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Abstract

An independent set in a graph G is a subset I of the vertices such
that no two vertices in I are adjacent. We say that I is a maximum
independent set in G if no other independent set is larger than I.
In this paper, we study the problem of determining the second and
third largest number of maximum independent sets among all trees
and forests. Extremal graphs achieving these values are also given.

1 Introduction

For a simple undirected graph G = (V, F), a subset I of V(G) is said
to be an independent set of G if there is no edge of G between any
two vertices of I. A mazimal independent set is an independent set
that is not a proper subset of any other independent set. A mazimum
independent set is an independent set of maximum size. The set of
all maximum independent sets (respectively, maximal independent
sets) of a graph G is denoted by XI(G) (respectively, MI(G)) and its
cardinality by zi(G) (respectively, mi(G)).

The problem of determining the largest value of mi(G) in a gen-
eral graph G of order n and those graphs achieving the largest num-
ber was proposed by Erdés and Moser, and solved by Moon and
Moser [6]. It was then extensively studied for various classes of graphs
in the literature, including trees, forests, (connected) graphs with
at most one cycle, bipartite graphs, connected graphs, k-connected
graphs, (connected) triangle-free graphs; for a survey see {3]. Later,
Jin and Li (1] determined the second largest number of maximal in-
dependent sets among all graphs of order n. As for trees and forests,
it was solved by Jou and Lin (5].
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Compared to mi(G), there are fewer results about counting zi(G).
The problem of determining the largest number of maximum inde-
pendent sets among all trees of order n was first solved by Zito [8].
Later, Jou and Chang [4] gave an alternative proof for the solution
to the same problem and further explored the problem for various
classes of graphs, including general graphs, trees, forests, (connected)
graphs with at most one cycle, connected graphs and triangle-free
graphs. Recently, Sagan and Vatter [7] settled the problem for the
family of graphs with at most r cycles.

The purpose of this paper is to determine the second and third
largest number of maximum independent sets among all trees and
forests. Extremal graphs achieving these values are also given.

2 Preliminary

For our discussions, some terminology and notation are needed. For
a graph G = (V, E), the cardinality of V(G) is called the order, and
it is denoted by |G|. The neighborhood Ng(z) of a vertex z € V(G)
is the set of vertices adjacent to z in G and the closed neighborhood
Nglz] is {z} U Ng(z). Two distinct vertices u and v are called
duplicated vertices if Ng(u) = Ng(v). The degree of z is the number
of edges that are incident with = in G, denoted by degg(x). A vertex
z is a leaf if degg(z) = 1. A vertex is called a support vertez if it
is adjacent to a leaf. For a set A C V(G), the deletion of A from
G is the graph G — A obtained from G by removing all vertices in
A and their incident edges. Two graphs G, and G2 are disjoint if
V(G1) N V(G2) = 0. The union of two disjoint graphs G; and G,
is the graph G; U G2 with vertex set V(G1 U G2) = V(G1) UV (G2)
and edge set F(G1 U G2) = E(G1) U E(G2). Let nG be the short
notation for the union of n copies of disjoint graphs isomorphic to
G. A component of odd (respectively, even) order is called an odd
(respectively, even) component. Denote by P, a path with n vertices.

Throughout this paper, for simplicity, let r = v/2.

Lemma 2.1. ([2], [5]) If z is a leaf adjacent to y in a graph G, then
(1) 2i(C) < #i(G — Nela]) +zi(G — Nely))-
(2) zi(G) < 2zi(G — Nglz)).
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Lemma 2.2. ([2], [5]) If z1,%2,...,Zk are k > 2 leaves adjacent to
the same vertez y in a graph G, then zi(G) = zi(G—{z1, 2, ..., Tk, y})-

Lemma 2.3. ([2], [5]) If G is the union of two disjoint graphs G,
and G, then zi(G) = zi(G) - zi(G2).

Lemma 2.4. ([2]) For any graph G, XI(G) C MI(G) and zi(G) <
mi(G). Moreover, zi(G) = mi(G) if and only if XI(G) = MI(G).

The results of the largest numbers of maximum independent sets
among all trees and forests are described in Theorems 2.5 and 2.6,

respectively.

Theorem 2.5. ([2], [5]) If T is a tree with n > 2 vertices, then

. =241, ifn is even;
zi(T) < t'(n) = { =3 i}cn is odd.

Furthermore, zi(T) = t/(n) if and only if T = T'(n), where T'(n) is
shown in Figure 1.

(S IIC)

T/(n), n is even T,(n), n is odd

Figure 1: The graph T"(n)

Theorem 2.6. ([2], [5]) If F is a forest with n > 1 vertices, then

if n is even;

B s fm = { :",‘1, if n is odd.
Furthermore, zi(F) = f'(n) if and only if F = F'(n), where

iy _ | 5P, if n is even;
F(n) = { Piuzslpy, ifnis odd.

The result of the second largest numnber of maximal independent
sets among all forests of even order is described in Theorems 2.7.
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Theorem 2.7. ([4]) If F is a forest of even order n > 4 having
F # 3Py, then mi(F) < 3r"~4. Purthermore, the equality holds if
and only if F = Py U %5 4P2

3 Main results

In this section, we will prove the following two results.

Theorem 3.1. If F is a forest withn > 4 vertices having F # F'(n),
then zi(F) < f"(n), where

n, v _ J 3r™74, ifn >4 is even;
fin) = { 3r"5, ifn > 5 is odd.

Furthermore, zi(F) = f"(n) if and only if F = F"(n), where

F'(n) = Piu "_4P2, ifn > 4 is even;
P1UP4U" 3Py, ifn>5 is odd.

Theorem 3.2. If T is a tree with n > 7 vertices having T # T'(n),
then zi(T) < t"(n), where

#(n) = 37, ifn>71is odd;
3rn6 412 ifn> 8 is even.

Furthermore, zi(T) = t"(n) if and only if T = T"(n), where T"(n)
is shown in Figure 2.

My url nm)

T!(n), n > 7 is odd T!(n), n > 8 is even

Figure 2: The graph T"(n)

We prove Theorems 3.1 and 3.2 by establishing the following four
lemmas.
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Lemma 3.3. If F is a forest of even order n > 4 vertices having
F # F'(n), then zi(F) < 3r"~* with the equality holding if and only
fF=PuU "—;ﬂpg.

Proof. Note that an independent set of PyU 2-2‘—4P2 is maximal if and
only if it is maximum, that is, XI(P; U "T“’Pg) = MI(Py U "T_"Pg).
By Lemma 2.4 and Theorem 2.7, we have the desired conclusion. [J

Lemma 3.4. If F is a forest of odd order n > 5 vertices having
F # F'(n), then zi(F) < 3r™"=5 with the equality holding if and only
ifF=P1UP4U-T%5-P2.

Proof. 1t is straightforward to check that zi(P; U Py U 253P) =
3r"~5. Let F be a forest of odd order n > 5 having F # F'(n)
such that zi(F) is as large as possible. Then zi(F) > 3r"~5. Since
F is a forest of odd order, there exists an odd component, say H.
Suppose that |H| = m > 3, by Lemma 2.3, Theorems 2.5 and 2.6,
3r"5 < zi(F) = zi(H) - zi(F — V(H)) < r™=3.y"~™ = y»=3 which
is a contradiction. It follows that H = P,. Since F # F(n), by
Lemma 3.3, we can see that F — V(H) = P;U 22 P,. In conclusion,

F=P1UP4U"2—:-§P2. O

Lemma 3.5. If T is a tree of odd order n > 7 having T # T'(n),
then zi(T) < 3r™~7 with the equality holding if and only if T =
T (n).

Proof. It is straightforward to check that zi(T§(n)) = 3r"~". Let
T be a tree of odd order n > 7 having T # T'(n) such that zi(T)
is as large as possible. Then zi(T) > 3r"~7. Suppose that T has
duplicated leaves zy, 3, x3, ...,z (k > 3) which are adjacent to the
same vertex y, by Lemma 2.2 and Theorem 2.6, 3r"~7 < zi(T) =
2i(T —{z1, 22, ..., 2k, y}) < max{f'(n—4), f'(n—5)} = r"~5, which
is a contradiction. On the other hand, suppose that there exist du-
plicated leaves z; and z2 which are adjacent to the same vertex y;,
and duplicated leaves z3 and z4 which are adjacent to the same ver-
tex y2, by Lemma 2.2 and Theorem 2.6 again, we have that 37"~7 <
zi(T) = zi(T — {z1,22,91}) = 2i(T — {z1, 22, 11} — {3, 24, 92}) <
f/(n—6) = ™", which is a contradiction. Thus T contains at most
one pair duplicated leaves.
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We claim that the result is true for n = 7. Since T contains at
most one pair duplicated leaves, there are six possibilities for T'. See
Figure 3. Note that TV = T(7), T = T"(7) and T? = T'(7).
On the other hand, by simple calculation, we have xz’(T7(i)) < 3 for
i =3,5,6, a contradiction to zi(T) > 3r"~7 = 3.

T—§4) T'§5) Téﬁ)

Figure 3: The graphs T-}i) (:=1,2,3,4,5,6)

Let n = 2k + 1. We prove the result by induction on k > 3.
The result is true for k = 3. Assume that it is true for all ¥’ < k.
Let = be a leaf lying on a longest path P of T, say P = z,y, 2,....
Since T contains at most one pair duplicated leaves, we assume that
T — Nrlz] is a tree of odd order n — 2. Suppose that T has no
duplicated leaf, there are three cases depending on the structure of
T — Nr[z].

Case 1. T — Np[z] =T'(n - 2).

The only possible graph with this property is the graph T™(n)
shown in Figure 4. By simple calculation, we have xi(T*(n)) = =5,
a contradiction to zi(T) > 3r™~".

Case 2. T — Nr[z] = T"(n - 2).

The possible graphs with this property are the graphs T**(n)
shown in Figure 4. By simple calculation, we have zi(T**(n)) =
3r"=9 g contradiction to zi(T) > 37"~ 7.
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T Y 2z T Y z T Y z

T*(n) T**(n)
Figure 4: The graphs T*(n) and T**(n)

Case 3. T — Nr[z] # T'(n~2) and T — Nr(z] #T"(n - 2).

By induction hypothesis and Lemma 2.1 (2), 3r"~7 < zi(T) <
2zi(T — Nr[z]) < 2t"(n — 2) = 3r*7, which is a contradiction.

From the above arguments, we have that there exists exactly one
pair duplicated leaves in T, say v; and v, which are adjacent to the
same vertex u. Since T # T'(n), then T — {vy,vq,u} # F'(n — 3).
By Lemmas 2.2 and 3.3, we have that 3r"—7 < zi(T) = zi(T -
{vi,v2,u}) < f"(n — 3) = 3r"7, the equalities holding imply that
T — {v1,v2,u} = F(n — 3). Hence we obtain that T = T)(n). O

Lemma 3.6. If T is a tree of even order n > 8 having T # T'(n),
then zi(T) < 3r™~6 + 2 with the equality holding if and only if T =
T (n).

Proof. It is straightforward to check that zi(T/(n)) = 3r"5+2. Let
T be a tree of even order n > 8 having T 3 T"(n) such that zi(T) is
as large as possible. Then zi(T) > 3r"~® + 2. Suppose that T has
duplicated leaves z1, 9, z3,...,Zk (k 2 2) which are adjacent to the
same vertex y, by Lemma 2.2 and Theorem 2.6, 3r*~¢ 42 < zi(T) =
zi(T — {z1,za, - . ., Tk, y}) < max{f'(n—3), f'(n —4)} = r"~*%. This
is a contradiction, thus T has no duplicated leaf.

We claim that the result is true for n = 8. Since T has no du-
plicated leaf, there are six possibilities for T. See Figure 5. Note
that Ts(l) = T"(8) and Téz) = T"(8). On the other hand, by simple
calculation, we have :m'(Ts(i)) < 8 for i = 3,4, 5, 6, a contradiction to
zi(T) > 3r" % +2=8.
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Figure 5: The graphs Tg' @ (:=1,2,3,4,5,6)

Let n = 2k. We prove the result by induction on £ > 4. The
result is true for k = 4. Assume that it is true for all &’ < k. Let z
be a leaf lying on a longest path P of T, say P = z,y,2,.... Then
T — Nr[z] is a tree of even order n — 2. By Theorem 2. 5 we have
that zi(T — Nrz]) < t/(n— 2) =74+ 1. Let H be the component
of T — Nt[y] containing P — Nr[y]. Since P is a longest path of T,
it follows that |H| > 2 and every component of T — (N7[y] U V(H))
is P, or Py, see Figure 6.

So we have that T — Nr[y] = aP, UbP, U H. Since T has no
duplicated leaves, it follows that a = 0 or 1. Suppose that a = 0.
Then H is a tree of odd order n — 3 — 2b > 3. By Theorem 2.5,

Figure 6: The tree T

zi(H) < r?=6-2b By Lemma 2.3, zi(T — Nrly]) < r2b . n—6-2b _
7»~6. Hence, by Lemma 2.1 (1), we have
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b l=t(n-2)
> zi(T — Nrlz))
2 zi(T) - zi(T — Nr[y))
> (3r"64+2)—rnt
=2r" 6 42

which is a contradiction. Hence we obtain that a = 1. There are two
cases depending on the structure of T — Nr[z].
Case 1. T — Nr[z] = T'(n — 2).

Since a = 1, it follows that z is a support vertex of T — Nr[z].
Note that T' # T"(n). Thus we obtain that T = T (n).
Case 2. T — Nr[z] # T'(n - 2).

By induction hypothesis, zi(T — Nr[z]) < 3r"~8 + 2. Since T #
T'(n), we can see that |[H| =n — 4 — 2b > 4 is even. It follows that
b < 258 and zi(H) < r"5-2 + 1. By Lemmas 2.1 (1), 2.3 and

2
Theorem 2.5, we have that

38 > 2, (pn—6-2 1)
> 7% . zi(H)
= zi(T — Nrly))
> zi(T) — zi(T — Nr[z])
> (3642 - (3r" 8 +2)

= 38

Hence the equalities holding imply that b = (n — 8)/2, T — Nr[z] =
T"(n —2) and H = Py. This means that T = T/ (n). O

Theorems 3.1 and 3.2 now follow from Lemmas 3.3, 3.4, 3.5 and
3.6.

In a similar manner as above, we will obtain the results of the
third numbers of maximum independent sets among all forests and
trees in Theorems 3.7 and 3.8, respectively. Here we omit the details
of proof.
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Theorem 3.7. If F is a forest with n > 6 vertices having F' #
F'(n), F"(n), then zi(F) < f"(n), where

576 if n > 6 is even;
1 _ ) zZ )
fin) = { 507, ifn > 7 is odd.

Furthermore, zi(T) = f"”(n) if and only if F = F"'(n), where

F"'(n) = T'(6)U &E—G‘P% ifn > 6 is even;
PuUT'(6)U "—5—"5P2, ifn > 7 is odd.

Theorem 3.8. If T is a tree with n > 8 vertices having T #
T'(n), T"(n), then zi(T) < t"(n), where

£"(n) = 3r"6 +1, ifn> 8 is even;
5779, ifn>9 is odd.

Furthermore, zi(T) = t"(n) if and only if T = T"(n), where T"(n)

is shown in Figure 7.

T (n), n > 8 is even

eRiehuchis

T¥(n), n > 9is odd

Figure 7: The graph T"(n)
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