BI-PERIODIC INCOMPLETE LUCAS SEQUENCES

ELIF TAN AND ALI BULENT EKIN

ABSTRACT. Motivated by the recent work by Ramfrez [8], related
to the bi-periodic Fibonacci sequences, here we introduce the bi-
periodic incomplete Lucas sequences that gives the incomplete Lucas
sequence as a special case. We also give recurrence relations and
the generating function of these sequences. Also, we give a relation
between bi-periodic incomplete Fibonacci sequences and bi-periodic
incomplete Lucas sequences.

1. INTRODUCTION

The Fibonacci numbers F;, are defined by the recurrence relation
Fo=Fa1+Fu 2 n>2

with the initial conditions Fy = 0 and F; = 1. The Lucas numbers L,,,
which follows the same recursive pattern as the Fibonacci numbers, but
begins with Ly =2 and L, = 1.

These numbers are famous for possessing wonderful properties. In par-
ticular, there is a combinatorial identity for Fibonacci numbers and Lucas
numbers; see, e.g., [5]
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In analogy with (1) and (2), the incomplete Fibonacci and incomplete Lucas
numbers were introduced by Filipponi [3], as follow

F (s) Z(“‘:”), n=1,23.0<s< [”glj

i=0
s

L.(s) = Znt‘_i(n;i), n=1,23.;0<s< [gJ

i=0

Note that in the case of s = [ﬂ-glj , incomplete Fibonacci numbers reduce
to Fibonacci numbers and in the case of s = | }| , incomplete Lucas num-
bers reduce to Lucas numbers. The generating functions of the incomplete
Fibonacci numbers and the incomplete Lucas numbers were given by Pintér
and Srivastava (7).

There are a lot of generalizations of Fibonacci numbers and Lucas num-
bers. Edson and Yayenie [2] introduced a generalization of Fibonacci num-

bers defined by
aqn—1 + gn—2, ifniseven
= >
n { bgn—1 + gn—2, ifnisodd ’ nz2 (3)

with initial values go = 0 and ¢q; = 1, where a and b are nonzero numbers.
If we take @ = b = 1 in {g.}, We get the classical Fibonacci sequence.
Yayenie [10] gave an explicit formula of g,:

Sl IV o
=t 3 (" ! )(ab)L—r - ()

where £ (n) =n—2|%],ie, £(n) =0 whennisevenand £ (n) = 1 whenn
is odd. Ramirez {8] defined the bi-periodic incomplete Fibonacci numbers
as:

4 (z)=af<"-‘>i)("‘j‘i) @l osis |22

i=0
by using (4), and gave the generating function for this sequence.
Similar to (3), by taking initial conditions po = 2 and p; = a, Bilgici {1]
introduced the bi-periodic Lucas numbers as:

bpp—1 + Pn—2, ifniseven
P { apn—1 + Pn—2, ifnisodd n= (6)

It should also be noted that, it gives the classical Lucas sequence in the
case of a = b = 1in {p,}. See also [4] and (6], for another generalization
of Lucas numbers.
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Following Ramirez’s suggestion (8], we introduce the bi-periodic incom-
plete Lucas sequences, and give recurrence relations (13)-(14), the gener-
ating function (17), and the relation between bi-periodic incomplete Fi-
bonacci sequences and bi-periodic incomplete Lucas sequences (16).

2. BI-PERIODIC INCOMPLETE LUCAS SEQUENCE

Lemma 2.1. Forn > 1, the explicit formula to bi-periodic Lucas numbers
is

P = af™ Z — (” N ) (ab)LH]-. (7)

z=0

Proof. We prove it by induction on n. It is clear that the result is true
when n = 1. Assume that it is true for any m such that 1 < m < n. Then
by induction assumption, we get

Pni1 = al=¢m bE(n)pn +Pn-1

L] .
= al-EMpEmIgEm 3 % (" i 2) (ab)l3]-
i=0
n-l

Faf(n=D z e G L L

i=0

= gl—€m) l}?_: nL_Z (" : ’) (ab)LF]-i+¢m)

- z n—1 n—1-— n-1
+af(m=1) Z n—l-—z( . )(ab)l
=0

n

1]

gD g _1_2( ":‘i) (ab)l = ]-i-1

= fn+1) Z ( :’) (ab) L")

1=0
Z = (2] @l
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= gf(n+1) ((ab)l%"J +2¢ (n))

+as(wl)%J SO ) B
e n—1 i n-—

1(':_ )]( pyl=F ]
= gf(n+1) ((ab)l-q'l'-l +2¢ (n))
(3]

£(n+1) ntl (ntl=t) et
w5 (T e
_ gD anlJ n+1 n+1—1 (ab)LL‘j{_‘J_i
B = n+l-i i '
Thus, the given formula is true for any positive integer n. O

By using Lemma 2.1, we can give the definition of bi-periodic incomplete
Lucas numbers.

Definition 2.2. Let n be a positive integer and | be an integer such that
0 <1< |%| The bi-periodic incomplete Lucas numbers are defined as

pn(l) = at®) Z

Ve e e

For a = b = 1, we obtain the incomplete Lucas numbers.
By (8), it is easy to see that

pa(0) = af™ (@)l n>1 ©)

(1) = o™ (ab)lﬂ + af(™)n (ab) l%)-1 , n>2 (10)

Pn ([gJ) = pn ,n21 (11)
n-—2 _ Pn — 2, if n is even

p"(l_ 2 J) - { pn —na, ifnisodd '’ nz2 (12)

Example 2.3. Fora =3, b =2 and 1 < n < 10, the terms of the p, ({)
are listed in the following table.
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YA 1 2 3 4 5
1 |3

2 |6 8

s |18 |27

i | 3% |60 62

5 |108 | 198 | 218

6 |216 | 432 |486 | 488

7 | 648 | 1404 | 1656 | 1677

8 | 1296 3024 | 3744 | 3840 | 3842

9 | 3888|9720 | 12636 | 13176 | 132038

10 | 7776 | 20736 | 28296 | 30096 | 30246 | 30248

Proposition 2.4. The non-linear recurrence relation of the bi-periodic in-
complete Lucas numbers p, (1) is
bpns1 (L +1) +pn(l), ifn is even n—1
ne2 (L+1) = s 0<li<s —=
Pasz(l+1) {apn+1(l+1)+pn(l),zfnzsodd -T2
(13)
The relation (13) can be transformed into the non-homogeneous recurrence
relation
T I TYORY NORETey @)#]=!,  ifn is even
@Pns1 () +pn (1) — 027 ("7Y) (@b) L E) | if s oda.
(14)
Proof. If n is even, then |2#!| = | 2] . By using the Definition 2.2, we can
write the RHS of (13) as

I+1

bafn DS ("7 @l
+a¥® Z_; (7 ) @l
_'f L (i) )L+J+1-.+§ ()t
=§£—L‘1(""Z+‘)<awm+l—f
+ g‘; n+1-|-1 (n :_’J{ 1) (ab)L#]-i+1
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1+1 . .
n+l fn—-i+1 n n—1+1 |3])+1-i_
—Z[n—z+l( i )+n—i+1< i-1 )](“b) 0

i=0
i+1 .
§me o)t
=0
= pasz (I +1).

If n is odd, then |2}t | = |%] + 1. The proof is analogous.
Equation (14) is clear from (13). In fact, if n is even

Prr2(l) = bpnnr () +pn(l—1)
= bpnp1 (D +pn () + (P (I —1) —pa (1)
= o+ - (")) @l
If n is odd, the proof is completely analogous. a

Proposition 2.5. Let h = |%], then

2] £(n) n—i L3]-i
= —at'\" ) L2
§ pa()=(h+1)pn—a 12_0 ( ; )(ab) (15)
Proof

an =Pn 0)+pn 1)+ -+pn (h)

= ast T ( )( ab)h=0
[ (50 o 2 () e
+a€(">[ = 0(" 0 )(ab) +- +;l—f—h(” . h) (ab)h_"]
" (" . h) (ab)h'h]
L) .
= af™ Z(h+1—z) ( 2 ’) (ab)"~
= (h+1)af™ LX’:J ( i) (ab)™™

i=0
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12) iy .
_ae(n)gz _z< )(ab)h
= (h+1) po—a*™ lf‘j i;%—; (" . ’) (ab)LE]-%.
=0
O

Now, we give a relation between bi-periodic incomplete Fibonacci num-
bers and bi-periodic incomplete Lucas numbers.

Proposition 2.6. For 1 <1< |2,
Prn(l)=qno1 (1= 1) + gnp 0. (16)
Proof. By (5) and (8), we get

gn-1(l = 1)+gns1 ()

_aE(n—z)Z(n 2- )(ab)lTJ ‘+a€(n)z( )ab)LwJ-'

i=0 =0
= g€ Z (" f ) (ab)L 311 gt i ( ) (ab)L 2]
=0 i=

=ae<n)zl: (n ) l) (ab) l’:J-‘+a€(n)Zl: (" ) (ab)l 2]

i=1 =

() (7

1

_as(")ini,< ' )(ab)[§J—i

i=0

=pa(l).
Note that, if we take | = |2 |, above result reduce to

Pn = qn-1+4qns1

which is given in [1, Theorem 3].
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3. GENERATING FUNCTION OF THE BI-PERIODIC INCOMPLETE LUCAS
NUMBERS

We need the following lemma from (8, Lemma 3.1}.

Lemma 3.1. 8, Lemma 3.1] Let {3,}3%, be a complex sequence satisfying
the following non-homogeneous and non-linear recurrence relation

bsp— Sp—2+T if n is even
3n={ nl+n2+ Y f n>1

aSp—1+ Sn_2+arn, ifnisodd '’
where a and b are complex numbers and {r,}32, is a given compler se-
quence. Then the generating function of U (t) of the sequence {s,}3%, is
aG(t) +so—ro+(s1—a(so+7r1))t+(b—a)tf(t)+(1—a)R(t)
1—at—t2
where G (t) denotes the generating function of {rn}n>0, f (t) denotes the
generating function of {san+1}3%0 and R (t) denotes the generating function
of {ran}o. Moreover,
() = (s1—a(ro+71))t— (81 —a(so+71))t2 +atR(t) +a (1l —t2) R (¢)
B 1—(ab+2)t2 +t4

where R’ (t) denotes the generating function of {ren—1}5%,.

U(t) =

Theorem 3.2. The generating function of the bi-periodic incomplete Lucas
numbers py, (1) is given by

P(t) = Y (Dt

n=0
_ @ tputput+G-atfO+U-aRE g,
1 —at—1t2

where
G(t) = R(t)+R(t)

2 (@-t+@-abt)@)? (2-1t)- (2~ abt) (ab)?
2 (1 ~ (ab)? t)l+1 (1 + (ab)? t)lH

ft) = Pais1t — (pars1 — apa) t + atR(t) +a (1 - %) R'(¢)
- 1—(ab+2)t2 +1t4
pas1t — pa—1t +atR(t) + a (1 — ) R/ (¢)
1—(ab+2)t2 4 t4
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and

2t 2 t2
_(2-t) .

2\ (1- @ty A (1+ @)™

_(2—abt) t2 t2

2 (ab)? (1 — (ab)? t) A (1 + (ab)? t)lH

Proof. Let | be a fixed positive integer. From (8) and (14),

R@) =

R (t)

pa(l) = 0, for 0<n <2,
pa(l) = pa, pav2(l) = pas2

and

pa (1) = bpn—1 (1) + pn—2(l) - n—"j_—f—i("_:'2) (ab)lg'*__zJ ~!, ifniseven
" @Pnet (1) + Pz (1) — a2725("2) (ab) *F*) | if n is 0dd

Now let
so = pu (1) = par, s1 =pa+1 (1) =pat1, 5n =pasn(l)
and
o _n+2-2(n+1-2 |3]-1
ro =11 =0, Tn—m( n_>9 )(ab) .

The generating function of the sequence {-r,} is

o =-L (2-1t)+ (2—abt) (ab)? | (2—1t) — (2 abt) (ab)?

P\ (@t (1+ @)™

Thus from [8, Lemma 3.1], we obtain the generating function P, (t) of the
sequence {pn ({)}5,. O

For the theory and application of the various methods and techniques
for deriving generating functions of special functions, we may refer to the
reader to a recent treatise on the subject of generating function by Srivas-
tava and Monacha [9].
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