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Abstract

Suppose m and ¢ are integers such that 0 < ¢ < m, an (m,?)-
splitting system is a pair (X, B) that satisfies for every Y C X with
|Y| = ¢, there is a subset B of X in B, such that |[BNY| = |£] or
[(X\B)NY| = |{]. Suppose m, t1 and ¢, are integers such that
t1 +t2 < m, an (m, 1), t2)-separating system is a pair (X, B) which
satisfies for every P C X, Q C X with |P| = t1, |Q| = tz and PNQ =
0, there exists a block B € B for which either P C B, QN B =0 or
Q € B, PN B = 0. We will give some results on splitting systems
and separating systems for t = 5 and ¢ = 6.
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1 Introduction

Recently, splitting systems were used by Stinson in [1] and were further
defined and discussed in [2] by Alan C.H. Ling et al. who present us many
interesting and new results on splitting systems and separating systems
which are mainly concentrated on the case t = 2 and 4. D.Deng et al.
studied the case for ¢ = 3 in [3]. In this paper we study the case for t = 5,6
and we also give a generalization to Theorem 2.17 in [2] and some new
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results on the general case. First we define splitting system and separating
system.

2 Definitions

Definition 2.1 (Splitting System). Suppose m and t are integers such
that 0 < t < m, an (m, t)-splitting system is a pair (X, B) that satisfies the
following two properties:

(1) |X| =m < o0, i.e. X is a set with m elements,

(2) for every Y C X with |Y| =t, there is a subset B of X in B such
that

YA Bl = 4] or (X\B)NY] = |4].

In Definition 1, we call block B splits Y if B satisfies (2). We will also
say that (X,B) is a t-splitting system and use the notation (N;m,t)-SS
to denote an (m,t)-splitting system having N blocks, i.e. if (X,B) is an
(N;m,t)-SS, then | X|=m, |B|=N

Definition 2.2 (Uniform Splitting System). Suppose m and t are in-
tegers such that 0 < t < m, an uniform (m,t)-splitting system is an (m, t)-
splitting system in which every block has cardinality | % |.

We use notation (N;m,t)-USS to denote an umform (m, t)-splitting
system having N blocks.

Next we will introduce another important definition: separating system
used by Friedman et al. [4] and further defined in {2]. Here we give the
definition of separating system with slightly differences with the one in [2].
First we do not restricting m to be an even integer. Second we do not
specify each block size to be uniform, i.e. the same size. Actually, what
those called separating systems in [2] are now be called uniform separating
systems. We now define it.

Definition 2.3 (Separating System). Suppose m, t, and ty are iniegers
such that t, + to < m, an (m,t,t)-separating system is a pair (X,B)
which satisfies the following two properties:

(1) |X|=m < oo,

(2) for every P C X, Q C X with |P| =t,|Q| =t2 and PNQ =0,
there exists a block B € B for which either P C B,Q\B =0 or Q C
B,PN\B=49.

We will use the notation (m, t1,t2)-SEPS to denote an (m, t),t2) - sep-
arating system. We also say that (X, B) is an (¢1,t)-separating system.
Definition 2.4 (Uniform Separating System). An uniform (m,t;,t2)-
separating system is an (m,t1,t2)-separating system in which every block
has cardinality | % |.
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We will use the notation (m,t;,t2)-USEPS to denote an uniform (m, ¢,
Jt2)-separating system.

Most constructions of splitting systems are conveniently described by
using incidence matrix which will be defined below.

Definition 2.5 (Incidence Matrix). Let (X, B) be an (N;m,t)-SS where
X ={z;:1<i<m} and B={B;:1<j< N}, the incidence matriz of
(X, B) is the m x N matriz A = (a; ;) where

_ 1 ifz; € Bj,
% = {0 otherwise. ()

Obviously, A is an (0,1)-matrix. A column in A represents a block in
B, so we always call a column in A a block of (X, B).

Example 2.1. For any set X and integer t with 0 < t < |X| < oo, then
(X,2%) is (|X|,t)-SS where 2% is the power set of X.

Example 2.2. Let X = {1,2,3,4}, B = {{1,2}, {2,3}, {3,4}}, then
(X,B) is an (3;4,2)-USS. The incidence matriz is an 4 X 3 matriz as
Sollows:

OO M
O F O
-0 O

Example 2.3. Let X = {1,2,3,--- ,m+1}, me Z*, B = {{1,2,---,| 2]},
{(Z]+1,---,m}}. It is easy to check that (X, B) is an (2;m + 1,m)-55.
The incidence matriz is an (m + 1) X 2 matriz as follows:

1 0)
(1 0
'1' 0
0 1
0 1
0 .1
\o 0/

In fact, if we take any two disjoint | 5 |-subsets of X, we actually get
an (2;m + 1, m)-USS.
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3 Constructions With Separating System

In this section, we want to use separating system constructions used by
Ling et al. in [2] and by Friedman in [5]. This paper is mostly interested in
systems that are both (2,2) separating and 5-splitting and both (2,3) sepa-
rating and 6-splitting. We suppose that all t;, i = 1,2,3 and ¢, m,1,5,k,l,n
used in the rest of the paper are positive integers.

First we give some basic results about separating systems which will be use-
ful in the constructions of splitting systems later in the paper. The proof
will be omitted if it is obvious. Lemma 3.1 is a restatement of Lemma 2.3
in [2].

Lemma 3.1. If (X, B) is an (m,t1,t2)-USEPS and 0 < t3 < {3, then it is
an (m,ty,t3)-USEPS.

Lemma 3.2. If (X,B) is an (m,t1,t2)-USEPS and [t — ta| < 1, then it
is an (m,t; + t3)-USS.

Proof. We need to check for any Y C X with Y| = t; +t2, there is a block
B € B, such that [Y N B| = |44%] or [(X\B)NY| = |&42]. Without
loss of generality, let t; > tz, thus we have ¢; = t2 or t; = t2 + 1. In other
hand, since (X, B) is an (m,t;,t2)-USEPS, so if we let Y = P U Q where
Pn@Q =0,P,Q C X and |P| = t1,|Q| = t2, then there exists a block
BeBsuchthat PC B, QNB=0orQC B, PNB =. So we get
¥ NBI =@l =t2 = [532] or (X\B)nY|= Q| =to = |834]. O

Remark 3.1. In Lemma 3.2, if ¢; = t3, we have the following corollary.

Corollary 3.1. If there ezists an (m,t,t)-USEPS, then there is an (m, 2t)-
USS.

Lemma 3.3. If there exists an (m,2,3)-USEPS on b blocks, then there is
an (b— 9;m,5)-USS.
Proof. Consider the subset {i, 7, k,{,n}. The pairs of the sets :

({3} Ak, Ln}), ({3, 63, {4, L nd), ({3,03, {4, K n}), ({i,n}, (kL 5D,

({g, &} {6 Lnd), ({5,0}, (i kym}), (G, m}, (3,5, 1)), (K, 2}, {3, Gim)),
({k,n}, {4,5,0}), ({l,n}, {4, 5, k})

must be separated in the separating system in ten distinct blocks. Then if
only nine blocks are deleted, the system must still splits {i,j,k,l,n}. O

Lemma 3.4 is a generalization of Lemma 3.3.
Lemma 3.4. If there exists an (m,t1,t2)-USEPS having |t; —tz] <1 on b

blocks, then there is an (m,t, + t2)-USS on b — (Ei T fzj) + 1 blocks.
2
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Proof. Let a = [i%hj,ﬁ = t; + t2. Consider the subset {i;,---,ig}.
The pairs of the sets of the form ({j1, - ,Ja}, {Ja+1,"* ,J8}) Which was

chosen from the subset must be separated in the separating system in a)
distinct blocks since the total number of the pairs is (g) Then if only
(g)-l blocks are deleted, the system must still splits {i;,--- ,ig}. O

Lemma 3.5. If there erists an (m,2,3)-USEPS on b blocks with m > 4,
then there is an (m,2,2)-USEPS on b — 1 blocks.

We now prove a general case from Lemma 3.5 as follows.

Lemma 3.6. If there exists an (m,ty,t2)-USEPS on b blocks with t, +t3 <
m, there exists an (m,ty —1,t2)-USEPS and (m,t,,t2—1)-USEPS on b—1
blocks.

Proof. Delete one block from the (m, ty,t2)-USEPS. Consider an (¢, +t2 —
1)-subset {ij,-:- ,%,4¢5—1}. If 41, ,%,—1 are in the deleted block and
ey, y i, +2,—1 are not, i.e. in the complement of the deleted block, then
{1, , 44, +t,—1} may no longer separated by the new system. However,
let n be another element in the block containing %, -- ,4;,-1, then the
previous system must separate {iy,-- ,%,—1;%¢,, " ,%¢,4+t,—1, R} in some
other block other than the deleted block. In this block {i1,- - %, 4,1}
is separated by the new system. O

Lemma 3.7 ([2] Lemma2.6). Suppose m > 4, if (X, B) is (m,2,2)-USEPS
on b blocks, then there exists an (m,2,1)-USEPS on b — 1 blocks.

From Lemma 3.7 and Lemma 3.5, we get the following one lemma.

Lemma 3.8. Suppose m > 4, if (X, B) is an (m, 2, 3)-USEPS on b blocks,
there exists an (m,2,1)-USEPS on b — 2 blocks.

From Lemma 3.2 and Lemma 3.5, we get the following one lemma.

Lemma 3.9. Suppose m > 4, if (X, B) is an (m, 2, 3)-USEPS on b blocks,
then there exists an (m,2,2)-USEPS on b—1 blocks which is also an (m, 5)-
USS.

From Lemma 3.2 and Lemma 3.6, we get the following one lemma.

Lemma 3.10. Suppose m > 4, if (X, B) is an (m, t;,t2)-USEPS on b blocks
and t) +t3 < m, [t; — t3] < 1, then there exists an (m,t; — 1,t3)-USEPS
and (m,ty,t2 —1)-USEPS on b—1 blocks which is also an (m,t; +12)-USS.
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Lemma 3.11 give a lower boundary to the number of blocks contains in
a separating system.

Lemma 3.11. Suppose m > 4, if (X,B) is an (m,t,t)-USEPS where

312 ¢, then ars () /()]

Proof. If there exists subsets {41, ,%} and {j1,- - ,jr} such that {iy,--- ,i;}N
{41,+-+ ,j:} = 0, but there not exists a block B € B such that

{il:"' )it}§B9 {jl!"' ,Jt}nB=0

and
{1, - .4} € B, {i1, - ,i}NB =0,

then (X, B) is not a separating system. So if (X, B) is a separating system,

then the times of distinct ¢-subset of X occurs in B must not less than

m
m . While the occurrence of the ¢-subset in each block is ; s

thus we have the conclusion.
For the special case ¢t = 2 in Lemma 3.11, we get the following lemma.

Lemma 3.12. Suppose m > 4, if (X, B) is an (m,2,2)-USEPS, then

== [((2)/(72)]

Theorem 3.1 is an extension of Lemma 1.2 in [2]. Here m is an integer
not necessary to be an even integer which was required in [2]. This theorem
gives us a direct construction of a certain type of splitting system.

Theorem 3.1. For all integer m > 4 and even integert with0 <t < m-2,
there exists an (| 4L ];m,t)-USS.

Proof. We only consider the case m is odd. The case that m is even was
proved in Lemma 1.2 [2]. Let

X ={1,23,---,m}, (2)
B,~={i,i+1,--~,i+m—2—_1}, i=1,2,-..,TT+-1-, (3)
3={B,-:15ig-m;’—l}. (4)
It is easy to check that
Bl=T 1 <ism 8= 22
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We now prove (X,B) is an (T!;m,t)-USS. We need show for any
subset Y C X with |Y'| = ¢, there exists a block B € B that splits Y.
Let

Y= {yl’yZ)yfb'" 1yt—11yt}7 Yi <y]’ 1 S'I,(] St (5)

Obviously, we have
1<y <y <m.

First, we assert that there must be a integer 7 : % < 1 < t such that

m—3
Yi—Yi-tt1 < 5 (6)
Otherwise, if for all i : £ <4 <t,
-3
Yi _yz—%-lvl > 2 ’
ie. 3 )
m— m—
Yit41 Syi—T—1=yi—T-
Let i =t and £, we get
m—-1 _m+1
Y1 S Y — — < —5 (7
m-—1 m-—1
NSy -5 <Y -—5— =1 (8)
i.e. y1 <1, this is a contradiction.
Second, let
A m—3
a=ma:x:{z:§515t, Yi — Yt 5"2—}: (9)
et m~3
,6=mm{z:-2-_<_z$t, yi—y,-_%_,_lsT}. (10)

Now we construct the block B which will splits Y. There are few cases:

(1) If yo_g4q < 2FL, we choose a block B € B that contains Ya—g+1 @S
its smallest elements, then

{ya_.;..;.l,"' aya} C B and {ya+l”" ,yg}ﬂB =9,

thus B splits Y.

(2) Hya—g41 > ﬂ}l, then ys,, > =41 since £ < a <t We need to
check ygs.
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(a) If yg > 251, it also easy to check that there is a block B € B
that contains yg as its largest elements, then

{yﬁ—%-}-la"' 1yﬂ} (—: B and {yﬁ+1"" 7yt}nB = wa
thus B splits Y.
(b) Ifys < 251, ie. yp < 252 because < B <tandygy >

mtl thus B = £. Since ye —y1 £ 253, we can choose a block
B that contams y; as its smallest element then

{yly"' 9y'} gB and {y‘+1:"' :yt}nB:ﬂ,
7 z
then B splits Y. O

Here is one example based on Theorem 3.1.

Example 3.1. Let X = {1,2,---,10}, B, = {1,2,3,4,5},B2 = {2,3,4,5,6},
B; = {3,4,5,6,7}, By = {4,5,6,7,8}, Bs = {5,6,7,8,9},B = {B; : 1 <
i < 5}, then (X, B) is an (5;10,t)-USS where t € {2,4,6,8}.

Theorem 3.2 gives a quasi doubling construction for 5-splitting system
which is similar to the well-known doubling construction used for Hadamard
Matrix.

Theorem 3.2. If there ezists an (m,2,2)-USEPS on b blocks and which
is also an (m,5)-USS, then there ezists an (2m,5)-USS on b blocks and an
(2m,5)-USS that is also an (2m,2,2)-USEPS on 2b+ 1 blocks.

Proof. Let T be the incidence matrix of the (m,5)-USS which is also an
(m,2,2)-USEPS on b blocks. Let T¢ be the complement matrix of T,
in which 0’s and 1's have been interchanged. Then we claim that the
following matrix R is the incidence matrix of an (2m,5)-USS that is also
an (2m, 2,2)-USEPS on 2b + 1 blocks, and the leftmost b columns of R is
incidence matrix of an (2m, 5)-USS.

I i I
T T 0
R= (T T 1 )
Let the rows (i.e. elements) of R be labeled a1,---, am, b1, , bm

from top to bottom. Let there be three types of columns in R. Type I
columns are the first b columns from the left. Type II columns in R are
the next b columns. Type III columns is the last column in the right where
0=(0,---,00T,1 = (1, ,1)T, i.e. 0 and 1 are column vectors with m
elements are all 0,1 respectively.

Let i, j,k,l and n be distinct integers between 1 and m, inclusive. We
now prove that every 5-subset is split by some blocks(i.e. columns).
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First, we check that the leftmost b columns forms the incidence matrix
of (2m, 5)-USS. There are few cases:

(1) 5-subset of the form {a;,a;, ak, a1, an} is split in type I columns. Since
an and b, are identical in type I columns, {a;,a;,ak,ar,b,} is also
split in type I columns as is the set {a;,a;, ak, b, bn}.

(2) 5-subset of the form {a:,a;,ar,a:,b;} is split in type I columns as
{ai,a;; ak, a;} is (2,2) separated there and rows a; and b; are identical
in those columns. {a;,aj,ax,b,b;} is split in type I columns as in
those columns a; and b;, a; and b; are identical.

(3) 5-subset of the form {a;,a;,ax, b;, b;} is also split in type I columns
as {ai;a;,ax} is separated there. Since T is the incidence matrix of
(m,2,2)-USEPS and Lemma 3.1 holds T is also an incidence matrix
of (m,2,1)-USEPS, then there exists a block B € B such that

{a:} € B,{aj,ax}NB =0 or {a;,ar} C B,{a;} N B =0.
Since a;,b; and a;,b; are identical in type I columns, we have

{ai?b‘i} C B, {aj,bj,ak}nB =0 or
{a']’vbj,ak} C B, {ai,bi} NB=20,

i.e.
|{ai7a_’i1aka b]abt} nBI =2 or |{aiyaj’ak$bj)bi} n (X\B)[ = 2’

then {a:,a;, ax,b;,b;} is split in type I columns.

These are all distinct cases. So the first b columns of R from left form the
incidence matrix of (2m, 5)-USS.
Second, we prove that R is the incidence matrix of an (2m,2,2)-

USEPS. We have few cases:

(1) It is easy to check 4-subset of the form {a;,a;,ax, a1}, {ai,a;,ak, bi},
{ai,a;, b, b} are (2,2) separated all three ways in type I columns. For
example, {ai,a;,ax,a;} is separated in {a;,a;;ax,ar},{a:, ax;a;, i}
and {a;, a;; ar,a;} totally in three ways since T is the incidence ma-
trix of the of (m, 2, 2)-USEPS.

(2) 4-subset of the form {a,a;,ax,b:},{a:,a;,bk,b:} and {a;,a;,b;,b:}
deserve detailed discussion.
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o {ai,aj,ar,b}. {ai,a;;ax,b:}, {ai,ax;a;,b;} are separated in
type II columns as {ai,a;;ax}, {ai,ak;a;} is respectively sep-
arated there and a;, b; have opposite value there. {a;,b;;ax,a;}
is separated in type I columns as {a;;a;,ax} is separated there
and a;, b; are identical.

e {a;,a;j, bk, b}. {ai,a;;bx,b;} is separated in type III columns.
{a:,bi;a;,bi} is separated in type I columns. The reason for
{ai,bx;aj,b;} is separated in type II columns as follows: on one
hand, {a;;a;,ax} is separated in T, then there exists a block
B € B such that

{a;} € B,{aj,ax}NB =0 or {aj,ax} C B,{a;} N B =0.

On the other hand, a;, b; and ag, b, has opposite value in type
II columns, thus we have

{a,-,bk} Q B, {aj,b,-} NB= 0 or {aj,b,-} Q B,{a,-,bk} NB= 0.

e {ai,a;,b;,b;}. {ai,a;;b;,b;} is separated in type III columns.
{a:,bi;a;,b;} is separated in type I columns as {ai,a;} is sepa-
rated there. {ai,b;;a;,b;} is separated in type II columns.

These are all distinct cases. ad

If we denote by TT(N;m,5) an (m,5)-USS on N blocks which is
also an (m,2,2)-USEPS, and denote by T(m,5) the minimum N over all
TT(N;m,5). Now we have the following two corollaries:

Corollary 3.2. T(2™q,5) < 2T(2™"1¢,5) + 1 for g odd.
Corollary 3.3. T(2™,5) <2™ - 1.

Proof. From Theorem 3.2 we can easily get the recurrence in Corollary 3.2.
Solve the recurrence and let ¢ =1 to get Corollary 3.3. O

We have a similar result for (m, 6)-USS.

Theorem 3.3. If there exists an (m,2,3)-USEPS on b blocks and which is
also an (m,6)-USS, and there exists an (m, 1,2)-USEPS on c blocks, then
there ezists an (2m, 6)-USS on b+1 blocks end an (2m, 6)-USS that is also
an (2m,2,2)-USEPS on b+ c+ 1 blocks.

Proof. Let T,S be the incidence matrix of

(m,2,3)-USEPS , (m,1,2)-USEPS
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respectively where (m, 2, 3)-USEPS is also an (m,6)-USS. Obviously T is
m x b matrix and S is m x ¢ matrix. Now we construct the incidence matrix,

R of required systems as follows:

I I om
T S o
R= (T s 1)

where S€ is the complement matrix of S in which 0’s and 1’s have been
interchanged. Obviously R is 2m x (b + ¢ + 1) matrix. Then we claim
that the above matrix R is the incidence matrix of an (2m, 6)-USS that
is also an (2m,2,2)-USEPS on b+ ¢ + 1 blocks and that the leftmost b
columns and the rightmost one column constitute the incidence matrix of
(2m, 6)-USS.

Let the rows(i.e. elements) of R be labeled:

ag,+** ,0m, bl"" abm

from top to bottom. Let there be three types of columns in R. Type I
columns are the first b columns from the left. Type II columns are next
c columns. Type III column is the last column on the right where 0 =
(,--- ,())T,l =(1,--- ,1)7’,

First, we prove type I and III columns constitute the incidence matrix
of (2m, 6)-USS, i.e. every 6-subset is split by some blocks. Let 7,7, k,1,n,p
be distinct integers between 1 and m, inclusive. We have four different
cases:

(1) 6-subset of the form {a;,a;,ax,a:,a,,a,} is split in type I column
since T is the incidence matrix of (m, 6)- USS. Since {a,, by}, {@n, b},
{ak,br}, {a1,bi} are identical in type I columns, the following three
forms of 6-subset are also split in type I columns

{ais a;,ak,ay,an, bp}y {aiaaji Gk, A, bm bp}’ {a"i7 Qaj, Q, bb bna bp}

(2) 6-subset of the forms {a;,a;,ax,a1,an,b:}, {ai,a;,ax,ar,bn,b;} and
{ai,a;,ak,b;,b,,b;}. 5-subset {a;,a;;ak,ar,a,} is separated in type I
columns since T is the incidence matrix of (m, 2, 3)-USEPS, i.e. there
is a column B in type I such that

{ai,a;} C B, {ak,ai,an,}NB =0 or
{ai,a;} "B =0, {ax,a1,a,} C B.

Since a; and b; are identical in type I columns, thus
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{ai:ajvbi} c B) {akvahan}nB =0 or
{ai,aj,b.-} NB=0, {ak,al,an} c B.

i.e. B splits {ai,a;,ax,ai, an, b;}. Since {an, bn}, {as, bi} are identical
in type I columns, thus 6-subsets of the following forms are also split
in type I columns: {a;,a;,ax,ai,bs, b} and {ai,a;,ax, b, bn, b} .

(3) 6-subset of the forms {a;,a;,ax,ar,bj,b:} and {ai,aj,ax,bi,b;,b;}.
Applying Lemma 3.1, we know T is also the incidence matrix of
(m, 2,2)-USEPS thus there exists a column B in type I columns that
separates {a;,ax;a;j, a1}, i.e.

{aiyax} C B, {aj,ai}NB =0 or {a;,ax}NB =0, {a;,a} CB.
Since {a;, b}, {a;,b;} are identical in type I columns, we have

{ai,ax,b;} € B, {aj,a1,b;}NB=0 or
{a.-,ak,bi} N B =0, {aj,al,bj} cB

i.e. B splits 6-subset {a;,a;,ax,a:;,b;,b;}. So do 6-subset of the form
{ai1 Qjy Qf, bla bja bt}

(4) 6-subset of the form {a;,a;,ak, bx,bj, b;} is split in type III column.

Above are all the distinct cases.
Second, we prove R is the incidence matrix of (2m,2,2)-USEPS. We
have four distinct cases:

(1) 4-subset of the forms {a;, a;, ax, ar}, {ai,a;,ax,bi} and {a;,a;, b, bi}.
It is easy to check that {a;,a;,ak,a;} is separated in all three ways
in type I columns since T is the incidence matrix of (m, 2,2)-USEPS.
ie. {ai,aj;ak,ar}, {ai,ax;a;,a1}, {ai,a;;a5,ar} are all separated in
type I columns. The same is true with the 4-subset of the forms
{ai,a,-, aj, b[} and {a,',a,-, bk, b[}

(2) 4-subset of the form {a;,a;,ax,b;}. This 4-subset is separated in all
three ways in R.

e {a;,bi;a;,ax} is separated in type I columns. In fact, T is the
incidence matrix of (m,1,2)-USEPS, thus {a;;a;,ax} is sepa-
rated in type I columns, i.e. there exists one column B in type
I such that

{a,-} C B, {aj,ak}nB =0 or {ai} NB=9, {aj,ak} C B.

Since a; and b; are identical in type I columns, we have

392



{a,-, b,} C B, {aj,ak} NB=0 or
{ai,b;} NB =9, {a.j, ak} C B.

e {ai,a;j;b;,ax} is separated in type II columns. S is the incidence
matrix of (m, 1,2)-USEPS, so {a;, a;;ax} is separated in type II
column, i.e. there exists one column B in type II such that

{ai,a;} € B, {ax}NnB=0 or {ai,a;}NB=20, {ax} C B.
Since a; and b; are opposite in type II columns, we have

{aiya;} C B, {bj,ax}NB=0 or
{ai, aj} NB= @, {bi,ak} Q B.

o {a;,ax;b;,a;} is separated in type II columns too. In fact,
{ai,ax;a;} is separated in type II columns since S is the in-
cidence matrix of (m, 1,2)-USEPS and a;,b; have opposite value
there.

(3) 4-subset of the form {a;, a;, bk, b;}. {ai,a;; bk, b;} is separated in type
III. {ai,bi;bk,a;} and {ai, bi;bi,a;} are separated in type I and II
columns respectively and the reason is the same with (2).

(4) 4-subset of the form {a;,a;,b;,b:}. {ai,a;;b;,b;} is separated in type
III. {ai,bi;b;,a;} and {ai,b;; bi,a;} are separated in type I and II
columns respectively and again the reason is the same with (2).

These are all distinct cases. 0

Next, we generalize a theorem Friedman et al.[5] of separating system
on the case t = 5.

Theorem 3.4. Suppose my, m3 be even integers, if there exists an (my,5)-
USS on by blocks which is also an (m,,2,2)-USEPS, and there exists an
(ma, 5)-USS on by blocks which is also an (mg, 2,2)- USEPS such that pm, =
gmgo where q,p € Z* and 2 < p < my, then

(1) there exists an (pm,,5)-USS on by + by blocks;

(2) if q,p satisfies: g < 2,p|my, then there exists an (pm,,2,2)-USEPS
on by + 2by blocks which is also an (pm,,5)-USS.

Proof. Let S; and S; be the incidence matrix of (m;,5)-USS and (m,, 5)-
USS respectively. Obviously S; is the m; x b; matrix and Sz is ma x b
matrix.
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(1) We now construct the incidence matrix R of the required system as

follows:

I I

Si1 Sz

S21 Sz

R= . .

Smi1 Sz
R consists of two types of columns. Type I columns contain the
matrices Sy, -+ ,Sm,1 where S; contains p copies of the ith row of

S;. Type II columns contains g copies of S;. There are b, and b,
columns of type I and type II respectively. Thus R.is (pm;) x (b1 +b2)
matrix. We claim R is the incidence matrix of (pm,,5)-USS.

First, it is easy to check every column in R has the same cardinality
of pm, /2(= gm2/2).

Second, we need to verify every 5-subset is split in R. Let i,3,k,l,n
be distinct rows in R. There 7 distinct cases as illustrated below:

=14+1414+1+1 (11)
=2+1+1+1 (12)
=2+4+2+1 (13)
=3+1+1 (14)
=342 (15)
=4+1 (16)
=5+0 (17)

where 5 + 0 represents 5 rows come from one Sg1(1 < d <m;). 4+1
represents 4 out of 5 rows come from one Sy, the other one come
from S.;(1 < e < my,d # e) and so on and so forth. We discuss each
of them in sequence. Suppose d, e, f used below are mutually distinct
integers and satisfies:1 < d, e, f < m;.

1) Ifthe 5 rows come from different Sy, it is obvious that {3, j, k, I, n}
is split in type I columns.

2) If i, j come from one Sq), the other three rows come from three
different S¢;. {4,k;!,n} is separated in type I column since S,
is the incidence matrix of (m1,2,2)-USEPS, thus {i,j,k,n,l} is
split in type I columns.

3) If i,j come from one Sgy, k,n from S, and ! from Sg;. Then
i, are identical in type I columns as are the k,n. {i,{;n} is
separated in type I columns and thus {, j, k, n,l} is split in type
I columns.
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4) If i, j,k come from one Sg;, n from S, ! from Syy. i,7,k are
identical in type I columns. {3;!,n}({j;!,n} or {k;l,n}) is sep-
arated in type I columns since S; is the incidence matrix of
(m1,1,2)-USEPS. Thus {i,7, k,n,l} is split in type I columns.

5) If i,j come from one Sy, and the other three from one S.;.
{i; k} is separated in type I columns thus {3, j, k,n,{} is split in
type I columns.

6) If ¢,5,k,l come from Sy, n from S,;. Since p < my then
{#', 7', k', '} must be distinct rows of S where {¢/, 5/, k¥’, !} stands
for the rows when {i, j, k, !} limited to type II columns. If n’ is
distinct from any rows in {#',j',k/,1'}, then {¢/,j/,k',l',n'} is
split in type II columns. If n’ is the same with one rows in
{¢,5, k', '}, say n' is the same to i’. Then {4/, ;'; k,1'} is sepa-
rated in type II columns and furthermore {#’, j',n’; k’,1'} is also
separated there. Thus {i, j, k,{,n} is split in type II columns.

7) If {4,4,k,n,l} from the same one Sq;, {i,7;%,{,n} is separated
in type II columns so {%, j, k, n, 1} is split in type II columns.

(2) When g = 1, pm; = m it is the obvious case. We only discuss the
case ¢ = 2. We now construct the incidence matrix of required system

as follows:
I I 117
Sin 82 S
T= | :
Smi1 S2 S§

T consists of three types of columns. Type I columns contain the
matrices Si1,---,Sm,,1, where S;; contains p copies of the ith row
of S;. Type II columns contains 2 copies of S;. Type III columns
contains 2 matrices: S and S; where S5 is the complement matrix
of S;. We claim T is the incidence matrix of (pm,,2,2)-USEPS on
by + 2b, blocks which is also an (pmy,5)-USS.

First, the first two types of columns is the incidence matrix of (pm;, 5)-
USS as we have proved in (1). Second, we check T is the incidence
matrix of (pmy, 2,2)-USEPS. Let {, j, k,!} be distinct rows from T,
There are five distinct cases as illustrated below:

4=4+0 (18)
=3+1 (19)
=2+2 (20)
=2+1+1 (21)
=1+14+1+1. (22)
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Let {¢,5',k",U'}, {i",3",k",1"} be the rows when limit {3, j, k,!} to
type II and III. Let us see if {i, j; k,!} is separated by a column of T.

1)

2)

3)

4)

If {4, j,k, 1} come from one Sq;. Since p < my, then {¢’, 5/, ¥', '}
must be distinct rows of S;. Every 4-subset is separated in all
three ways by Sg, thus {3, j; k,!} is separated in type II columns.

If i, 7,k come from one Sq, [ from another, say S.;. If I’ is not
identical to any one of i/, j', k' or I’ = k’(we mean I’ is identical
to k' in type II columns), then {¢’, j’;k’,1'} is separated in type
II columns. So {i,7;k,!} is separated in type II columns too. If
I’ is identical to i’ or j, say !’ = i’ (or j'), then !” is opposite
to i"(or j). Let {i",j”,k"} be in the first my rows of type III
columns. Type II and III columns only have 2 matrices, then I
must be in the last mg rows of type III columns. So {i",j"; k"}
is separated in type III columns. Since !" and i” have opposite
value in type III columns, {i"”, j”; k”,1"} is separated in type III
columns and so does {3, j; k,}.

If i, §,k,l come from different Sy4,. Obviously, {z, j; k,l} is sepa-
rated in type I columns.

If ¢, j come from one Sg4;, k from S.; and ! from Sg;. It is easy
to check that {i;k,!} is separated in type I columns, so it is
{t,5:k,1}.
If i, k come from Sy;, j from S, and ! from Sy,. If {i/,5', k', l'}
are mutually distinct or ¢ = j/(then I’ # ') or '’ = k' in type II
columns, then {i,j;k,!} is separated in type II columns.
Ifk' = j' and ¢/ =U’, theni"”,1" and j”, k" have opposite value in
type III columns. Since {i”; k"} is separated in type III columns,
thus {4, j; k,!} is separated in type III columns.
If ¥ = j/ but i’ # U, then one of k" and j” must come from
S», the other come from S§ in type III columns. Let i”, k" come
from the first my rows of type III columns, j”,!” come from last
ma rows of type III columns. We use I§, to denote the row in
S, correspondent to the row I” in S3. It is easy to check that
{i",1s,; K"} is (2,1) separated by one column, say, B in type III
column since S, is the incidence matrix of (pm;,2,1)-USEPS,
ie.

{i",15,} S B, {k"}nB =10

or
{k”} C B, {i”, gz} NnB=0.

So
{‘l:",j”} C B, {k”,l"} NB=29

396



or
{k”,l”} C B, {i",j”} NB=0.

i.e. {4,7;k,1} is separated in T.

If k' # j' but ¢’ = I’, the case is similar to the case &’ = j’ but
i’ # I’ which was proved above. If j* = I/, then j/ and !’ come
from different S; in type II columns. Let ", 77, k" come from the
first my rows in type III columns, then I come from the last m,
rows in type III columns. Since {i", j”; k"} is separated in type
III columns, j” and !” have opposite value in type III columns,
thus {i”, j"; k”,1"} is separated there and so is {t, j; k, {}.

5) If ¢, come from one Sy and k,l come from one S.;. Since
{i; k} is separated in type I columns, then {, j; k,} is separated
there too. If 4,k come from one Sy and j,! come from one S,;.
If ,5',K',l! are mutually different or i = j'(then I’ # #') or
I' =K', then {4, j; k,l} is separated in type I. If k¥ = j' or ¢’ = I'
or I’ = j', we have three different cases similar to the case 3):

K =3 and i =0,
K =7 but i’ # U,
kK #35 buti =1 (]

For t = 6, Theorem 3.4 seems to be much more complicated and we can
only get part of the results as follows.

Theorem 3.5. If there exists an (m;,2,3)-USEPS on by blocks which is
also an (m,,6)-USS and there exists an (my,2,3)-USEPS on by blocks
which is also an (mg,6)-USS such that pm; = gmy where q,p € Z* and
2 < p < my, then there erists an (pm,,6)-USS on by + by blocks.

Proof. We now construct the incidence matrix, R of the required system
as follows:

I II
S11 Sz
S S
R _ :21 :2
Sm1 Sz

which consists of the same types of columns as stated in Theorem 3.4(1).
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As have done before, we illustrated different cases as follows:

6=6+0 (23)
=5+1 (24)
=442 (25)
=4+1+1 (26)
=3+3 (27)
=3+2+1 (28)
=34+141+1 (29)
=2+2+2 (30)
=2424+1+1 (31)
=2+1+1+1+1 (32)
=1+14+1+4+14+1+1. (33)

We have totally 11 different cases. The proof will be easy but verbose. It
is much more like what we have done in Theorem 3.4, so we omit it. ]

4 Existence and Bounds

We now show the existence and bounds of splitting and separating systems.
The following one theorem is the generalization of Theorem 2.17 in (2].

Theorem 4.1. For a given integer t > 2, there exists

(1) an (m,t)-USS on b blocks where b and t satisfies

. (lz’;J)b = (7)re > owhere
(L;J) - (Z) (L;J——té) t even,
(20) - () (g Ti) + (1)) e

(2) an (m,t)-USEPS on b blocks which is also an (m,t,,t — 1)-USEPS
where b and t satisfies

() - (-
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= () () o

Proof. (1) Any system of blocks can choose it blocks from a set of (Lrnr: J)
Pl

b
distinct blocks. So there are :: systems on b blocks. Since there

2
t m-—t t m—t t m-—t
are {1 )\ |zm) =g ) Plocksor Loy ) |m et JH (e ) () —en
s/\|[3] -3 3 2] — 3 2 2 2
blocks (when ¢ even and odd respectively) that split a particular ¢-subset,
thus we have

(Lg]) B (;) <l%nj__t%) for t even,
(LZJ) B (Q ((L%T—_ t_-_l) + (l%"j_” ;)) for ¢ odd.
(36

blocks that do not do the splitting. So there are r® systems that do not

m
split a particular t-subset. Since there are (T) such t-subset, there ( ¢ )r"

systems that do not split some t-subset. Therefore, the number of systems

that split every t-subset is I = (I.T: J) - <T) r%. If I > 0, then we have
F)

a t-splitting system on b blocks.

(2) We need to count the number of uniform systems that do not
separate a particular ¢,-subset from a particular (¢ — 1)-subset. There are

(T Z) + (i)

blocks that do the separating, so there are

s ( m ) (m—t-l-l) _( m—t+1 )
L2 1Z] -t 3] —t2+1
blocks that do not separate them. So there are s® systems that do not
separate a particular ¢;-subset form a particular t; — 1-subset. Since there

are < ; m 1) (t - 1) such pairs of ¢;-subset and (¢ — 1)-suhset. So there
- 1
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s

t—1 ty
from (t; — 1)-subset. Therefore, if we want a system that is ¢-splitting and
(t1,t2 — 1)-separating, we need

() -G

This the desired result. O

are systems that do not separate some pair of {;-subset

Remark 4.1. In Theorem 4.1(2), we can change (m,t1,t2 —1)-USEPS into
(m,t; — 1,t2)-USEPS with only slightly change in the proof but without
change in results.

For the special case t = 5 and 6, we have the following two theorems:
Theorem 4.2 and 4.3.

Theorem 4.2. (1) There exists an (m,5)-USS on b = [3.53logom] + 1
blocks.

(2) There ezists an (m,5)-USS which is also (m,2,2)-USEPS on b =
[25.951log, m| + 1 blocks.

Proof. (1) From (34), if

I= (ng)b (7)o

then there exists an (m,t)-USS. So let t = 5 and we get the following
inequalities:

()-SR o e @

and
m 5m(m — 2) b
(5)(1_8(m—1)(m——3)) <1 for m even. (38)
Since
5(m+1)(m-1) 3 5m(m — 2) 3 (m
- mm=-2 8% ! 8m-Dm-3) -8 (5) <m’,

therefore if

3\*
5 —
m (8) <1,



then there exists a (m, 5)-USS on b blocks. Taking logarithm we get

5log, m

log, § '

ie.
b > 3.53log, m.

(2) From (35), if

m\° m of M t—1
—_ _ b _ -
7= (i) (=005 >0
then there exists an (m, 5)-USS which is also (m, 2,2)-USEPS. We let t = 5
and get the following inequalities for m even and odd respectively:

(5) (-t 3))b+6(T) (s T 3))6 <1

and

() (-5t () (- 2zt o

m 5 m 4
(5><m and 6(4)<m,

5m(m — 2) 11 S5(m+1)(m—-1)(m-3) 11
Tom-Dm-3 16 ™ T emm-Bm-a 16

___m(m-2) _(m+1)(m-1)<z
8(m — 1)(m — 3) 8m(m —2) 8

11\° 7\°
s 1L af !
m (16) +m (8) <1,
then there exists an (m, 5)-USS which is also (m, 2,2)-USEPS.
When m > 14, we have
b
7
5[ _
m (8) <1

Taking logarithm at both side,

Since

1

1

7
<-8' and 1

So if

5log, m
log, (‘3‘) '




ie.
b > 25.95log, m.

We get the result. O

If we denote by S(m,t) the minimum N over all (N;m,t)-USS, then
Theorem 4.2 gives the following corollary.

Corollary 4.1. (1) S(m,5) < |3.53logym| +1.

(2) T(m,5) < |25.95logym| + 1.

Theorem 4.3. (1) There ezists an (m,6)-USS on b = |11.10log, m| + 1
blocks.

(2) There exists an (m,6)-USS which is also (m,2,3)-USEPS on b =
|64.44log, m] + 1 blocks.

Proof. (1) Let t = 6 in (34), we obtain the following two inequalities:

m sm(m—2)(m—4) \°
(6)(1—16(m-1)(m—3)(m—5)) <1 for m even

and

m 5(m + 1)(m — 1)(m — 5) b
(6)(1_ 16m(m — 2)(m — 4) ) <1 for m odd.

As the same reason we have stated in Theorem 4.2, if

b
11
6 —
m ( T 6) <1
then we get an (m, 6)- USS. Taking logarithm, we get the desired result.
(2) Let t = 6 in (35), we obtain the following two inequalities:

(?) (l - 16(3zm—(?)(_nz2 )—(Tg)(_r: = 5) ) b

m m(m — 2) b ()
#10(3) (1~ s es) <!
for m even and
(5) (- amsa)

o (?) (1 - (77116:11(3,(1_2)1&":)5))'7 <1
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for m odd. Since

m 6 m 5
(6)<m and 10(5)<m,

5m(m — 2)(m — 4) 5 m(m — 2) 15
= Bm-Dm-3)m-5 16 ™ " Gm-1m-3 16
5(m+1)(m—-1)(m-5) 5 (m+1)(m-1)(m-5) 15
" temm—m-19 16 ™ " Temm-m-12 16
So if b 5
ms(l%) +m5<%) <1 (43)

is held, then there exists an (m,6)-USS which is also an (m, 2, 3)-USEPS.

Again, if
b
m8 E <1
16

is held, then (43) is held too. Taking logarithm, we have

b> Glogzlgn’
log, (5
ie.
b > 64.44logy m.
We get the desired result. O

Corollary 4.2. (1) S(m,6) < |11.10log,m] + 1.

(2) T(m,6) < [64.44log,m]| +1.

Next, we will give a definite lower bound for splitting systems. First,
let’s have a look of existing results on the bounds of splitting systems.
D.R. Stinson in [1] had given an estimation of the bound of splitting

systems as follows:

Theorem 4.4. (Stinson [1]) Let m,t be even integers that satisfies 0 <
t < m, there exists an (N;m,t)-USS, if N ~ cot3/2log, m where co is a
constant.

D.Deng and D.R. Stinson et al. proved in [3] that S(m,t) > [log,(m —
t+1)J+1 for all m > t +1, in the following section we will give an upper
bound for S(m,t).

Let’s give two lemmas first.
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-1 m
Lemma 4.1. Forallm2t+1,2‘< mm )>(m>.
%) - L3 12

Proof. We only consider the case t,m are both even, the other three cases
is similar. Therefore what we want to prove becomes

(2> (3)
o Z

) at both side, we get

Jm=8lf (m/2)! \?
O (o) >

Divided by (

m
m

2

e (m.m=2.... . mots2)?
t\2 2 2

mm_1) - m-t+1)

Now we only need to prove that

1.

m(im—2)---(m—t+2)
(m—1)(m—3)---(m—t+1) > 1.

This is obviously true. (|

Lemma 4.2. ({1] Lemma 2.2) Suppose m and Am are both positive integers
where 0 < A < 1. Let

H(X) = =Alogyg A — (1 = A)logy (1 - A), (44)
then
____l__zmﬁ(r\) < (m) < ___1__2"1”()\). (45)
V8mA( - N) TA\mA) T /2rmA(l - A)

Remark 4.2. If we let A = } in Lemma 4.2, then H(A) = 1 and

| m 1 m '
o S<m/2)S =yl (46)

The following theorem gives a definite improvement of a theorem in 1]
as stated above in Theorem 4.4.

Theorem 4.5. For allm >t + 1> 7, we have

S(m,t) < [V2t*%log, m).



-1
Proof. Let ¢ = (1 - ([t;2 J) 2‘) , Obviously ¢ > 0. We only consider

the case ¢, m are both even integers. From (34), the following inequality is

B &) P

Applying Lemma 4.1, we know

((mm—_t)t/z) / (,:;2) >1/2" and (’:) <mt

are held. So if the following inequality is held, then(47) is held too, i.e.

m‘(l - (t;Q)/?)b <1. (48)

And finally, if (48) is held, there exists an (m,t)-USS. Taking logarithm,

we have
tlog, m

b> .
log, ¢

From the primary differential and calculus knowledge, —log,(1 — z) > =
and applying Lemma 4.2, we get

7= (o))< 7

b < V2t3/2 log, m,

ie.

S(m,t) < |[V2t¥%log, m) .
This is the desired result. a
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