The g-log-convexity of Domb’s polynomials
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Abstract. In this paper, we prove the g-log-convexity of Domb’s polynomials,
which was conjectured by Sun in the study of series for powers of 7. As a result,
we obtain the log-convexity of Domb’s numbers. Our proof is based on the g-
log-convexity of Narayana polynomials of type B and a criterion for determining
g-log-convexity of self-reciprocal polynomials.
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1 Introduction

The main objective of this paper is to prove a conjecture of Sun [21] on the
g-log-convexity of the polynomials D, (g), which are given by

Dn(q) = é (2)2(2:) (2(:__:)):1". (1.1)

We call D,(g) Domb’s polynomials because {Dy,(1)}.>0 is the ubiquitous se-
quence of Domb’s numbers. These polynomials D, (g) were introduced by Sun
[21] in his study of series for powers of .

Let us first review some definitions. Recall that a nonnegative sequence
{@n}n>o0 is said to be log-concave if, for any n > 1,

2 .
a, = Gn_10n41;
and is said to be log-convex if, for any n > 1,
> 2
An-10n+1 2 Q.

Many sequences arising in combinatorics, algebra and geometry, turn out to be
log-concave or log-convex, see Brenti [4] or Stanley [19].

* corresponding author.
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For a sequence of polynomials with real coefficients, Stanley introduced the
notion of g-log-concavity. A polynomial sequence {fn(gq)}n>o0 is said to be g-
log-concave if, for any n > 1, the difference

F2(q) — fr+1(@) fa-1(q)

has nonnegative coefficients as a polynomial in g. The g-log-concavity of poly-
nomial sequences has been extensively studied, see Bulter 5], Krattenthaler [14],
Leroux [15] and Sagan [18). Similarly, a polynomial sequence { fn(q) }n>0 is said
to be g-log-convex if, for any n > 1, the difference

Fn1(@) fr-1(g) — fE(Q)

has nonnegative coefficients as a polynomial in g. Liu and Wang [16] showed that
many classical combinatorial polynomials are g-log-convex, see also [9, 10, 11].
It should be noted that Butler and Flanigan [6] introduced a different kind of g-
log-convexity.

This paper is mainly concerned with the log-convexity of Domb’s numbers
and the g-log-convexity of Domb’s polynomials. Domb’s numbers appear to be
first discovered by Domb [12]. These numbers play an important role in the s-
tudy of many subjects, such as Bessel functions [2], random walks [3], interacting
systems [12], the third order Apéry-like differential equations [1] and the enumer-
ation of abelian squares [17]. Domb’s numbers also play an important role in the
series expansions for powers of w. Many new Ramanujan-Sato type series for 1/m
have been derived by using such numbers. For example, Chan, Chan and Liu [7]
obtained a formula for 1/ involving Domb’s numbers:

o0
n+1 8
san Dn(D) = 7= (-2

n=0

Sun (20] also conjectured that:

0o 2 2
24071 +26n+52n Dn(1)=2—4~
oy (—256)" n w2

Considering the importance of Domb’s numbers and Domb’s polynomials,
Sun [22] further studied their combinatorial properties, and proposed the follow-
ing conjectures.

Conjecture 1.1 ([22, Conjecture 3.12]). Both {Dp+1(1)/Dn(1)}nz0and { {/Dn(1)}n;
are strictly increasing. Moreover, { "*3/Dn11(1)/ 3/ Dn(1)}n>1 is strictly de-
creasing.

Conjecture 1.2 ([21, p. 17]). The sequence {Dn(q)}n>o0 is g-log-convex.
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Note that the log-convexity of { D, (1)}n>0 is implied by the strictly increas-
ing property of { Dn41(1)/Dn(1)}n30. Itis also clear that the g-log-convexity of
D (q) also implies the log-convexity of {Dn(1)}n>0. Recently, Wang and Zhu
(23] proved the strictly increasing property of {Dp+1(1)/Dpn(1)}n>0, as well as
that of { {/ D, (1)}n>1. Chen, Guo and Wang [8] gave a proof of the strictly de-
creasing property of { "*{/Dn+1(1)/ /Dn(1)}n>1. In this paper, we shall give
a proof of the g-log-convexity conjecture of { Dr.(gq)}n>o0.

It is easy to see that the coefficients of D, (g) are symmetric. Such polyno-
mials are called self-reciprocal. More precisely, we call a polynomial

flg =ao+aig+---+ang"

a self-reciprocal polynomial of degree n if f(q) = ¢™f(1/q). To prove the g-
log-convexity of {D,(g)}n>0, we shall use a criterion for determining g-log-
convexity of self-reciprocal polynomials, which was first obtained in [13]. To
recall this criterion, suppose that { f»(q)}n>0 is a g-log-convex sequence, where

n

falg) =) aln, k). (1.3)

k=0
Forn > 1and0 <t < 2n, let £, be an operator on triangular array {a(n, k) }o<k<n
defined by

Li(a(n,k)) =a(n+1,k)a(n — 1,t — k) +a(n—1,k)a(n+1,t — k)
— 2a(n, k)a(n, ¢ — k), imgkg%.u@

For the remainder of this paper, unless explicitly stated otherwise, we assume that
n, k, t are nonnegative integers. Then our criterion to be used is as follows.

Theorem 1.3 ([13, Theorem 2.1]). Given a log-convex sequence {uk}kgo and
a g-log-convex sequence { fn(q)}n>o as defined in (1.3), let {gn(q)}n>0 be the
polynomial sequence defined by

n

gn(q) = Z a(n, k)uqu. (1.5)
k=0

Assume that the following two conditions are satisfied:
(Cl) for each n > O, the polynomial gn(q) is a self-reciprocal polynomial of
degree n; and
(C2) forgivenn > 1and 0 < t < n, there exists an index k' associated with n, t
such that
20, fO<k<K,

<0, ifk<k<i.

Le(a(n, k) {
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Then, the polynomial sequence {gn(q)}n>o0 is q-log-convex.

To use Theorem 1.3 to prove the g-log-convexity of {Dn(g)}n>0, We shall

take
2
w= () amb=(}) (»23), (16)

and hence, by (1.3), (1.5) and (1.6), we have

=3 (1) (128 w@=D@.  ap

k=0

We need to show that the sequence { fn(g) }n>o0 is g-log-convex, and the triangular
array {a(n, k) }o<k<n satisfies the condition (C2) of Theorem 1.3. For the former,
it suffices to prove the g-log-convexity of the sequence {V(q) }n>0 given by

™ /n\? /2

= k

vn(q)—Z(k) (k)q, (1.8)
k=0

which shall be done in the next section. The key point for proving the latter is to

determine the sign changes of certain polynomial of degree 8 over some intervals,

which is also the most difficult part for our approach. We complete this task by

examining the properties of the derivatives of this polynomial. To simplify the
computations involved, Maple will be frequently used.

2 The g-log-convexity of {V,(q)}r>0

In this section, we are to prove the g-log-convexity of the sequence {V;,(g) }n>o0.
Our proof is based on the g-log-convexity of {W,(¢)}n>0 given by

n 2
Walg) =Y (Z) ¢, @.1)

k=0
which are known as the Narayana polynomials of type B.

Theorem 2.1 ([9, Theorem 1.1]). The polynomials Wp(q) form a q-log-convex
sequence.

The above result was first conjectured by Liu and Wang [16), and then proved
by Chen, Tang, Wang and Yang [9] by using the theory of symmetric functions.
Zhu [24] gave a simple proof of Theorem 2.1 based on certain recurrence relation.

To prove the g-log-convexity of {V;,(¢) }n>0, we further need a result of Liu
and Wang [16], which provides a mechanism of generating new g-log-convex
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sequences of polynomials from certain log-convex sequences of positive numbers
and g-log-convex sequences of polynomials.

Forn > 1and 0 < t < 2n, let Zg be an operator on triangular array
{a(n, k)}OSkSn defined by
a(n+1,k)a(n—1,t —k)+a(n—1,k)a(n+1,t — k)
Li(a(n,k)) = —2a(n, k)a(n,t — k), ifo<k<d{,
a(n+ 1,k)a(n — 1,k) — a%(n,k), iftisevenandk = £.

Liu and Wang’s criterion to determine the g-log-convexity of a polynomial se-
quence is as follows.

Theorem 2.2 ([16, Theorem 4.8]). Let {ux}r>0 be a log-convex sequence and
let { f2(q) }n>0 be a g-log-convex sequence as defined in (1.3). Givenn > 1 and
0 < t < 2n, if there exists an index k' associated with n,t such that

>0, f0<k<k,

<0, ifk<k<i,

Ly(a(n, k)) {
then, the polynomial sequence {gn(q)}n>0 defined by (1.5) is g-log-convex.
The main result of this section is as follows.

Theorem 2.3. The sequence {V,(q)}n>0 given by (1.8) is g-log-convex.

up = (2:), a(n, k) = (Z)z 2.2)

in Theorem 2.2, and accordingly we have
Jn(q) = Wa(q), gnlq) = Vn(9).

Note that {(%°) }x>o is log-convex. By Theorem 2.1, the sequence {f()}nxo is
g-log-convex. In the proof of [9, Theorem 1.3], it has been shown that for given
n > 1and 0 < ¢t < 2n, there exists k' such that

Proof. Take

>0, fO<k<K,

<0, ifk<k<i.

Li(a(n, k)) {

By Theorem 2.2, we obtain the desired g-log-convexity of {V,,(¢)}n>0. |
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3 The g-log-convexity of {D,(q) }n>0

The aim of this section is to prove the g-log-convexity of { Dn(q)}n>o0-
Theorem 3.1. The sequence {Dn(q)}n>o0 is g-log-convex.

As discussed before, we plan to use Theorem 1.3 to prove the above theorem.
Since we have obtained the g-log-convexity of {fn(q)}r>0 as given by (1.7), it
remains to prove the following result.

Theorem 3.2. Let {a(n, k)}o<k<n be the triangular array defined by (1.6), and
let Li(a(n, k)) be given by (1.4). Then, for anyn. > 1 and 0 <t < n, there exists
an index k' with respect to n,t such that

20, f0<k<K,

<0, ifk<k<$.

Li(a(n,k)) {

Let us first make some observations. Forn > 1,0 <t <nand0< k < /2,
we have

n+1\2/2n -2k +2\ (n—1\?/2n -2t +2k—2
c‘(a(n’k))'( k ) (n—k+1)(t—k> ( n—t+k-1 )
. n—1\2/2n—2k -2\ /n+1\2/2n -2t +2k+2

k n—k—1J\t—k n—t+k+1

_2n22n—2k n \?/2n -2t +2k
k n—k J\t—k n—t+k )

By factorization, we obtain

1
Li(a(n, k)) S —E+ 1Pt E+1P@n—2k—1)(2n— 2t + 2k 1)
1 /n\?/2n -2k n \2/2n -2t +2k (n.t)
"?ﬁ(k) (n—k)(t-k) ( n—t+k )'/’ (k),
3.1
where

PO (k) =(n+1)*(n — k)3(n -k +1)3(2n — 2t + 2k + 1)(2n — 2t + 2k — 1)
+(n+1)?m—t+k)3n—t+k+1)32n—2k—1)(2n -2k +1)

—2n?(n—k+1)°3n—-t+k+1)32n -2k —1)(2n — 2t + 2k - 1).
(3.2)
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Clearly, the sign of £(a(n, k)) coincides with that of ¥/(™*)(k) unless t = n
and £ = 0. Then we could divide the proof of Theorem 3.2 into the following
three steps:

(S1) Forn > 1and 0 < t < n, prove that £;(a(n,0)) > 0, see Proposition 3.3;
(82) Forn > 2and 0 < ¢t < n — 1, prove that there exists &’ such that

>0, ifl<k<k,

<0, ifk<k<i,

P9 (k) {

see Proposition 3.4;

(S3) Forn > 2 and t = n, prove that there exists k' such that

>0, fl<k<¥,
’l,b(n’")(k)

<0, ifk <k<E,
see Proposition 3.5.
We first give a proof of the nonnegativity of £;(a(n,0)).
Proposition 3.3. Foranyn > 1and 0 <t < n, we have L(a(n,0)) > 0.

Proof. Forl < n < 4, the nonnegativity of £;(a(n,0)) can be verified directly
as follows:

Lo(a(1,0)) = 4, L1(a(1,0)) =4,

Lo(a(2,0)) =8, L£1(a(2,0)) = 32, L2(a(2,0)) = 24,

Lo(a(3,0)) = 40, £1(a(3,0)) = 320, L2(a(3,0)) = 646, L3(a(3,0)) = 152,
Lo(a(4,0)) = 280, £1(a(4,0)) = 3808,

L2(a(4,0)) = 14296, L3(a(4,0)) = 7772, L4(a(4,0)) = 860.

Then we assume for the remainder of the proof that n > 5. It is easily seen
that the sign of £,(a(n,0)) coincides with that of

GG Caztece)
n?(n+1)2n—-1)(n—-t+1)3(2n -2t — 1)’

where
8(t) =(2n — 1)(2n + 1)t® — 3(2n — 1)(2n + 1)2¢°
+ (2n — 1)(26n3 + 4112 4 21n + 3)t*
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— (2n — 1)(24n* + 54n° + 44n® + 14n + 1)t°
+ n(dn + 1)(n + 1)(4n® + 7Tn? + 3n - 3)¢?
—n2(8n% + 12n - 5)(n + 1)%t 4+ 2n%(2n — 1)(n + 1)°. (3.3)
Then we prove the nonnegativity of £¢(a(n,0)) in two cases:
(i) When t = n > 5, we readily check that
8(n) = —n*(n + 1)(n® +2n% - 3n +2) <0,
thus £, (a(n,0)) > 0.

(ii) When 0 < t < n, it suffices to show that 8(t) > 0. To this end, we consider
the monotonicity of 8(x), regarded as a function of z, over the interval
[0,n —1].

Using Maple we computed the first 4 derivatives of §(x). We have

0 (z) =24(2n — 1) (15(2n + 1)z® — 15(2n + 1)%z
+26n° + 41n? + 21n + 3) .
Note that the axis of symmetry of the quadratic function (¥ (z) is = =

n + 1, then 8®)(z) is decreasing on the interval [0,n — 1]. Since, for
n=>>5,

69(0) = 24(2n — 1)(26n° + 41n% + 21n + 3) > 0,
0D (n — 1) = —24(2n — 1)(4n® + 4n® — 66n — 33) < 0,

we deduce that 8'/(z) increases first and then decreases on [0,n — 1.
Further, direct computation shows that

6"'(0) = —6(2n — 1)(24n* + 54n® 4+ 44n% + 14n + 1) < 0,
6" (n — 1) = 6(2n — 1)(26n3 + 26n% — 126n — 63) > 0,

we conclude that 6”(x) first decreases and then increases on the interval
[0,n —1].

Moreover, it is easy to check that

6”(0) = 2n(4n + 1)(n 4 1)(4n® + 7Tn? + 3n - 3) > 0,

<0,

w (T (68n® + 144n? — 120n3 — 244n? — 24n + 24)n
6 (5) - 8
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and 8”(n — 1) = 8n® 4+ 24n° — 216n* — 112n3 + 64802 — 132 > 0.

Hence, 8'(x) increases first, and decreases later, then increases again on
[0,n —1].
Furthermore, we find that
8'(0) = —n?(n +1)3(8n% + 12n — 5) < 0,
0'(1) = n%(8n% —4n —3)(3n2 - 8n+1) > 0,
6'(n — 1) = —8n® — 24n° + 88n* + 48n3 — 200n% 4 36 < 0.

Then, 8(z) first increases and then decreases on the interval 1, n—1|. (Here
we do not consider the interval [0, n—1], since we only care about the values
of 8(t) for integer t and we shall deal with 8(0) separately.)

Finally, we notice that
6(0) = 2n%(2n - 1)(n+ 1) >0,
8(1) = 2n3(2n — 1)(3n% — 3n — 2) > 0,
6(n—1)=(3n2+3n—2)(n* + 2n® — 92 + 6n + 4) > 0.
Thus, 6(t) > O for any integer0 <t <n—1.
Combining (i) and (ii), we have the desired resuit. |
Now let us determine the sign of (™) (k) forn > 2and0 <t <n —1.

Proposition 3.4. Givenn > 2and0 <t < n — 1, there exists k' with respect to
n,t such that

20, fl1<k<K,
<0, ifk<k<i.

¢ (k) {

Proof. By (3.1) and Proposition 3.3, we know that (™ (0) > 0. Therefore,
if there exists o : 0 < to < t/2 such that (™" (z), regarded as a function
of z, increases on the interval [0, t) and decreases on the interval [tg,¢/2), then
Proposition 3.4 should be true. To this end, we need to determine the sign changes
of the derivative of ¥{™!(z) with respect to z on the interval [0,t/2].

The derivative of 3(™%)(x) with respect to z is
(W9 (=))’ = (22 — tyyp{™ (),
where

¥ (z) =32(2n + 1)2° — 96(2n + 1)tz®
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+6z% (32n* — 8n3(4t — 11) + 4n?(2t — 7)(t — 4)
+2n(24t% — 26t + 29) + 24t — 18t + 11)
— 47t (96n* — 24n®(4t — 11) + 12n°(2t — 7)(t — 4)
+2n(32t2 — 78t 4 87) + 32t? — 54t + 33)
— 22 (128n° — 16n°(16t — 25) + 4n*(12t% — 170t + 125)
+2n3(2t — 1)(20t% + 16t — 167)
—n2(28t* — 160t + 159> + 341t — 134)
—2n(28t* — 82t3 + 72t + 38t — 17)
—28t + 66t3 — 36t% — 11t + 6)
+ 2zt(n + 1) (128n° — 16n*(16t — 17) + 4n®(36t% — 106t + 57)
—2n?(8t3 — 72t% + 138t — 53)
—n(4t? + 413 — 33t + 65t — 28)
—at* +12t° — 3t% — 11t + 6)
+ (n + 1)? (64n® — 16n°(12t — 5) + 8n*(22t? — 21t — 3)
—8n3(4t® - 6t2 -9t +7)
—2n?(12t* — 32t3 4 512 — 45t + 11)
+2n(t — 1)(4t* — 8% +19t% — 15t + 3)

—6t4 + 15t — 12t + 3t) .

Furthermore, the derivative of %{™")(z) is:

@ (@) = 22z — t)pi™? (2), (3.4

1l)én,t)(_,t) =48z4(2n + 1) — 96z3¢(2n + 1)

+ 622 (32n* — 8n3(4t — 11) + 4n®(2t — 7)(t — 4)
+2n(16t% — 26t + 29) + 16t% — 18t + 11)
— 6zt (32n% — 8n3(4t — 11) + 4n?(2t — 7)(¢ — 4)
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+2n(8t% — 26t + 29) + 8t% — 18t + 11)
— (n+1) (128n° — 16n*(16t — 17) + 4n3(36¢2 — 106t + 57)
—2n2(8t® — 72t% + 138t — 53)
—(4t* + 4¢3 — 33t% + 65t — 28)n
-4t +126% — 32 - 11t + 6) .
The derivative of %5 (z) is:
(W5(2))' = 6(2z -ty (z), (3.5)
where
$§ (z) =1622(2n + 1) — 16zt(2n + 1)
+32n* — 8n3(4t — 11) + 4n%(2t — 7)(t — 4)
+ 2n(8t% — 26t + 29) + 8t2 — 18t + 11.

Note that the axis of symmetry of the quadratic function wén't) (x)isz = t/2.
Hence, 1/;(" t) (x) decreases as z increases from O to ¢/2. In addition, forn > 1
and 0 < t < n, we have
p§h ( ) =(8n% +8n +4)(n — )% + (16n® + 44n? + 44n + 18)(n — t)
+8n? + 36n° + 64n? + 40n + 11 > 0,

thus 5% () decreases on the interval [0,t/2].
We also check that, forn > 1and0 < ¢t < n,

P (§> = — (8n% + 10n + 5)(n — t)* — (32n° + 70n? + 50n + 15)(n — t)3

— (48n* +150n° + 165n% + 72n + 27 )~ t)?
— (32n° + 130n* + 200n° + 15202 4 49n + 11)(n — ¢)
— (8n® + 40n® 4 80n* 4 9503 + 1;—3112 +23n46) <0,

P (0) =(n + 1) (4t4(n + 1) + 43(n + 1)(4n — 3)
—3t2(48n3 + 48n% + 11n — 1)
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+8(256n* + 424n® + 276n? + 65n + 11)

—2(n + 1)(64n* + 72n% + 42n% + 11n + 3)) .
So when wén’t)(O) > 0, there exists 0 < zp < t/2 satisfying
5 (z0) = 0, (3.6)

and ¢§"") (z) is decreasing on [0, zo] and increasing on [zo, t/2].
Otherwise, %52 (0) < 0, ™" (z) is increasing on [0, ¢/2].
We are now ready to determine the sign changes of (¥(™*)(z))’ based on the

above monotonicity of ¢§""’ (z). For this purpose, the values of ¢§“"’ (z) at the
two endpoints of the interval [0, ¢/2| are to be examined.

It is easily verified that wﬁ""’(t/z) > O for any integersn > 2and0 <t < n.
Using Maple, we find that

™ (%) = (4(2n - t)°(2n® +2n + 1)

+2(2n —t)*(10n% — 2n — 1)
+(2n —t)3(20n? — 46n — 23)
+10(2n — t)3(2n% — 6n — 3)
+4(2n — t)(14n% — 6n — 3)

2n—t+2)
8 ’

which is greater than 0 whenever n > 4 and 0 < ¢t < n. It remains to check that
¢§"">(t/2) > 0 for n = 2, 3. In fact, for n = 2, we have 0 < ¢t < 2 and hence

+56n?)

¢§2,t) (%) =(52(4 — t)5 +70(4 — t)4 -354— t)3 —70(4 - t)2 + 880 — 164¢)

6t
><-—8—>0.

For n = 3, we have 0 < t < 3 and hence
@o(t)_ 5 4 3
N 3 =(100(6 — t)° + 166(6 — t)* + 19(6 — t)

—30(6 — t)? — 420t 4 3024))
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8-t

X > 0.

As we see, the value of ¢§"-‘> (t/2) must be positive. We consider the monotonic-
ity of 9(™*) () in the following three cases by taking into account the value of zg

and the sign of ¥{™"(0):

(i) ¥{™?(z) increases on [0,¢/2] and %™?(0) > 0. In this case, ¢{™*)(z)
increases from a nonnegative value to a positive value as z increases from
0 to /2. Thus, (™% (z))’ takes only nonpositive values on [0, ¢/2]. This
means that 1(™*)(z) decreases on the interval [0,¢/2).

(ii) 1,0%"") (z) increases on [0,¢/2] and ¢§"")(0) < 0. In this case, wgn’t)(x)
increases from a negative value to a positive value as z increases from 0 to
t/2. Then, there exists 0 < ¢y < t/2 satisfying

<0, if0<z <,
¥z

>0, ifto<z<t/2
Hence, we have
2> 01 if 0 <z < &o,

(n,t) !
e { <0, ifto<z<t/2

which means that (™) (z) is increasing on [0, to] and decreasing on [to, ¢/2].

(iii) w{"'t)(x) is decreasing on [0, zo] and increasing on [zo, t/2] (zo is defined
in (3.6)). In this case the desired monotonicity of (™" (z) on [0, ¢/2] fol-
lows by using similar arguments as in case (ii), provided we have wg""’ (0) <
0. Note that %{™*(0) > 0 in this case.

Now we are to deduce 1,/)5"’“(0) < 0 from ¢§"")(0) > 0. Using Maple, we
find that

™MD (0) =(n + 1) (8nt® — 6t4(2n + 1) — £3(32n° — 64n? — 54n — 15)
+2t%(88n* + 24n® — 5102 — 34n — 6)
—3t(64n® + 56n! — 24n® — 30n% — 12n — 1)
+2n(n + 1)(32n* + 8n® — 20n? — 8n - 3)),

Wi (0) =(n+1) (4t*(n + 1) + 4t°(n + 1)(4n - 3)
—3t2(48n3 + 48n2 + 11n — 1)
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+¢(256n* + 424n3 + 276n° + 65n + 11)

—2(n + 1)(64n* + 720 + 42n% + 11n + 3)) .

Recall that 0 < ¢t < n—1 by the hypothesis. We may regard 11;{"") (0)/(n+
1)2 as a polynomial in the variable ¢ over the interval [0,n — 1], denoted by

£(t), and similarly, regard wén’t)(O) /(n+1) as a polynomial 7(t). Now we
can divide the proof of wﬁ""’ (0) < 0 into the following three statements:

Claim 1. For 0 < ¢ < n — 1,if ${"9(0) > 0, then n # 2,3, 4.

Proof of Claim 1. In fact, it is routine to check that 1/)%"") (0) < 0if (n,t) €
{(2,0),(2,1),(3,0),(3,1),(3,2),(4,0), (4,1), (4,2), (4,3)}, which con-

tradicts the positivity of %% (0). (]

Claim 2. For any integer n > 4and 0 < t < n — 1, the polynomial £(t)
takes only negative values on the interval [%n, n—1].

Proof of Claim 2. Note that, for 4 < n < 7, £ only takes the integer value
n — 1 on the interval [3n,n — 1]. And it is routine to check that for n > 4,

E(n —1) = —8n% — 14n* + 11903 + 75n% — 100n — 36 < 0.

When n > 8, we need to consider the derivatives of the first three orders of
£(t) with respect to ¢:

£'(t) =40t — 24t3(2n + 1)% - 3t2(32n® — 64n? — 54n — 15)
+ 4t(88n* + 24n® — 51n? — 34n — 6)
—192n5 — 168n* + 7203 + 90n? + 36n + 3,
£"(t) =160nt® — 72t%(2n + 1) — 6t(32n3 — 64n? — 54n — 15)
+ 352n% 4 96n3 — 204n? — 136n — 24,
£"(t) =480nt? — 144t(2n + 1)% — 192n° + 384n? + 324n + 90.

Note that, when n > 8, the axis of symmetry of the quadratic function
2

g"(t)ist = §%—”— < 32, meaning that £”'(t) increases on the interval

(3n,n —1).

Further

€"(n —1) = —288n3 — 576n% + 1236n + 234 < 0,

then £”(t) < O when t € [3n,n — 1] and £”(t) decreases on the interval
(3n,n —1).
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Similarly, since
£"(n — 1) = 32n* + 48003 + 432n? — 674n — 186 > 0,
£'(t) increases on the interval [3n,n — 1].

Also,

4 B
and £'(n — 1) =8n% — 8n* — 33073 — 20912 + 284n + 96 > 0,

&’(3—n)= 315 s 57 4+213n2+18n+3<0

imply that £(t) decreases at first and then increases as ¢ varies from 2 T to
n-—1.
Recall that §(n — 1) < 0 and

3 (%n) = 128(25n — 52n% + 8313 + 2614n2 + 224n + 480) < 0,

we obtain £(t) < O for any ¢ € [3n,n — 1] when n > 8.
This completes the proof of Claim 2. |

Claim 3. For any integern > 4and 0 <t < n — 1, n(t) < 0 for any
t€[0,3n).
Proof of Claim 3. For n > 4, it is easy to compute that

n(0) = —2(n + 1)(64n* + 72n3 + 42n% 4+ 11n + 3) < 0,

3\ _ _575 o 2051 , 357 , 889 , 79
"(4")' F S T S T s A

The first order derivative and the second order derivative of 7(t) with re-
spect to ¢ are

7'(t) =16t*(n + 1) + 12¢(n + 1)(4n — 3) — 6t(48n° + 48n2 + 11n — 1)
+ 256n* + 424n® + 27602 + 651 + 11,

7" (t) =48t3(n + 1) + 24¢(n + 1)(4n — 3) — 28803 — 288n? — 66n + 6.

Note that the axis of symmetry of the quadratic function 7" (t) is

3
= — —_—— 0
(n 4)< ?

that is to say, 7"/ (t) increases on the interval {0, 3n/4].

365



And with,
n"'(3n/4) = — 189n3 — 243n? — 120n + 6 < O,

we have 5”'(t) < O for any t € [0,3n/4], therefore 7'(t) decreases as ¢
increases from 0 to 3n/4.

From
’ n+ 1 3 2
7 (3'n/4) =—4—(295n + 591n° + 234n + 44) >0,

n(t) should be increasing on the interval [0, 3n/4]. Therefore, 7(t) < O for
any t € [0, 3n/4] since both 77(0) and n(3n/4) are negative. This ends the
proof of Claim 3. |

Now we can prove %{™(0) < 0. Since ${M(0) > 0, it follows that
7n(t) > 0 and n > 5 by Claim 1, then by Claim 3, we must have t > 3n/4.

Then by Claim 2, we get £(t) < 0, and hence 1/)§"") (0) < 0, as desired.

Combining (i), (ii) and (iii), we have completed the proof. ]
The above proposition is the key step for the proof of Theorem 3.2. But we
need one more proposition.

Proposition 3.5. Given n > 2, there exists k' with respect to n such that

; /
¢(n,,,)(k){ 20, f1<k<K,

<0, ifk<k<3.
By (3.2), we have

P (z) =82%(2n + 1) — 32nz"(2n + 1)
+ 22%(8n% + 9203 4 9202 + 40n + 11)
— 2nz®(24n* + 164n° + 220n? + 120n + 33)
+ z4(52n° + 300n° + 435n% + 205n° + 11n% — 23n — 6)
- 2nz%(12n° + 64n° + 87nt + 5n® — 44n? — 23n ~ 6)
+ nz?(n + 1)(4n8 + 16n° — 3n* — 63n3 — 34n% —7Tn - 3)
+ n22(6n° + 19n% — 2n + 3)(n + 1)2

—n2(n® +2n? - 3n +2)(n + 1)
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To determine the sign of (™™ (k), the derivative of 1(*™)(z) with respect to z
would be considered. Using Maple, we have

@(@) = (22 - n)y{™"(z),
where
™™ (z) =322%(2n + 1) — 96nz°(2n + 1)

+ 62%(8n* + 76n° + 84n% + 40n + 11)
— 4nz®(24n* + 148n° + 21202 + 120n + 33)
+ 222(28n° + 152n° + 223n* + 8513 — 22n% — 23n — 6)
— 2nz(n + 1)(4n® + 16n* + 303 — 38n% - 17n — 6)
—n(6n® + 19n% — 2n + 3)(n + 1)2.

Taking the derivative of ¥\™™ (z) with respect to z again:

Wi (@)’ = 202 — )™ (@),
where
S (z) =482%(2n + 1) — 96nz3(2n + 1)
+ 622(8n* + 60n° + 76n% 4 40n + 11)
— 6nz(8n* + 44n® + 68n? + 40n + 11)
+ (n + 1)(4n® + 16n* + 3n® — 38n% — 17n — 6).

We further need to consider the derivative of ¢(" ™) (z) with respect to x:

(@5 ()’ = 6(2z — n)y{™™ (),
where

5™ (z) =1622(2n + 1) — 16nz(2n + 1) + 8n* + 44n3 + 68n? + 40n + 11.

Note that the axis of symmetry of the quadratic function 1/);(,"’")(2:) isz =n/2,
and, forn > 2,

${™(0) = 8n* + 44n3 + 68n? + 40n + 11 > 0,

$§™ (n/2) = 8n* + 36n° + 64n? + 40n + 11 > 0.
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Thus, 1,1:§"'")(:c) decreases from a positive value to a positive value as z increases

from O to n/2, which implies that ¥ () decreases as = increases from 0 to

nf2.
In addition, for n > 2,
P$§™(0) = 4n® + 20n° + 19n* — 35n% — 55n% — 23n — 6 > 0,

$§"™ (n/2) = —8n® — 40n® — 80n* — 95n° — %nz —-23n-6<0,

therefore ™™ (z) decreases from a positive value to a negative value as z in-

creases from 0 to n/2. Hence, there exists 0 < xo < n/2 such that

SO, ifoﬁxsxo,
>0, ifzg<z<n/2

w@”@w{

In view of that, forn > 2,

(m)(0) = —6n° — 31n® — 42n* — 180 — 4n® - 3n < 0,

nn 11 19 , 3 83 13
W )(n/2) =n8 4 —2—n7 + ?ne + §n5 — —8-n4 - 7113 -n?2-3n>0,
there exists 0 < x; < /2 with
<0, ifo<Lz <Lz,
W@ D ‘
>0, ifz; <z<n/2

Therefore,

>0, if0<z<m,
<0, ifz;<z<n/2

wmmww{

Moreover, it is easy to verify that, for n > 2,

P™™(0) = —n%(n® + 2n? - 3n +2)(n +1)* <0,

P (1) = n%(3n? — 3n — 38) + 3n%(18n% — n — 24) + 35n% — 16n + 24 > 0,
P (n)2) = --;—2712(11 —1)(2n® + 3n% — 5n — 8)(n +2)3 < 0.

Then, there exists 1 < z2 < n/2 satifying

P (z) {

20, ifleSxZw
<0, ifzs<z<n/2
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Thus, there exists an index k' = k’(n, n) for which (™™ (k) > 0forl1 < k < k’

and (™™ (k) < 0 for ¥’ < k < n/2, as desired. This completes the proof. 1
We now come to the proof of Theorem 3.2.

Proof of Theorem 3.2. By Proposition 3.3, foranyn > 1and 0 < ¢t < n, we

have £,(a(n,0)) > 0. Given n > 1, it suffices to show that, for 0 < t < n,

there exists k' such that L;(a(n,k)) > 0for1 < k < k' and £L;(a(n, k)) < O for

k' < k <t/2. By (3.1), for k > 1, the sign of L;(a(n, k)) coincides with that of

%™ (k). From Propositions 3.4 and 3.5, we obtain the desired result. [
Finally, we can prove the g-log-convexity of {D,(g)}n>0-

Proof of Theorem 3.1. Combining Theorems 1.3, 2.3 and 3.2, we obtain the de-

sired result. 1
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