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Abstract

This paper is motivated by the concept of the signed k-independence prob-
lem and dedicated to the complexity of the problem on graphs. We show
that the problem is linear-time solvable for any strongly chordal graph with
a strong elimination ordering and polynomial-time solvable for distance-
hereditary graphs. For any fixed positive integer £ > 1, we show that
the signed k-independence problem on chordal graphs and bipartite planar
graphs is NP-complete. Furthermore, we show that even when restricted
to chordal graphs or bipartite planar graphs, the signed k-independence
problem, parameterized by a positive integer k and weight &, is not fized
parameter tractable.

Keywords: Signed k-independence, Fixed parameter tractable, Strongly
chordal graph

1. Introduction

Let G = (V, E) be a finite, undirected, simple graph. For any vertex
v € V, the open neighborhood of v in G is Ng(v) = {u € V|(u,v) € E}
and the closed neighborhood of v in G is Ng[v] = Ng(v)U {v}. The degree
of a vertex v in G is degg(v) = |[Ng(v)|. We also use V(G) and E(G) to
denote the vertex set and the edge set of G, respectively. Let Y be a subset
of real numbers. Let f : V — Y be a function of a graph G = (V, E) which
assigns to each v € V a value in Y. The set Y is called the weight set
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of f. Let f(S) = X ,cs f(u) for any subset S of V. The weight of f is
F(V). Let k be a positive integer. A function f:V — {—1,1} is a signed k-
independence function of G if f(Ng[v]) < k—1 for every v € V. The signed
k-independence numberof G, denoted by a%(G), is the mazimum weight of a
signed k-independence function of G. The signed k-independence problem
is to find a signed k-independence function of G of maximum weight. The
signed k-independence number was introduced by Volkmann [11]. The
special case k = 2 was introduced by Zelinka in [14] as a certain dual to
the signed domination number of a graph. The upper and lower bounds on
the signed 2-independence number or signed k-independence number can
be found in [6, 10, 11, 13, 14]. From the algorithmic point of view, the
signed 1-independence problem is NP-complete for general graphs, while it
is linear-time solvable for trees (7).

This paper is dedicated to the complexity of the signed k-independence
problem on graphs. In Section 2, we show that the signed k-independence
problem on chordal graphs and bipartite planar graphs is NP-complete for
any fixed positive integer k > 1. In Section 3, we study a general framework
called R-independence to solve the signed k-independence problem in linear
time for any strongly chordal graph with a strong elimination ordering.

Definition 1. Let £, d, I) be fixed integers and ¢,d > 0. Let Y be the
weight set {I, [ +d, [} +2d,...,I;+(¢—1)-d}. Suppose that G = (V,E)isa
graph and R is a function which assigns to each v € V' an integer R(v). An
R-independence function of G is a function f: V = Y if f(Ng[v]) < R(v)
for every vertex v € V. The R-independence number of G, denoted by
ar(G), is the maximum weight of an R-independence function of G. The
R-independence problem is to find an R-independence function of G of
maximum weight.

It is clear that the signed k-independence problem is a special case of the
R-independence problem. We develop a linear-time algorithm for the R-
independence problem on strongly chordal graphs. In Section 4, we develop
a polynomial-time algorithm for the signed k-independence problem on
distance-hereditary graphs. In Section 5, we show that even when restricted
to chordal graphs or bipartite planar graphs, the signed k-independence
problem, parameterized by a positive integer k& and weight x, is not fized
parameter tractable.

2. NP-completeness results

In this section, we present NP-completeness results for bipartite planar
graphs and chordal graphs. Before presenting the NP-completeness results,
we restate the domination problem and the signed k-independence problem
as decision problems.

304



(1) The domination problem:
Instance: A graph G = (V, F) and a positive integer .
Question: Is y(G) < x?

(2) The signed k-independence problem:
Instance: A graph G = (V, E), a positive integer k, an integer .
Question: Is of(G) > x?

Theorem 1. The signed 1-independence problem is NP-complete for bi-
partite planar graphs and chordal graphs.

Proof. The signed 1-independence problem on bipartite planar graphs (re-
spectively, chordal graphs) is clearly in NP. It is known that the domina-
tion problem is NP-complete for bipartite planar graphs [12] (respectively,
chordal graphs [1]). In the following, we show the NP-completeness of the
signed l-independence problem on bipartite planar graphs (respectively,
chordal graphs) by a polynomial-time reduction from the domination prob-
lem on bipartite planar graphs (respectively, chordal graphs).

Given a bipartite planar graph (respectively, chordal graph) G = (V, E),
we construct a graph H by adding to each vertex v of G a set of degg(v)
paths of length three, say, v — v;; — v;, — v;; for 1 <4 < degg(v). That
is, V(H) = VU (U,ey {¥i,,vi2,v35|]1 £ ¢ < dege(v)}) and E(H) = EU
(Upev {(vyvi,), (03, vi,), (viy,vi)|1 € @ < degg(v)}). Clearly, H is a bi-
partite planar graph (respectively, chordal graph) and the construction of
H can be done in polynomial-time. Let |V| =n and |[E| = m.

Let D be a dominating set of G of v(G) vertices. Let f be a function
of H such that for each vertex v € V, f(v) = —-1ifv € D, f(v) =1 if
v € V\ D, and f(v;) = f(vi,) = —1 and f(v;,) =1 for 1 < i < degg(v).
It can be easily verified that f is a signed 1-independence function. Then,
ay(H) 2 (n —%(G)) = ¥(C) = (L,ev dege(v)) =n — 2m — 2¢(G).

Conversely, it can be verified by contradiction that there exists a max-
imum signed 1-independence function f of H such that for each vertex
vEV, flvg) = f(vw,) = -1 and f(v;;) = 1 for 1 < i < degg(v). No-
tice that |Ng[v]] = dege(v) + 1 and |[Ng[v]| = 2 - degg(v) + 1 for every
vertex v € V. The function f assigns the value —1 to at least one ver-
tex of Ng[v] for every v € V. The set {v € V|f(v) = -1} is a dom-
inating set of G. Let k; = |{v € V|f(v) = —1}|. The weight of f is
ol(H) = (- 2vev dege(v)) + ((n — k1) — k1)) = n — 2m — 2k;. Then,
1G) < ky = "2 We obtain al(H) < n — 2m — 24(G).

Following the discussion above, ol(H) = n — 2m — 2v(G). Hence, for
any positive integer «, v(G) < kifandonly if o} (H) >n—-2m —2x. O

Theorem 2. For any fized positive integer k > 2, the signed k-independence
problem is NP-complete for chordal graphs and bipartite planar graphs.
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Proof. The signed k-independence problem on bipartite planar graphs (re-
spectively, chordal graphs) is clearly in NP. By Theorem 1, the signed
1-independence problem is NP-complete for chordal graphs and bipartite
planar graphs. In the following, we show the NP-completeness of the
signed k-independence problem on bipartite planar graphs (respectively,
chordal graphs) by a polynomial-time reduction from the signed (k — 1)-
independence problem on bipartite planar graphs (respectively, chordal
graphs).

Let G = (V, E) be a bipartite planar graph (respectively, chordal graph).
We construct a graph H by creating a new vertex v’ for each vertex v € V
and connecting v and v’ with an edge. Then, V(H) =V U {¥' |v e V}
and E(H) = EU {(v,v') | v € V}. Clearly, H is a bipartite planar graph
(respectively, chordal graph) and the construction of H can be done in
polynomial time.

Let |[V| = n and |E| = m. Suppose that f is a maximum signed k-
independence function of H. Let v € V' be a vertex such that f(v') = —1.
We consider the following two cases.

Case 1: f(v) = 1. Let f': V(H) — {-1,1} be a function of H such
that f'(v) = -1, f'(v') = 1, and f'(z) = f(z) for every x € V' \ {v,v'}.
The function f’ is still a maximum signed k-independence function of H.

Case 2: f(v) = —1. Suppose that there exists a vertex y € Ng(v)
such that f(y) = 1. Let f' : V(H) — {-1,1} be a function of H such
that f'(y) = —1, f'(v') = 1, and f'(z) = f(z) for every z € V' \ {y,v'}.
The function f’ is still a maximum signed k-independence function of H.
Suppose that there does not exist a vertex y € Ng(v) such that f(y) = 1.
Let f' : V(H) = {-1,1} be a function of H such that f'(»') = 1 and
f'(z) = f(z) for every z € V \ {v'}. It can be easily verified that f’
is a signed k-independence function of H and the weight of f’ is larger
than that of f. It contradicts the assumption that f is a maximum signed
k-independence function of H.

We therefore know that there exists a maximum signed k-independence
function h of H such that h(v') = 1 for each vertex v € V. Let g: V —
{-1,1} be a function of G such that g(v) h(v) for every v € V For each
vertex v € V, g(Ng[v]) = h(Nglv]) — h(v) < (k=1) -1 =k —2. The
function g is a signed (k — 1)-independence function of G and it necessarily
has the maximum weight among all signed (k—1)-independence functions of
G. We have of(H) = o*~1(G) 4 n. Hence, for any integer £, a¥~1(G) > &
if and only if o¥(H) > n + . 0

3. Strongly chordal graphs

Let G = (V,E) be a graph. A cligue is a subset of pairwise adjacent
vertices of V. A vertex v is simplicial if all vertices of Ng[v] form a clique.
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The ordering (v1,vz,...,v,) of the vertices of V is a perfect elimination
ordering of G if for all ¢ € {1,...,n}, v; is a simplicial vertex of the sub-
graph G; of G induced by {vi,vi41,...,vn}. Let N;[v] denote the closed
neighborhood of v in G;. A perfect elimination ordering is called a strong
elimination ordering if it has the following property:

For i < j <k if v; and v belong to N;[v;] in G;, then N;[v;] C Nj[vg].
Farber [5] showed that a graph is strongly chordal if and only if it ad-
mits a strong elimination ordering. So far, the fastest algorithm to rec-
ognize a strongly chordal graph and give a strong elimination ordering
takes O(mlogn) (8] or O(n?) time [9]. Strongly chordal graphs include
many interesting classes of graphs such as trees, block graphs, interval
graphs, and directed path graphs [2]. In the following, we give Algorithm
MRI(G, R, I, £, d) to solve the R-independence problem in linear-time for a
strongly chordal graph G with a strong elimination ordering (v1,v2, - . ., vn).

Algorithm MRI(G,R, I,,¢,d)

1: fori=1tondo

2: f(vi) « I;;

3: end for

4: fori=1tondo

5: if f(Ng[vi]) > R(v;) then

6: stop and return the infeasibility of the problem;
T end if

8: end for

9: fori=1tondo

10: M « min{R(v) — f(Ng[v])|v € Ng[vi]};
11:  f(w) ¢« min{ly + | %) -d, [, +(¢-1)-d};
12: end for

13: return the function f;

Lemma 1. If the function f initialized by Algorithm MRI in Steps 1-3
is not an R-independence function of a strongly chordal graph G = (V, E),
then G has no R-independence function.

Proof. The function f initialized by Algorithm MRI in Steps 1-3 assigns
the minimum value in Y to vertex v; for 1 < i < n. The function f
therefore has the minimum weight among all R-independence functions of
G if f is an R-independence function of G. If there is a vertex v; € V with
f(Ng[vi]) > R(v;), then f is not an R-independence function of G and
thus we cannot find any R-independence function in G. ]

Lemma 2. The function f returned from Step 13 of Algorithm MRI is
an R-independence function of a strongly chordal graph G = (V, E).
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Proof. By Algorithm MRI, the function f initialized in Steps 1-3 is an
R-independence function of G if the algorithm does not stop in Step 6.
In Steps 9-12, the algorithm processes vertices in strong elimination or-
dering v;,vs,...,n to increase the weight of the function f. Obviously,
the function f at the beginning of the first iteration of Steps 9-12 is an
R-independence function of G. We assume that the function f of i-th iter-
ation of Steps 9-12 is an R-independence function of G for 1 <i < n. In
the following, we show that at the end of the i-th iteration of Steps 9-12,
the new function f obtained by changing the value of f(v;) in Step 11 is
still an R-independence function of G. Notice that the function f at the
end of i-th iteration of Steps 9-12 is the function f at the beginning of the
(i + 1)-th iteration.

Let B = min{l+|%|-d,I,+(¢—1)-d}. Then B < I+ Y .d. Wehave
B< Il+(—) -d and thus M > B—1I,. Since M = min{R(v)—f(Ng[v])lv €
Ng[uvi]}, R(v) — f(Ng[v]) 2 M > B — I for every v € Ng[vi]. We have
f(Ng[v)) = I + B < R(v) for every v € Ng[vi]. Notice that f(v;) = I
before the execution of Step 11. Therefore, the new function f obtained by
replacing the value of f(v;) with B in Step 11 is still an R-independence
function of G. Following the discussion above, the lemma holds. a

Lemma 3. Let ¢, d, I, be fized integers and £,d > 0. Let Y be the weight
set {I, L +d, I, +2d,...,I,+(£—1)-d}. The function f:V — Y returned
from Algorithm MRI is a maximum R-independence function of a strongly
chordal graph G = (V, E).

Proof. By Lemma 2, the function f returned from Algorithm MRI is an
R-independence function of G. In the following, we show that f is a maxi-
mum R-independence function of G. Among all maximum R-independence
functions of G, we let h be a maximum R-independence function of G such
that the number of vertices in {v|v € V, f(v) = h(v)} is maximum. We
claim that f(v) = h(v) for every v € V. Assume for contrary that W is
a nonempty set of all vertices w with f(w) # h(w). Suppose that ¢ is the
smallest index such that v, € W. We consider the following cases.

Case 1: h(v) > f(ve). The value of f(v;) is finalized in Step 11 at
t-iteration of Algorithm MRI (where an iteration here of the algorithm is
understood as one iteration of Steps 9-12). At t-th iteration of Algorithm
MRI, M = min{R(v) — f(Ng[v])[v € Ng[ve]} and f(v¢) = min{l; + | 4] -
d,I) + (£ — 1) - d}. We consider the following two subcases:

Case 1.1: f(v¢) =I) + (£ —1)-d. Then h(v¢) > f(ve) = L +(¢£—1)-d,
which contradicts the assumption that h(v;) € Y since I} + (£ —1)-d is the
largest value in Y.

Case 1.2: f(v) = I1+|%]-d. Then h(v;) > f(v)+d = L+(1%)+1)
d. Let v, be a vertex in NG[‘Ugl such that M = R(v.) — f(Ng(vc]). No-
tice that f(v¢) = I; before the execution of Step 11 at the ¢-th iteration.
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Therefore, f(Nglvc]\ {ve}) = R(vc) — M — I, before the execution of Step
11 at the t-iteration. Since only the value of f(v;) was changed at the ¢-th
iteration, f(Ng|vc]\ {v:}) is still equal to R{v.) — M — I, at the end of ¢t-th
iteration.

Notice that h(vz) = f(v;) for every index = < t. At the end of the t-th
iteration, h(vz) 2 f(vz) = ) for every index z > t. Then,

F(Ng[ve] \ {ve}) + h(ve)
f(Nglve) \{ve}) + h + (| ¥ ] +1) - d
(R(ve) =M = L)+ I + (%) -d
R(ve)

Hence, h(N¢[ve]) > R(v.), which contradicts the assumption that & is an
R-independence function of G.

Case 2: f(v;) > h(ve). Let Y = {a1,a,...,ae} where a; = I1, as =
I +d, ...,a¢e = I + (¢ — 1) - d. Let h(v;) = a; and f(v:) = a; for
1<i<j<t Let P= {vJv € Nglv),h(Ng[v]) — a; + a; > R(v))}.
Clearly, P # 0. Otherwise, h(Ng[v]) — ai +a; < R(v) for every v € Ng|v;]
and there is an R-independence function g with g(V') > h(V) by setting
g(ve) = h(v¢) — a; + a; = a; and g(v) = h(v) for every vertex v € V' \ {u},
which contradicts the assumption that h is a maximum R-independence
function of G.

Notice that h{vz) = f(v.) for every index z < t. For every vertex
v € P, h(Ng[v]) — a; + aj > R(v) and f(Ng[v]) < R(v). We know that
Neg[v] N {vz|vz € W,t < z, and h(vz) > f(vz)} # O for every v € P.

Let s be the smallest index of vertices in P. Let b be the smallest index
of Ng[vs]n{vz|vz € W,t < z, and h(v;) > f(v;)}. Notice that P C Ng[vy].
Since h(v,), f(ve), h(vs), and f(vp) arein Y, there exist two positive integers
c1 and ¢z such that f(v;) = h(v) + ¢1 - d and h(vp) = f(vp) + c2 - d. We
define a function A’ as follows.

(1) If 1 < c2, h'(vy) = h(ve) +¢1-d = f(ve), h'(vp) = h(vs) —c1 - d and
h'(v) = h(v) for every v € V' \ {v¢, v}

(2) If e1 > 2, B'(ve) = h(ve) + €2 - d, h'(vp) = h(vp) — ca - d = f(wp), and
h'(v) = h(v) for every v € V' \ {v¢, vp}.

Clearly, (V) = A'(V) and [{vjv € V, f(v) = K (W)} = [{v|v e V, f(v) =
h(v)}| + 1. We prove h'/(Ng[v]) > R(v) for every vertex v € V by showing
that P C Ng[vp). There are two cases.

Case 2.1: s <t. Then s < t < b. By definition of the strong elimination
ordering, N,[v,] C N[vp). Since P C Ni[v], we have P C N[vp] C Ng[vs)-

Case 2.2: s > t. By the definition of a strong elimination ordering,
Nilvs] € Nilv] for every vertex v € P. Since vy € Ni[vs), vp € Ni[v] for
every vertex v € P. In other words, P C Ng[vs).

h(Nglvc))

I VvIVIV
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Hence, k' is a maximum R-independence function such that the number
of vertices in {v|lv € V, f(v) = h'(v)} is larger than that of vertices in
{v|v € V, f(v) = h(v)}, a contradiction to the assumption that the number
of vertices in {vlv € V, f(v) = h(v)} is maximum.

Following the discussion above, W does not exist. Hence, f is a maxi-
mum R-independence function of G. o

Theorem 3. Let G = (V,E) be a strongly chordal graph with |V| = n
and |E| = m. Algorithm MRI solves the R-independence problem on G in
O(n + m) time if a strong elimination ordering is given.

Proof. In a practical implementation of Algorithm MRI, we use d(v;) to
keep track of f(Ng(vi]) for each vertex v; € V and use m(v;) to keep track
of R(v;) — d(v;). Following the initialization of a function f in Steps 1-3,
we initialize d(v;) = (|Ng[vi]]) - [ and m(v:) = R(v;) — d(vi).

The initialization of d(v;) and m(v;) can be done in O(degg(vi) + 1)
time. While f(v;) is replaced by B = min{/, + | M| .d, I, + (¢-1)-d},
d(v) and m(v) are respectively increased by B — I; for every vertex v €
Nglvi). This can be done in O(degg(v;) + 1) time. At i-th iteration,
1 <i < n, M can be computed in O(degg(v;) + 1) time by verifying m(v)
for every vertex v € Ng[vi]. Hence, the running time of Algorithm MRI is
O(S,,ev(dega(vs) + 1)) = Ofn +m). 0

4. Distance-hereditary graphs

A graph is distance-hereditary if any two distinct vertices have the same
distance in every connected induced subgraph containing them. In 1997,
Chang et al. [3] showed that distance-hereditary graphs can be defined
recursively.

Theorem 4 ([3]). Distance-hereditary graphs can be defined recursively as
follows:

1. A graph consisting of only one vertez is distance-hereditary, and the
twin set is the vertex itself.

2. If G, and G4 are disjoint distance-hereditary graphs with the twin sets
TS(G)) and TS(Gy), respectively, then the graph G = G UG> is a
distance-hereditary graph and the twin set of G is TS(G1)UTS(G2).
G 1is said to be obtained from Gy and Gg by a false twin operation.

3. If G, and G, are disjoint distance-hereditary graphs with the twin
sets TS(G1) and TS(G2), respectively, then the graph G obtained
by connecting every vertex of TS(G1) to all vertices of TS(G2) is a
distance-hereditary graph, and the twin set of G is TS(G)UTS(Go).
G is said to be obtained from Gy and G5 by a true twin operation.
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4. If G) and G2 are disjoint distance-hereditary graphs with the twin
sets TS(Gy) and TS(G3), respectively, then the graph G obtained
by connecting every vertez of TS(G1) to all vertices of TS(Gz) is a
distance-hereditary graph, and the twin set of G is TS(G1). G is said
to be obtained from G, and G2 by a pendant vertex operation.

By Theorem 4, a distance-hereditary graph G has its own twin set
TS(G). The twin set T'S(G) is a subset of vertices of G and it is defined
recursively. The construction of G from disjoint distance-hereditary graphs
G1 and G as described in Theorem 4 involves only the twin sets of G; and
Go.

Following Theorem 4, a binary ordered decomposition tree can be ob-
tained in linear time [3]. In this decomposition tree, each leaf is a single
vertex graph, and each internal node represents one of the three operations:
pendant vertex operation (labeled by P), true twin operation (labeled by
T), and false twin operation (labeled by F). This ordered decomposition
tree is called a PTF-tree. It has 2n — 1 tree nodes. Hence, a PTF-tree of a
distance-hereditary graph can be obtained in linear time (3]. Let G = (V, E)
be a distance-hereditary graph. We assume that a PTF-tree for G is part

of the input.

Definition 2. Suppose that G = (V| E) is a distance-hereditary graph
and T'S(G) is the twin set of G. Let k be a positive integer and let a, b,
and c be integers such that 0 < a,b < n and —n < ¢ < n. An (a,b,¢,k)-
function f : V — {1,-1} of G is a function satisfying the following three
conditions.
(1) a+b=|TS(G).
(2) The function f assigns the value 1 to a vertices in T'S(G) and assigns
the value —1 to b vertices in T'S(G).
(3) For a vertex v € V, f(Ng[v]) + ¢ < k-1 if v € TS(G); otherwise
f(Ng[v]) <k-1.

We define o,(G, a,b, ¢, k) = max{f(V(G)) | f is an (a, b, ¢, k)-function
of G}. If there does not exist an (a, b, ¢, k)-function of G, then a5(G, a, b, c, k)
= —o0. Clearly, a¥(G) = max{a,(G,q,b,0,k) | 0 < a,b < |TS(G)|}.

We give the following lemmas to compute o, (G, a, b, ¢, k) for a distance-
hereditary graph G.

Lemma 4. Suppose that G = (V, E) is a graph of only one vertez v.
Then,

-1 ifa=0,b=1,andec<k;
—00 otherwise.

1 ifa=1,b=0,andc< k-2
a,(G,a,b,c, k) =
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Proof. This follows from the definition. a

Lemma 5. Suppose that G = (V, E) is formed from two disjoint distance-
hereditary graphs G1 = (V1,E)) and G2 = (Va, E3) by a false twin opera-
tion. Then, as(G,a,b, ¢, k) = max{a,(G1,a1,b1,¢, k) +as(G2,a2,b2,¢,k)},
where ay + a3 = a and by + by = b.

Proof. This follows from the definition. m]

Lemma 6. Suppose that G = (V, E) is formed from two disjoint distance-
hereditary graphs G, = (V1, E1) and Ga = (Va, E3) by a true twin operation.
Then, as(G, a,b,c, k) = max{as(G1,a1, b1,c+az—bs, k) +as(Ga, a2, b, c+
a1 — by, k)}, where ay + a2 = a and by + by = b.

Proof. In this case, the graph G is formed from G; and Gz by connecting
every vertex in TS(G)) to all vertices in T'S(G2), and TS(G) =TS(G1) U
TS(Gy).

Assume that f, is an (ay, b1, ¢+ ag — by, k)-function of G; of maximum
weight and f is an (a2, b2, c+a; — by, k)-function of G3 of maximum weight.
We define a function f of G as follows: f(v) = fi(v) if v € V; and f(v) =
fao(v) if v € Vo. Let a = a; + a2 and b = by + by. Then, |TS(G)|=a+b
and f assigns the value 1 (respectively, —1) to a (respectively, b} vertices
in TS(G).

By Definition 2, it is clear that f(Ng([v]) = fi(Neg,[v]) < k—1 for every
vertex v € V1 \TS(G1) and f(Ng[v]) = f2(Ng,[v]) < k—1 for every vertex
v € Vo \TS5(Gy).

We now consider a vertex v € TS(G;). By Definition 2, f1(Ng,[v]) +
(c+ ag — by) < k — 1. Note that Ng[v] N Vo = TS(G2). Then, f(Nglv]) =
f1(Ng,[v]) + a2 — by < k—1—c. We have f(Ng[v]) +c¢ < k — 1. Similarly,
we can prove that f(N¢[v]) + ¢ < k —1 for every vertex v € TS(Gz). The
function f is therefore an (a, b, ¢, k)-function of G. Hence, (G, a,b, ¢, k) >
max{a;(G1,a1,b1,¢ + az — b2, k) + as(Ga,a2,ba, ¢ + a1 — by, k)}, where
a1 +ax =aand by +by=0b.

Conversely, we let f be an (a, b, ¢, k)-function of G of maximum weight.
Let fi be the function of G; defined by fi(v) = f(v) for every vertex
v € V; and let f; be the function of G defined by f2(v) = f(v) for every
vertex v € V. Note that TS(G) = TS(G1) UTS(Gz2). Let a) +a2 =a
and b; + by = b such that |TS(Gl)| = aj + b, and |T'S(G2)| = aa + b.
Assume that f assigns the value 1 to a; (respectively, az) verticesin T'S(G))
(respectively, T'S(G2)) and assigns the value —1 to b; (respectively, b)
vertices in T'S(G)) (respectively, TS(G2)).

Clearly, f1(Ng, [v]) = f(Ng[v]) < k-1 for every vertex v € V}\T'S(G))
and fa(Ng,[v]) = f(Ng(v]) < k for every vertex v € Vo \ TS(Gy).
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We now consider a vertex v € T'S(G1). Since Ng[v])NV, = TS(G2), we

have

f(Neg[v]) +¢ f(Ng,[vJUTS(G2)) +¢
f(Ng,[v])) +az —ba+¢
f1(Noyol) + ¢+ a — by
k-1

IA N0

Therefore, f1 is an (a1,b1,¢ + a2 — bo, k)-function of G;. Similarly,
we can prove that f; is an (ag,bo,c + a1 — by, k)-function of G;. Hence,
as(G, a,b, ¢, k) < max{a,(G1,a1,b1,c+ az — by, k) + 04 (G2, az,b2, ¢ +ay —
b1,k)}, where a; + a2 = a and by + b2 = b.

Following the discussion above, the lemma holds. ]

Lemma 7. Suppose that G = (V, E) is formed from two disjoint distance-
hereditary graphs G, = (Vi,E;) and G; = (V,E;) by a pendant ver-
tex operation. Then, a,(G,a,b,c, k) = max{a,(G1,a,b,c + az — by, k) +
as(Ga,az,b2,a — b, k)}, where as + by = ITS(GQ)I

Proof. In this case, the graph G is formed from G; and G2 by connecting
every vertex in T'S(G) to all vertices in TS(G,), but T'S(G) = TS(G,).
By using the arguments similar to those for proving Lemma 6, the lemma
holds. O

Theorem 5. For any positive integer k, the signed k-independence problem
on distance-hereditary graphs can be solved in polynomial time.

Proof. Following Lemmas 4-7 and the recursive definition of distance-
hereditary graphs in Theorem 4, we can compute the signed k-independence
number of a distance-hereditary graph G in polynomial time. Moreover, it
is not difficult to see that a maximum signed k-independence function can
be obtained in polynomial time. |

5. The signed k-independence problem is not FPT

We have shown that the decision version of the signed k-independence
problem is NP-complete, even when restricted to chordal graphs or bipar-
tite planar graphs. One of the ways to deal with NP-complete problems is
to consider the parameterized complezity of the problems (4]. Many NP-
complete problems have the following general form: given an object z and
an integer k, does = have some property that depends on k. In parame-
terized complexity theory,  is called the parameter. A problem may be
associated with several parameters. If some parameters of a problem in-
stance are small, we might have some hope in finding a polynomial-time
solution to that instance.
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Definition 3 ([4]). Let i be a positive integer. A problem is fized parameter
tractable (FPT) with respect to 7 parameters ky, k2, ..., k; if there exists a
solution running in O(f(k1, k2, ...,k;)n) time, where c is a constant and
f is a function of kj, kg, ..., k; which are independent of n.

However, not all NP-complete problems are FPT (see [4]). In this sec-
tion, we show that the signed k-independence problem, parameterized by
k and weight &, is not FPT. Consider the following problem.

Problem: The zero signed 1-independence problem.

Instance: A graph G = (V,E)

Question: Does G have a signed 1-independence function of weight at
least 07

Lemma 8. The zero signed 1-independence problem is NP-complete for
chordal graphs and bipartite planar graphs.

Proof. The zero signed 1l-independence problem on chordal graphs (re-
spectively, bipartite planar graphs) is clearly in NP. By Theorem 1, we
know that the signed 1-independence problem on chordal graphs (respec-
tively, bipartite planar graphs) is NP-complete. In the following, we show
the NP-completeness of the zero signed 1-independence problem on chordal
graphs (respectively, bipartite planar graphs) by a polynomial-time reduc-
tion from the signed 1-independence problem on chordal graphs (respec-
tively, bipartite planar graphs).

Let P; be a path of 3 vertices. Clearly, a!(P3) = —1. Let G = (V, E)
be a chordal graph (respectively, bipartite planar graph) and let H be the
union of G and j disjoint copies of P;. Obviously, H is a chordal graph
(respectively, bipartite planar graph) and we have

a(H) = a4(G) +j - a3 (Ps) = &, (G) — .
Hence, a}(G) > j if and only if o} (H) > 0. ]

Theorem 6. Even when restricted to chordal graphs and bipartite planar
graphs, the signed k-independence problem, parameterized by k and weight
&, is not FPT, unless P = NP.

Proof. Assume that there exists an algorithm which runs in O(f(k, k)n¢)
time and that determines if a graph G has a signed k-independence function
of weight at least k. Then the zero signed 1-independence problem would
be solvable in polynomial time. By Lemma 8, we know that the signed
k-independence problem, parameterized by k and weight &, is not FPT,
unless P = NP. o
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