BI-PERIODIC INCOMPLETE LUCAS SEQUENCES

ELIF TAN AND ALI BULENT EKIN

ABSTRACT. Motivated by the recent work by Ramírez [8], related to the bi-periodic Fibonacci sequences, here we introduce the bi-periodic incomplete Lucas sequences that gives the incomplete Lucas sequence as a special case. We also give recurrence relations and the generating function of these sequences. Also, we give a relation between bi-periodic incomplete Fibonacci sequences and bi-periodic incomplete Lucas sequences.

1. Introduction

The Fibonacci numbers F_n are defined by the recurrence relation

$$F_n = F_{n-1} + F_{n-2}, \quad n \ge 2$$

with the initial conditions $F_0 = 0$ and $F_1 = 1$. The Lucas numbers L_n , which follows the same recursive pattern as the Fibonacci numbers, but begins with $L_0 = 2$ and $L_1 = 1$.

These numbers are famous for possessing wonderful properties. In particular, there is a combinatorial identity for Fibonacci numbers and Lucas numbers; see, e.g., [5]

$$F_n = \sum_{i=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} {n-1-i \choose i} \tag{1}$$

$$L_n = \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n}{n-i} \binom{n-i}{i}. \tag{2}$$

²⁰⁰⁰ Mathematics Subject Classification. 11B39, 11B83, 05A15.

Key words and phrases. bi-periodic incomplete Lucas sequences, bi-periodic Lucas sequence, generating function.

In analogy with (1) and (2), the incomplete Fibonacci and incomplete Lucas numbers were introduced by Filipponi [3], as follow

$$F_{n}(s) = \sum_{i=0}^{s} {n-1-i \choose i}, n = 1, 2, 3, ...; 0 \le s \le \left\lfloor \frac{n-1}{2} \right\rfloor$$

$$L_{n}(s) = \sum_{i=0}^{s} \frac{n}{n-i} {n-i \choose i}, n = 1, 2, 3, ...; 0 \le s \le \left\lfloor \frac{n}{2} \right\rfloor.$$

Note that in the case of $s = \lfloor \frac{n-1}{2} \rfloor$, incomplete Fibonacci numbers reduce to Fibonacci numbers and in the case of $s = \lfloor \frac{n}{2} \rfloor$, incomplete Lucas numbers reduce to Lucas numbers. The generating functions of the incomplete Fibonacci numbers and the incomplete Lucas numbers were given by Pintér and Srivastava [7].

There are a lot of generalizations of Fibonacci numbers and Lucas numbers. Edson and Yayenie [2] introduced a generalization of Fibonacci numbers defined by

$$q_n = \begin{cases} aq_{n-1} + q_{n-2}, & \text{if } n \text{ is even} \\ bq_{n-1} + q_{n-2}, & \text{if } n \text{ is odd} \end{cases}, n \ge 2$$
 (3)

with initial values $q_0 = 0$ and $q_1 = 1$, where a and b are nonzero numbers. If we take a = b = 1 in $\{q_n\}$, we get the classical Fibonacci sequence. Yayenie [10] gave an explicit formula of q_n :

$$q_n = a^{\xi(n-1)} \sum_{i=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \binom{n-1-i}{i} (ab)^{\left\lfloor \frac{n-1}{2} \right\rfloor - i} \tag{4}$$

where $\xi(n) = n - 2\lfloor \frac{n}{2} \rfloor$, i.e., $\xi(n) = 0$ when n is even and $\xi(n) = 1$ when n is odd. Ramírez [8] defined the bi-periodic incomplete Fibonacci numbers as:

$$q_n(l) = a^{\xi(n-1)} \sum_{i=0}^{l} \binom{n-1-i}{i} (ab)^{\left\lfloor \frac{n-1}{2} \right\rfloor - i}, \ 0 \le l \le \left\lfloor \frac{n-1}{2} \right\rfloor$$
 (5)

by using (4), and gave the generating function for this sequence.

Similar to (3), by taking initial conditions $p_0 = 2$ and $p_1 = a$, Bilgici [1] introduced the bi-periodic Lucas numbers as:

$$p_n = \begin{cases} bp_{n-1} + p_{n-2}, & \text{if } n \text{ is even} \\ ap_{n-1} + p_{n-2}, & \text{if } n \text{ is odd} \end{cases}, n \ge 2.$$
 (6)

It should also be noted that, it gives the classical Lucas sequence in the case of a = b = 1 in $\{p_n\}$. See also [4] and [6], for another generalization of Lucas numbers.

Following Ramírez's suggestion [8], we introduce the bi-periodic incomplete Lucas sequences, and give recurrence relations (13)-(14), the generating function (17), and the relation between bi-periodic incomplete Fibonacci sequences and bi-periodic incomplete Lucas sequences (16).

2. BI-PERIODIC INCOMPLETE LUCAS SEQUENCE

Lemma 2.1. For $n \ge 1$, the explicit formula to bi-periodic Lucas numbers is

$$p_n = a^{\xi(n)} \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n}{n-i} \binom{n-i}{i} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor - i}. \tag{7}$$

Proof. We prove it by induction on n. It is clear that the result is true when n = 1. Assume that it is true for any m such that $1 \le m \le n$. Then by induction assumption, we get

$$\begin{split} p_{n+1} &= a^{1-\xi(n)}b^{\xi(n)}p_n + p_{n-1} \\ &= a^{1-\xi(n)}b^{\xi(n)}a^{\xi(n)}\sum_{i=0}^{\left\lfloor \frac{n}{2}\right\rfloor} \frac{n}{n-i}\binom{n-i}{i}(ab)^{\left\lfloor \frac{n}{2}\right\rfloor-i} \\ &+ a^{\xi(n-1)}\sum_{i=0}^{\left\lfloor \frac{n-1}{2}\right\rfloor} \frac{n-1}{n-1-i}\binom{n-1-i}{i}(ab)^{\left\lfloor \frac{n-1}{2}\right\rfloor-i} \\ &= a^{1-\xi(n)}\sum_{i=0}^{\left\lfloor \frac{n}{2}\right\rfloor} \frac{n}{n-i}\binom{n-i}{i}(ab)^{\left\lfloor \frac{n}{2}\right\rfloor-i+\xi(n)} \\ &+ a^{\xi(n-1)}\sum_{i=0}^{\left\lfloor \frac{n-1}{2}\right\rfloor} \frac{n-1}{n-1-i}\binom{n-1-i}{i}(ab)^{\left\lfloor \frac{n-1}{2}\right\rfloor-i} \\ &= a^{\xi(n+1)}\sum_{i=0}^{\left\lfloor \frac{n}{2}\right\rfloor} \frac{n}{n-i}\binom{n-i}{i}(ab)^{\left\lfloor \frac{n+1}{2}\right\rfloor-i} \\ &+ a^{\xi(n+1)}\sum_{i=0}^{\left\lfloor \frac{n-1}{2}\right\rfloor} \frac{n-1}{n-1-i}\binom{n-1-i}{i}(ab)^{\left\lfloor \frac{n+1}{2}\right\rfloor-i-1} \\ &= a^{\xi(n+1)}\sum_{i=0}^{\left\lfloor \frac{n}{2}\right\rfloor} \frac{n}{n-i}\binom{n-i}{i}(ab)^{\left\lfloor \frac{n+1}{2}\right\rfloor-i} \\ &+ a^{\xi(n+1)}\sum_{i=1}^{\left\lfloor \frac{n+1}{2}\right\rfloor} \frac{n-1}{n-i}\binom{n-i}{i}(ab)^{\left\lfloor \frac{n+1}{2}\right\rfloor-i} \end{split}$$

$$\begin{split} &=a^{\xi(n+1)}\left((ab)^{\left\lfloor\frac{n+1}{2}\right\rfloor}+2\xi\left(n\right)\right)\\ &+a^{\xi(n+1)}\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left[\frac{n}{n-i}\binom{n-i}{i}+\frac{n-1}{n-i}\binom{n-i}{i-1}\right](ab)^{\left\lfloor\frac{n+1}{2}\right\rfloor-i}\\ &=a^{\xi(n+1)}\left((ab)^{\left\lfloor\frac{n+1}{2}\right\rfloor}+2\xi\left(n\right)\right)\\ &+a^{\xi(n+1)}\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\frac{n+1}{n+1-i}\binom{n+1-i}{i}\left(ab\right)^{\left\lfloor\frac{n+1}{2}\right\rfloor-i}\\ &=a^{\xi(n+1)}\sum_{i=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\frac{n+1}{n+1-i}\binom{n+1-i}{i}\left(ab\right)^{\left\lfloor\frac{n+1}{2}\right\rfloor-i}.\end{split}$$

Thus, the given formula is true for any positive integer n.

By using Lemma 2.1, we can give the definition of bi-periodic incomplete Lucas numbers.

Definition 2.2. Let n be a positive integer and l be an integer such that $0 \le l \le \lfloor \frac{n}{2} \rfloor$. The bi-periodic incomplete Lucas numbers are defined as

$$p_n(l) = a^{\xi(n)} \sum_{i=0}^{l} \frac{n}{n-i} \binom{n-i}{i} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor - i} . \tag{8}$$

For a = b = 1, we obtain the incomplete Lucas numbers.

By (8), it is easy to see that

$$p_n(0) = a^{\xi(n)} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor} , n \ge 1$$
 (9)

$$p_{n}\left(1\right) = a^{\xi\left(n\right)}\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor} + a^{\xi\left(n\right)}n\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-1} , \ n \geq 2 \ (10)$$

$$p_n\left(\left\lfloor \frac{n}{2} \right\rfloor\right) = p_n , n \ge 1$$
 (11)

$$p_n\left(\left\lfloor \frac{n-2}{2} \right\rfloor\right) = \begin{cases} p_n - 2, & \text{if } n \text{ is even} \\ p_n - na, & \text{if } n \text{ is odd} \end{cases}, n \ge 2.$$
 (12)

Example 2.3. For a=3, b=2 and $1 \le n \le 10$, the terms of the $p_n(l)$ are listed in the following table.

n/l	0	1	2	3	4	5
1	3					
2	6	8	1			
3	18	27		1		
4	36	60	62			
5	108	198	213	ĺ	1	
6	216	432	486	488		
7	648	1404	1656	1677		
8	1296	3024	3744	3840	3842	
9	3888	9720	12636	13176	13203	
10	7776	20736	28296	30096	30246	30248

Proposition 2.4. The non-linear recurrence relation of the bi-periodic incomplete Lucas numbers $p_n(l)$ is

$$p_{n+2}(l+1) = \begin{cases} bp_{n+1}(l+1) + p_n(l), & \text{if } n \text{ is even} \\ ap_{n+1}(l+1) + p_n(l), & \text{if } n \text{ is odd} \end{cases}, 0 \le l \le \frac{n-1}{2}$$
(13)

The relation (13) can be transformed into the non-homogeneous recurrence relation

$$p_{n+2}\left(l\right) = \begin{cases} bp_{n+1}\left(l\right) + p_n\left(l\right) - \frac{n}{n-l}\binom{n-l}{l}\left(ab\right)^{\left\lfloor \frac{n}{2}\right\rfloor - l}, & \text{if } n \text{ is even} \\ ap_{n+1}\left(l\right) + p_n\left(l\right) - a\frac{n}{n-l}\binom{n-l}{l}\left(ab\right)^{\left\lfloor \frac{n}{2}\right\rfloor - l}, & \text{if } n \text{ is odd.} \end{cases}$$

$$\tag{14}$$

Proof. If n is even, then $\lfloor \frac{n+1}{2} \rfloor = \lfloor \frac{n}{2} \rfloor$. By using the Definition 2.2, we can write the RHS of (13) as

$$ba^{\xi(n+1)} \sum_{i=0}^{l+1} \frac{n+1}{n-i+1} \binom{n-i+1}{i} (ab)^{\left\lfloor \frac{n+1}{2} \right\rfloor - i}$$

$$+a^{\xi(n)} \sum_{i=0}^{l} \frac{n}{n-i} \binom{n-i}{i} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor - i}$$

$$= \sum_{i=0}^{l+1} \frac{n+1}{n-i+1} \binom{n-i+1}{i} (ab)^{\left\lfloor \frac{n+1}{2} \right\rfloor + 1 - i} + \sum_{i=0}^{l} \frac{n}{n-i} \binom{n-i}{i} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor - i}$$

$$= \sum_{i=0}^{l+1} \frac{n+1}{n-i+1} \binom{n-i+1}{i} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor + 1 - i}$$

$$+ \sum_{i=1}^{l+1} \frac{n}{n-i+1} \binom{n-i+1}{i-1} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor - i + 1}$$

$$\begin{split} &=\sum_{i=0}^{l+1}\left[\frac{n+1}{n-i+1}\binom{n-i+1}{i}+\frac{n}{n-i+1}\binom{n-i+1}{i-1}\right](ab)^{\left\lfloor\frac{n}{2}\right\rfloor+1-i}-0\\ &=\sum_{i=0}^{l+1}\frac{n+2}{n-i+2}\binom{n-i+2}{i}(ab)^{\left\lfloor\frac{n}{2}\right\rfloor+1-i}\\ &=p_{n+2}\left(l+1\right). \end{split}$$

If n is odd, then $\left\lfloor \frac{n+1}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor + 1$. The proof is analogous.

Equation (14) is clear from (13). In fact, if n is even

$$\begin{aligned} p_{n+2}(l) &= bp_{n+1}(l) + p_n(l-1) \\ &= bp_{n+1}(l) + p_n(l) + (p_n(l-1) - p_n(l)) \\ &= bp_{n+1}(l) + p_n(l) - \frac{n}{n-l} \binom{n-l}{l} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor - l}. \end{aligned}$$

If n is odd, the proof is completely analogous.

Proposition 2.5. Let $h = \lfloor \frac{n}{2} \rfloor$, then

$$\sum_{l=0}^{\left\lfloor \frac{n}{2} \right\rfloor} p_n(l) = (h+1) p_n - a^{\xi(n)} \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} i \frac{n}{n-i} \binom{n-i}{i} (ab)^{\left\lfloor \frac{n}{2} \right\rfloor - i}. \tag{15}$$

Proof.

$$\sum_{l=0}^{h} p_{n}(l) = p_{n}(0) + p_{n}(1) + \dots + p_{n}(h)$$

$$= a^{\xi(n)} \frac{n}{n-0} \binom{n-0}{0} (ab)^{h-0}$$

$$+ a^{\xi(n)} \left[\frac{n}{n-0} \binom{n-0}{0} (ab)^{h-0} + \frac{n}{n-1} \binom{n-1}{1} (ab)^{h-1} \right] + \dots$$

$$+ a^{\xi(n)} \left[\frac{n}{n-0} \binom{n-0}{0} (ab)^{h} + \dots + \frac{n}{n-h} \binom{n-h}{h} (ab)^{h-h} \right]$$

$$= a^{\xi(n)} \left[\frac{(h+1)n}{n-0} \binom{n-0}{0} (ab)^{h} + \frac{hn}{n-1} \binom{n-1}{1} (ab)^{h-1} + \dots$$

$$+ \frac{n}{n-h} \binom{n-h}{h} (ab)^{h-h} \right]$$

$$= a^{\xi(n)} \sum_{i=0}^{\left \lfloor \frac{n}{2} \right \rfloor} (h+1-i) \frac{n}{n-i} \binom{n-i}{i} (ab)^{h-i}$$

$$= (h+1) a^{\xi(n)} \sum_{i=0}^{\left \lfloor \frac{n}{2} \right \rfloor} \frac{n}{n-i} \binom{n-i}{i} (ab)^{h-i}$$

$$\begin{split} -a^{\xi(n)} \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} i \frac{n}{n-i} \binom{n-i}{i} \left(ab\right)^{h-i} \\ &= (h+1) \, p_n - a^{\xi(n)} \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} i \frac{n}{n-i} \binom{n-i}{i} \left(ab\right)^{\left\lfloor \frac{n}{2} \right\rfloor - i}. \end{split}$$

Now, we give a relation between bi-periodic incomplete Fibonacci numbers and bi-periodic incomplete Lucas numbers.

Proposition 2.6. For $1 \le l \le \lfloor \frac{n}{2} \rfloor$,

$$p_n(l) = q_{n-1}(l-1) + q_{n+1}(l). (16)$$

Proof. By (5) and (8), we get

$$q_{n-1}(l-1)+q_{n+1}(l)$$

$$\begin{split} &=a^{\xi(n-2)}\sum_{i=0}^{l-1}\binom{n-2-i}{i}\left(ab\right)^{\left\lfloor\frac{n-2}{2}\right\rfloor-i}+a^{\xi(n)}\sum_{i=0}^{l}\binom{n-i}{i}\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-i}\\ &=a^{\xi(n)}\sum_{i=0}^{l-1}\binom{n-2-i}{i}\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-1-i}+a^{\xi(n)}\sum_{i=0}^{l}\binom{n-i}{i}\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-i}\\ &=a^{\xi(n)}\sum_{i=1}^{l}\binom{n-1-i}{i-1}\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-i}+a^{\xi(n)}\sum_{i=0}^{l}\binom{n-i}{i}\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-i}\\ &=a^{\xi(n)}\sum_{i=0}^{l}\left[\binom{n-1-i}{i-1}+\binom{n-i}{i}\right]\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-i}-0\\ &=a^{\xi(n)}\sum_{i=0}^{l}\frac{n}{n-i}\binom{n-i}{i}\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-i} \end{split}$$

Note that, if we take $l = \lfloor \frac{n}{2} \rfloor$, above result reduce to

$$p_n = q_{n-1} + q_{n+1}$$

which is given in [1, Theorem 3].

 $=p_{n}\left(l\right) .$

3. Generating function of the bi-periodic incomplete Lucas numbers

We need the following lemma from [8, Lemma 3.1].

Lemma 3.1. [8, Lemma 3.1] Let $\{s_n\}_{n=0}^{\infty}$ be a complex sequence satisfying the following non-homogeneous and non-linear recurrence relation

$$s_n = \begin{cases} bs_{n-1} + s_{n-2} + r_n, & \text{if } n \text{ is even} \\ as_{n-1} + s_{n-2} + ar_n, & \text{if } n \text{ is odd} \end{cases}, n > 1$$

where a and b are complex numbers and $\{r_n\}_{n=0}^{\infty}$ is a given complex sequence. Then the generating function of U(t) of the sequence $\{s_n\}_{n=0}^{\infty}$ is

$$U(t) = \frac{aG(t) + s_0 - r_0 + (s_1 - a(s_0 + r_1))t + (b - a)tf(t) + (1 - a)R(t)}{1 - at - t^2}$$

where G(t) denotes the generating function of $\{r_n\}_{n\geq 0}$, f(t) denotes the generating function of $\{s_{2n+1}\}_{n=0}^{\infty}$ and R(t) denotes the generating function of $\{r_{2n}\}_{n=0}^{\infty}$. Moreover,

$$f(t) = \frac{(s_1 - a(r_0 + r_1))t - (s_1 - a(s_0 + r_1))t^3 + atR(t) + a(1 - t^2)R'(t)}{1 - (ab + 2)t^2 + t^4}$$

where R'(t) denotes the generating function of $\{r_{2n-1}\}_{n=1}^{\infty}$.

Theorem 3.2. The generating function of the bi-periodic incomplete Lucas numbers $p_n(l)$ is given by

$$P_{l}(t) = \sum_{n=0}^{\infty} p_{n}(l) t^{n}$$

$$= \frac{aG(t) + p_{2l} + p_{2l-1}t + (b-a)tf(t) + (1-a)R(t)}{1 - at - t^{2}}$$
(17)

where

$$G(t) = R(t) + R'(t)$$

$$= -\frac{t^2}{2} \left(\frac{(2-t) + (2-abt)(ab)^{\frac{1}{2}}}{\left(1 - (ab)^{\frac{1}{2}}t\right)^{l+1}} + \frac{(2-t) - (2-abt)(ab)^{\frac{1}{2}}}{\left(1 + (ab)^{\frac{1}{2}}t\right)^{l+1}} \right)$$

$$f(t) = \frac{p_{2l+1}t - (p_{2l+1} - ap_{2l})t^3 + atR(t) + a(1 - t^2)R'(t)}{1 - (ab+2)t^2 + t^4}$$
$$= \frac{p_{2l+1}t - p_{2l-1}t^3 + atR(t) + a(1 - t^2)R'(t)}{1 - (ab+2)t^2 + t^4}$$

and

$$R(t) = -\frac{(2-t)}{2} \left(\frac{t^2}{\left(1 - (ab)^{\frac{1}{2}} t\right)^{l+1}} + \frac{t^2}{\left(1 + (ab)^{\frac{1}{2}} t\right)^{l+1}} \right)$$

$$R'(t) = -\frac{(2-abt)}{2(ab)^{\frac{1}{2}}} \left(\frac{t^2}{\left(1 - (ab)^{\frac{1}{2}} t\right)^{l+1}} - \frac{t^2}{\left(1 + (ab)^{\frac{1}{2}} t\right)^{l+1}} \right)$$

Proof. Let l be a fixed positive integer. From (8) and (14),

$$p_n(l) = 0$$
, for $0 \le n < 2l$,
 $p_{2l}(l) = p_{2l}$, $p_{2l+2}(l) = p_{2l+2}$

and

$$p_{n}\left(l\right) = \left\{ \begin{array}{l} bp_{n-1}\left(l\right) + p_{n-2}\left(l\right) - \frac{n-2}{n-l-2}\binom{n-l-2}{l}\left(ab\right)^{\left\lfloor\frac{n-2}{2}\right\rfloor - l}, & \text{if n is even} \\ ap_{n-1}\left(l\right) + p_{n-2}\left(l\right) - a\frac{n-2}{n-l-2}\binom{n-l-2}{l}\left(ab\right)^{\left\lfloor\frac{n-2}{2}\right\rfloor - l}, & \text{if n is odd} \end{array} \right.$$

Now let

$$s_0 = p_{2l}(l) = p_{2l}, \ s_1 = p_{2l+1}(l) = p_{2l+1}, \ s_n = p_{2l+n}(l)$$

and

$$r_0=r_1=0,\ r_n=\frac{n+2l-2}{n+l-2}\binom{n+l-2}{n-2}\left(ab\right)^{\left\lfloor\frac{n}{2}\right\rfloor-1}.$$

The generating function of the sequence $\{-r_n\}$ is

$$G\left(t\right) = -\frac{t^{2}}{2}\left(\frac{\left(2-t\right)+\left(2-abt\right)\left(ab\right)^{\frac{1}{2}}}{\left(1-\left(ab\right)^{\frac{1}{2}}t\right)^{l+1}} + \frac{\left(2-t\right)-\left(2-abt\right)\left(ab\right)^{\frac{1}{2}}}{\left(1+\left(ab\right)^{\frac{1}{2}}t\right)^{l+1}}\right).$$

Thus from [8, Lemma 3.1], we obtain the generating function $P_l(t)$ of the sequence $\{p_n(l)\}_{n=0}^{\infty}$.

For the theory and application of the various methods and techniques for deriving generating functions of special functions, we may refer to the reader to a recent treatise on the subject of generating function by Srivastava and Monacha [9].

4. ACKNOWLEDGEMENT

We thank the referee for helpful suggestions and comments.

REFERENCES

- G. Bilgici. Two generalizations of Lucas sequence, Applied Mathematics and Computation 245 (2014) 526-538.
- [2] M. Edson and O. Yayenie. A new generalizations of Fibonacci sequences and extended Binet's Formula, Integers 9, (A48) (2009), 639-654.
- [3] P. Filipponi, Incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo 45 (2) (1996), 37-56.
- [4] N. Irmak, M. Alp. Some identities for generalized Fibonacci and Lucas sequences, Hacettepe Journal of Mathematics and Statistics, 42(4) (2013), 331-338.
- [5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
- [6] D. Panario, M. Sahin, Q. Wang. A family of Fibonacci-like conditional sequences Integers 13 (2013).
- [7] A. Pintér and H. M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo 48 (2) (1999), 591-596.
- [8] J. Ramírez, Bi-periodic incomplete Fibonacci sequence, Ann. Math. Inform. 42 (2013), 83-92.
- [9] H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Halsted Pres (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
- [10] O. Yayenie, A note on generalized Fibonacci sequeence, Appl. Math. Comput. 217 (2011) 5603-5611.

DEPARTMENT OF MATHEMATICS, ANKARA UNIVERSITY, ANKARA, TURKEY E-mail address: etan@ankara.edu.tr.ekin@science.ankara.edu.tr