = b$ such that $|TS(G_1)| = a_1 + b_1$ and $|TS(G_2)| = a_2 + b_2$. Assume that f assigns the value 1 to a_1 (respectively, a_2) vertices in $TS(G_1)$ (respectively, $TS(G_2)$) and assigns the value -1 to b_1 (respectively, b_2) vertices in $TS(G_1)$ (respectively, $TS(G_2)$).

Clearly, $f_1(N_{G_1}[v]) = f(N_G[v]) \le k-1$ for every vertex $v \in V_1 \setminus TS(G_1)$ and $f_2(N_{G_2}[v]) = f(N_G[v]) \le k$ for every vertex $v \in V_2 \setminus TS(G_2)$.

We now consider a vertex $v \in TS(G_1)$. Since $N_G[v] \cap V_2 = TS(G_2)$, we have

$$\begin{array}{rcl} f(N_G[v]) + c & = & f(N_{G_1}[v] \cup TS(G_2)) + c \\ & = & f(N_{G_1}[v]) + a_2 - b_2 + c \\ & = & f_1(N_{G_1}[v]) + c + a_2 - b_2 \\ & \leq & k - 1 \end{array}$$

Therefore, f_1 is an $(a_1, b_1, c + a_2 - b_2, k)$ -function of G_1 . Similarly, we can prove that f_2 is an $(a_2, b_2, c + a_1 - b_1, k)$ -function of G_2 . Hence, $\alpha_s(G, a, b, c, k) \leq \max\{\alpha_s(G_1, a_1, b_1, c + a_2 - b_2, k) + \alpha_s(G_2, a_2, b_2, c + a_1 - b_1, k)\}$, where $a_1 + a_2 = a$ and $b_1 + b_2 = b$.

Following the discussion above, the lemma holds.

Lemma 7. Suppose that G = (V, E) is formed from two disjoint distance-hereditary graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ by a pendant vertex operation. Then, $\alpha_s(G, a, b, c, k) = \max\{\alpha_s(G_1, a, b, c + a_2 - b_2, k) + \alpha_s(G_2, a_2, b_2, a - b, k)\}$, where $a_2 + b_2 = |TS(G_2)|$.

Proof. In this case, the graph G is formed from G_1 and G_2 by connecting every vertex in $TS(G_1)$ to all vertices in $TS(G_2)$, but $TS(G) = TS(G_1)$. By using the arguments similar to those for proving Lemma 6, the lemma holds.

Theorem 5. For any positive integer k, the signed k-independence problem on distance-hereditary graphs can be solved in polynomial time.

Proof. Following Lemmas 4-7 and the recursive definition of distance-hereditary graphs in Theorem 4, we can compute the signed k-independence number of a distance-hereditary graph G in polynomial time. Moreover, it is not difficult to see that a maximum signed k-independence function can be obtained in polynomial time.

5. The signed k-independence problem is not FPT

We have shown that the decision version of the signed k-independence problem is NP-complete, even when restricted to chordal graphs or bipartite planar graphs. One of the ways to deal with NP-complete problems is to consider the parameterized complexity of the problems [4]. Many NP-complete problems have the following general form: given an object x and an integer κ , does x have some property that depends on κ . In parameterized complexity theory, κ is called the parameter. A problem may be associated with several parameters. If some parameters of a problem instance are small, we might have some hope in finding a polynomial-time solution to that instance.

Definition 3 ([4]). Let i be a positive integer. A problem is fixed parameter tractable (FPT) with respect to i parameters k_1, k_2, \ldots, k_i if there exists a solution running in $O(f(k_1, k_2, \ldots, k_i)n^c)$ time, where c is a constant and f is a function of k_1, k_2, \ldots, k_i which are independent of n.

However, not all NP-complete problems are FPT (see [4]). In this section, we show that the signed k-independence problem, parameterized by k and weight κ , is not FPT. Consider the following problem.

Problem: The zero signed 1-independence problem.

Instance: A graph G = (V, E)

Question: Does G have a signed 1-independence function of weight at least 0?

Lemma 8. The zero signed 1-independence problem is NP-complete for chordal graphs and bipartite planar graphs.

Proof. The zero signed 1-independence problem on chordal graphs (respectively, bipartite planar graphs) is clearly in NP. By Theorem 1, we know that the signed 1-independence problem on chordal graphs (respectively, bipartite planar graphs) is NP-complete. In the following, we show the NP-completeness of the zero signed 1-independence problem on chordal graphs (respectively, bipartite planar graphs) by a polynomial-time reduction from the signed 1-independence problem on chordal graphs (respectively, bipartite planar graphs).

Let P_3 be a path of 3 vertices. Clearly, $\alpha_s^1(P_3) = -1$. Let G = (V, E) be a chordal graph (respectively, bipartite planar graph) and let H be the union of G and j disjoint copies of P_3 . Obviously, H is a chordal graph (respectively, bipartite planar graph) and we have

$$\alpha_s^1(H) = \alpha_s^1(G) + j \cdot \alpha_s^1(P_3) = \alpha_s^1(G) - j.$$

Hence, $\alpha_s^1(G) \geq j$ if and only if $\alpha_s^1(H) \geq 0$.

Theorem 6. Even when restricted to chordal graphs and bipartite planar graphs, the signed k-independence problem, parameterized by k and weight κ , is not FPT, unless P = NP.

Proof. Assume that there exists an algorithm which runs in $O(f(k, \kappa)n^c)$ time and that determines if a graph G has a signed k-independence function of weight at least κ . Then the zero signed 1-independence problem would be solvable in polynomial time. By Lemma 8, we know that the signed k-independence problem, parameterized by k and weight κ , is not FPT, unless P = NP.

References

- [1] A.A. Bertossi, Dominating sets for split and bipartite graphs, Information Processing Letters, 19 (1984), pp. 37-40.
- [2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999.
- [3] M.S. Chang, S.Y. Hsieh, and G.H. Chen, Dynamic programming on distance-hereditary graphs, in: Proceedings of the 8th International Symposium on Algorithms and Computation, LNCS 1350, pp. 344– 353, 1997.
- [4] R.G. Downey and M.R. Fellows, Parameterized complexity, Monographs in Computer Science, Springer-Verlag, 1999.
- [5] M. Farber, Characterizations of strongly chordal graphs, Discrete Mathematics, 43 (1983), pp. 173–189.
- [6] M.A. Henning, Signed 2-independence in graphs, Discrete Mathematics, 250 (2002), pp. 93-107.
- [7] W. Li, Z. Huang, Z. Feng, and H. Xing, On reverse signed domination in graphs and algorithmic complexity, Journal of Convergence Information Technology, 7 (2012), pp. 324–331.
- [8] R. Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM Journal on Computing, 16 (1987), pp. 973-989.
- [9] J.P. Spinrad, Doubly lexical ordering of dense 0-1 matrices, Information Processing Letters, 45 (1993), pp. 229-235.
- [10] L. Volkmann, Bounds on the signed 2-independence number in graphs, Discussiones Mathematicae Graph Theory, 33 (2013), pp.709-715.
- [11] L. Volkmann, Signed k-independence in graphs, Central European Journal of Mathematics, 12 (2014), pp. 517-528.
- [12] L. Volkmann and V.E. Zverovich, A disproof of Henning's conjecture on irredundance perfect graphs, Discrete Mathematics, 254 (2002), pp. 539-554.
- [13] H. Wang and H.K. Kim, Signed 2-independence of Cartesian product of directed paths, International Journal of Computer Mathematics, 91 (2014), pp. 1190-1201.
- [14] B. Zelinka, On signed 2-independence numbers of graphs, manuscript.