The Signless Laplacian spectral radius of
bicyclic graphs with order n and girth g

Jing-Ming Zhang, Ji-Ming Guo

College of Mathematics and Computational Science in China University of
Petroleum, Dongying 257061, Shandong Province, China

Abstract

In this paper, we determine the unique bicyclic graph with the
largest signless Laplacian spectral radius among all the bicyclic
graphs with n vertices and a given girth.
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1 Introduction

Let G = (V,E) be a simple connected graph with vertex set V =
{vi,v2, -+ ,v,} and edge set E(G). Denote by d(v;) the degree of the graph
G, N(v;) the set of vertices which adjacent to vertex v;. Let A(G) be the
adjacency matrix of the graph G. The signless Laplacian matrix of G is de-
fined as Q(G) = D(G) + A(G), where D(G) = diag(d(vy),d(v2) - -+ ,d(vz))
denotes the diagonal matrix of vertex degrees of G. It is easy to see that
Q(G) is a positive semi-definite matrix. Hence the eigenvalues of Q(G) can
be ordered as

q1(G) 2 q2(G) 2 -~ 2 gn(G) 2 0.

The largest eigenvalue g, (G) of Q(G) is called the signless Laplacian spec-
tral radius of the graph G, denoted by ¢(G). If G is connected, then Q(G)
is nonegative irreducible matrix and by the Perron-Frobenius theory of
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non-negative matrices, ¢(G) has multiplicity one and there exists a unique
positive unit eigenvector corresponding to g(G). We shall refer to such an
eigenvector as the Perron vector of G.

A bicyclic graph is a connected graph in which the number of vertices
equals the nuinber of cdges minus one. An edge uv of G is called a pendant
edge if d(v) = 1.

The spectral radius of the adjacency and Laplacian matrix of unicyclic
and bicyclic graphs with k pendant vertices has heen studied, recently (see
[1)[2]). And, in [3], M. Zhai, G. L. Yu and J. L. Shu determined the graph
with the maximal Laplacian spectral radius among all the bicyclic graphs
with given order and girth.

In this paper, we determine the bicyclic graph with the largest signless
Laplacian spectral radius among all the bicyclic graphs with order n and
girth g.

2 Preliminaries

Denote by C, and P, the cycle and the path with n vertices, respec-
tively. Let G—z or G—zy denote the graph obtained from G by deleting the
vertex = € V(G) or the edge zy € E(G). Similarly, G + zy is a graph that
obtained from G by adding an edge =y, where z,y € V(G) and zy ¢ E(G).
We will usec B(n,g) to denote the set of all bicyclic graphs with order n
and girth g.

Let Cp and C, be two vertex-disjoint cycles. Suppose that v; is a ver-
tex of Cp and v; is a vertex of C,. Joining v; and v; by a path vive---u
of length I — 1, where | > 1 and [ = 1 means identifying v; with v, de-
noted by B(p,l,q), is called an co— graph (see Fig. 1). Let P1, Ppyy
and Py4y be the three vertex-disjoint paths, where /,p,q > 1, and at most
one of them is 1. Identifying the three initial vertices and the three ter-
minal vertices of them, respectively, denoted by P(p,q,), is called a 08—
graph (sce Fig. 2). Obviously, B(n,g) consists of two types of graph:
one type, denoted by Bj(n,g), are those graphs each of which is an co—
graph with trees attached; the other type, denoted by Ba(n,g), are those
graphs each of which is #§— graph with trees attached. Then we have
B(n,g) = Bi(n,g) U Ba(n, g)-

Denote by BE  the graph obtained from B(p, 1,¢) by attaching k pen-
dant edges to u, where u is the vertex with degree 4 of B(p,1,q) (see Fig.
1). Denote by P¥_ .. the graph obtained from P(p, q,r) by attaching k pen-

g7
dant edges at one of the vertices with degree 3.

Lemma 1([4]). Let G be a simple graph on n vertices. Then
min{d(v;)+d(v;)|viv; € E(G)} £ q(G) < maz{d(v;) +d(v;)|viv; € E(G)}.
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For a connccted graph G, equality holds in either of these inequalities if
and only if G is regular or semiregular bipartite.

Lemma 2([4,5]). Let G be a connected graph, and u,v be two ver-
tices of G. Suppose that vy, v, -+ ,vs € N(v)\N(u) (1 £ s < d(v)) and
z = (x1,%2, - ,Zn) is the Perron vector of G, where z; corresponds to the
vertex v; (1 < i < n). Let G* be the graph obtained from G by deleting
the edges vv; and adding the edges uwv; (1 < ¢ < s). If z, > =z,, then

9(G) < q(G*).
By Lemma 2, it is easy to get the following corollary

Corollary 1. Let G be a connected graph and let ¢ = uv be a non-
pendant edge of G with N(u)(YN(v) = 0. Let G* be the graph obtained
from G by deleting the edge uv, identifying « with v (Suppose the new
vertex is u), and adding a pendant edge to u), then ¢(G) < ¢(G*).

Corollary 2. Let G he connected graph, uwuy, uus, - -, uus; vvy, vvg, - -,
vy, be pendant edges of G, where u and v are two different vertices of G.

Let Gy =G —-vvy—---—vyy+un + - +uv, Go =G —uyy — -+ —uu, +
vuy + -+ - + vu,. Then we have either ¢(G1) > ¢(G) or ¢(G2) > ¢(G).

iVs d j 3
Let m(v;) = T dff ®;) be the average of the degrees of the vertices

of G adjacent to v;, which is called average 2-degree of vertex v;.

From the proof of Theorem 3 of [6] and Theorem 2.10 of [7], we have
the following result. ’

CPO@oq @ ..@c

B(p,1,q) B(p,1,q) (1 22)

Fig.1 B(p1,Q) and B(p,l,q)( >2)
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Lemma 3. If G is a graph, then

d(u)(d(u) + m(u)) + d(v)(d(v) + m(v))
d(u) + d(v)

q(G) < maz{ : uwv € E(G)},

with equality if and only if G is regular or semiregular bipartite.

By similar reasoning as Theorem 2.4 of 7], we have
Lemma 4. Let G be a connected graph, then

q(G) € maz{d(v;) + m(vi)|v; € V(G)},
the equality holds if and only if G is either regular or semiregular bipartite.

Lemma 5([4,8]). Let G he a simple graph on n vertices which has at
least onc edge. Then

A(G) +1 < q(G) £24(G),

where A(G) is the largest degree of G. Moreover, if G is connected, then
the first equality holds if and only if G is the star K; »,—;; and the second
equality holds if and only if G is a regular graph.

3 Main results

Theorem 1. Let G € By(n,g). Then

4
n—2g+1 — -
q(G) < q(By, }<n 2g+6+n_2g+5,
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where n > 2g — 1. The equality holds if and only if G = B;;z-"“.

Proof: Choose G* € Bj(n,g) such that the signless Laplacian spectral
radius is as large as possible.

Let V(G*) = {vy,va, - ,vn} and X = (21,29, -+ ,2,) be the Perron
vector of G*, where z; corresponds to the vertex v;.

Fromn Corollaries 1 and 2, it is easy to see that G* is obtained from
B(g,1,q9) q > g by attaching n—(g+¢)+1 pendant edges ww;, wws, -+ ,ww
n—(g+q)+1 at some vertex w of B(g, 1,q).

Suppose w € V(C,) and w # u. If Ty 2>y, let G = G* —u2z; —uzp +
wz) + wzg, where uzy,uzg € E(Cy); lf Ty, < Ty, let G =G* —wwy--- —
WWn(g+q)+1 + YW1 + - + UWp_(g4q)+1- By Lemma 2, ¢(G) > ¢(G*),
a contradiction. Hence w = wu, where u is the vertex with degree 4 of
B(g,1,q). By similar reasoning as above, if w € V(C,), then w = u. From
Corollary 1, we have ¢ = g in G*. By Lemma 4, we have ¢(Bj;29%!) <
maz{d(v;) + m(v;)|v; € V(B;;zg"'l)} =n-29+6+4 ﬁg. 0

Theorem 2. Let G € By(n,g), n > [3] — 1. Then
-3+
4(G) < a(Plf) )

_r3
the equality holds if and only if G = Pl" 2 J{f_z-;“:ﬂ‘

Proof: Choose G* € Ba{n,g) such that the signless Laplacian spectral
radius is as large as possible. From Corollaries 1 and 2, G* is obtained
from P(p,q,r) by attaching s =n — (p+ g+ ) + 1 pendant edges at some
vertex, say u, of P(p,q,r). Without loss of generality, assume p < ¢ < r,
then p+ g =g.

Now we prove that p = |£], ¢g=r = [£]. If g is even, let g = 2a. Then
p+g=9g=2a,andn>p+g+7r—12>3a—1. Without loss of generality,
we distinguish the following three cases.

Casel Ifn= %‘1—1:3a—-1,thenp+q+r—1=3a—1. Sor=a,
p=gq=a.

Case 2. If n = 32-‘1 =3a, then 3a <p+q+r<3a+1. Sincep+¢g=2a
andp<g<r,wehavea<r<a+l.a<g<a+landa>p>a-1.
Hence, (p,q,7) € {(a,q,a),(a,a,a+1),(a - 1,a+ 1,a + 1)}. If (p,q,7) =
(a—1,a+1,a+1), then G* = P(a—1,a+1,a+1). If (p,q,7) = (a,a,a+1),
then G* = P{a,a,a + 1). Suppose that (p,q,7) = (a,a,a). If a = 2, by
software Matlab, we can get g(P(2,2,3)) =~ 4.9032 < Q(le,z,z) ~ 5.5141,
q(P(1,3,3)) & 5 < q(P35,) = 5.5141. If a > 3, by Lemma 1, we can get
9(G) < {d(v:) + d(v;)|viv; € E(G)} = 5, however, g(P}, ) > A +1=35,
a contradiction. Hence, p=¢q=r =a.
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G, G, G,
4 G;
Fig.3 G,-G;

Case 3. Suppose that n > %{1 +1=3a+1.

If r = a, then p = q = a. If > a + 1, then the number of pendant
edgesof G*isk=n—(p+g+r)+1<n—-2a—a—1+1=n-3a. It is easy
to see that maz{d(v;) + m(v;)|v; € V(G)} attains the maxium just when
p = 1 and k pendant edges of G* are adjacent to a vertex with degree 3 of
P(p,q,r). By Lemima 4, we have

¢(C") < maz{d(v;) + m(v)lvi € V(G)} = k+3+ % —k+da+ ﬁ‘g
Note that k + 4 + ﬁ is increasing with nonnegative number k. Thus
g(G*) < n — 3a + 5, since n > 3a + 1. But, by Lemnma 5, q(BZ_;?:‘“) >
A+1=n-3a+5 > q(G*), a contradiction. Hence r =p=g=a.

If g is odd, by similar reasoning as above, the result follows.

In the end, we prove that u is one of vertices with degree 3 of P(| ], %1,
[41). Suppose that u is some vertex with degree 2 of P(12.T£1,T%D)-

Assume that k =n — [3]+1 =1 If g € {3,4,5}, then G* is one of
graphs G;,G2,G3 and G4 (see Fig.3). Straigthforward calculations show
that q(Gy) = 5.4679 < q(Pl,,) =~ 5.7785, q(G2) =~ 5.2361 < q(P},,) =
5.5141, and ¢(G3) =~ 5.0664 < q(P3a3) ~ 5.3552, q(G4) =~ 4.9891 <
q(Pj 3.3) = 5.3552, a contradiction.

If g > 6, then by Lemma 3, we have ¢(G*) < 5.2. However, when
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g > 6, Gs (see Fig.3) is a subgraph of PLI% 181187 By Matlab, we have
q(PLX:}J.I'%H%]) > q(Gs) =~ 5.2361 > 5.2. a contradiction.

Assume that £ > 2. By Lemma 4, We have ¢(G*) < k + 4. However,
by Lemma 5, we have Q(Plkéj.r%].[ﬁ) > k+4 > q(G*), a contradiction.

. __ n—fgaHl
So G* = Pg| 141 U

n-5
Vv ... r
e I
w u
Rz B3

Fig. 4 P,f'{_; and B;;s

Theorem 3. Let G € B(n,g). Then
n—[2
ORTGHE AL

The equality holds if and only if G = n% Jréﬁg]

Proof: By Theorems 1-2, we only need to prove that q(B"‘29+1) <

n_

q(P, 4], f%] r§1) Suppose that g = 3. Let X be a Perron vector of By3°,
where B} 3 3.3 5 is the graph shown in Fig. 4.

If 2, > zy, let G* = B;‘,g5 — vw + vr, where u,w,v,r are vertices

of B:;‘,;s with degree two, respectively (see Fig. 4); If z, < xw, let G* =

35‘55 —ur+uw. It is easy to see that G* = Pl"; 2y Where P1 2.2 Is the graph

shown in Fig. 4. And by Lemma 2, we know that q(BZ{'S) < q(Pr33)-

Suppose that g > 4. If n < 2g—1, then G = Pl"{J[r";] i (since B;gzg+l
doesn’t cxist); If n > 2g — 1, by Theorem 1, we know

<n—29+7.

4
n—2g+1 - _—_—
9(Bg }<n 2g+6+n 5915 =

n 1
By Lemma 5, q(PléJrrg”%])>A+l—n —-‘1+5 When g > 4, n——‘1+
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5—(n—29+7) = |§] ~ 22 0. Thus (B35**) < a(Py fj11j0)- O
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