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Abstract

For a simple undirected graph G with vertex set V and edge set
E, a total k—labeling A : VU E — {1,2,--- ,k} is called a vertex
irregular total k—labeling of G if for every two distinct vertices z
and y of G their weights wt(z) and wi(y) are distinct where the
weight of a vertex z in G is the sum of the label of  and the
labels of all edges incident with the vertex z. The total vertex
irregularity strength of G, denoted by tvs(G), is the minimum k&
for which the graph G has a vertex irregular total k—labeling. The
complete m—partite graph on n vertices in which each part has
either [Z] or [2] vertices is denoted by Tim,n. The total vertex
irregularity strength of some equitable complete m—partite graphs,
namely, Tm.m+1, Tm,m+2, Tm,2my Tm.2m+l, Tm,3m—l (m 2 4)1 Tm,n
(n=3m+7,r=1,2,.--- ,m— 1), and equitable complete 3—partite
graphs have been studied in this paper.
Key Words: vertex irregular total k—labeling; weight; total
vertex irregularity strength; equitable complete 3—partite graph.
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1 Introduction and Preliminaries

Let us consider a simple (without loops and multiple edges) undirected
graph G = (V, E) with vertex set V and edge set E. For a graph G,
we define a labeling A : VU E — {1,2,--- ,k} to be a total k—labeling.
A total k—labeling A is defined to be an edge irregular total k—labeling
of the graph G if for every two different edges zy and z'y’ their weights
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AMz)+M(zy)+A(y) and A(z')+A(z'y’)+A(y’) are distinct. Similarly, a total
k—labeling X is defined to be a vertex irregular total k—labeling of G if for
every two distinct vertices = and y of G their weights wt(z) and wt(y) are
distinct. Here, the weight wt(z) in G is the sum of the label of = and the
labels of all edges incident with the vertex z.

The minimum k for which the graph G has an edge irregular total
k—labeling is called the total edge irregularity strength of G,denoted by
tes(G). Analogously, the minimum k for which the graph G has a vertex
irregular total k—labeling is called the total vertex irregularity strength of
G,denoted by tvs(G). Combining both of these notions, C. C. Marzuki et
al. in [3] introduced a new irregular total k—labeling of a graph G called
totally irregular total k—labeling. The minimum k for which a graph G has
a totally irregular total k—labeling is called the total irregularity strength
of G, denoted by ts(G), which is required to be at the same time both
vertex and edge irregular.

A complete m—partite graph is a simple graph whose vertex set can be
partitioned into m non-empty subsets and in which each vertex is adjacent
to every vertex that is not in the same subset. The m non-empty subsets are
called the parts of the comnplete m—partite graph. The complete m—partite
graph on n vertices in which each part has either [Z] or | X vertices is
denoted by T, 5.

Let n =mg+7, 0 <r <m— 1. We suppose that the m parts of Tinn

are Vi, Vo, -+ Vin, where V, = {u{”]i = 1,2,--- ,2} whenr =0 and V, =

=12 (2]} s=12- ,rand V, = {&i =1,2,--, | 2]},
s=r+1,7r+2,--- , mwhenl <r<m-1.

Obviously, the degree of each vertex in V(T},,,) is either é or A, and
A=§ or A=6+1.

The vertex irregular total labeling and the edge irregular total labeling
were introduced by M. Baca et al. in [4]. The total vertex irregularity
strength of complete hipartite graphs K,, , for some m and n had been
found by K. Wijaya et al. in [9], namely, K3 n, Knn, Knnt1, Knn+2, and
Kp an- K. Wijaya and S. Slamin also showed in [8] that the values of total
vertex irregularity strength of wheels W,,, fans F,,, suns M, and friendship
graphs f,. The total vertex irregularity strength of Jahangir graphs J, o
for n > 4 and several types of trees were proved in [1, 5, 6]. Furthermore,
the total vertex irregularity strength of several disjoint union of ¢ copies of
path with order n had been determined by N. Nurdin et al. in (7). Recently,
A. Ahmad and M. Baéa determined the total vertex irregularity strength
of several disjoint union of n—cycles in [2].

Lemma 1.1 4. Let a graph G have minimum degree § and mazimum
degree A, then [%ﬁ]s tvs(G) <|V|+A -26+1.

In this paper, we determine the total vertex irregularity strength of some
equitable complete m—partite graphs T m+1, Tmm+2) Tm,2m» Tm,2m+1,
Tmam-1 (M >4), Tnn (n=3m+7r,r=12,--- ,m—1) and T3 p-



2 Main Results

Note that the weight wt(v) is either the sum of § 4+ 1 numbers or the sum
of A + 1 numbers in {1,2,--- ,k} for each v € V(T},,,») when we consider
the vertex irregular total k—labeling of T, ».

Theorem 2.1 Let m > 3, then tvs(Tm,my1) = 2.

Proof: It is easy to see that tvs(Tm,m+1) = 2. To show that tvs(Ton m+1) =
2 for m > 3, we need only to give a vertex irregular total 2—labeling X of
T m+1 in the following.

For m = 3, let /\(uﬁl)) =1fori=12 ,\(uﬁ”) =1 for s = 2,3;
)\(ugl)u?)) =1fors=2,3; z\(u,f,l)ugt)) =t—1fort=2,3; ,\(u?’ug“’) = 2.
Thus, the weights of all vertices of T3 4 are 3, 4, 5, 6. So tvs(T3,4) = 2.

For m = 4, let /\(uﬁl)) =1fori=1,2; )\(ugs)) = 2 for s = 2,3,4;
/\(ugl)ugt)) =1fort =234, A(ugl)ugt)) =1fort =2,3; )\(ugl)u§4)) = 2;
)\(u?)ugt)) =1fort =3,4; )\(u§3)u£4)) = 2. Thus, the weights of all vertices
of Ty s are 4, 5, 6, 7, 8. So tvs(T4'5) =2.

For m 2> 5, we consider the two cases depending on values of m.

Case 1. m > 5 and m = 1 (mod 2).

Let M(u™) = 1fori = 1,% A@d?) = 2 A@{®) = 1for 3 < s <
mtl, /\(ug’)) =2for 28 < s < my )\(ugl)ugt)) =1fort=23-,m;
MugDu®y = 1 for ¢ = 2,3,---,m — I; MufPul™) = 2; AuPul) = 1
fort = 3,4,--- ,m; /\(ug")ugt)) =1lfor3<s< "‘T‘l, s<t<m-s+1;
/\(ugs)ugt)) =2for3 <s < ﬁ,j‘—l-, m-s+2<t<m /\(ugs)ugt)) =2
for 1"—;—1 < s <t < m. Thus, the weights of all vertices of Ty m41 are

m,m+1,---,2m. So, tvs(Tm m41) = 2.
Case 2. m > 6 and m =0 (mod 2).

Let Au{") =1 fori=1,2 /\(u(lz)) =25 Mul)=1fr3<s< z,
A(ui’)) =2for 2 4+1< s <m /\(ugl)ugt)) =1fort =203 ,m
)\(ugl)ugt)) =1fort=23,:---,m~—1; /\(ugl)ug’")) = 2; /\(ugz)ugt)) =1
fort = 3,4,---,m; )\(ug’)ugt)) =1for3<s< ZHs<t<m-s+1;
Auiu{?) = 2for3< s < Zom—s+2<t<m AuPu?) =2 for
T +1 < s <t < m Thus, the weights of all vertices of Tn,m+1 are
m,m+1,---,2m. So, tvs(Trm m+1) = 2.

Theorem 2.2 Let m > 3, then tvs(Tm,m42) = 2.

Proof: Obviously, we have tus(Tim m4+2) = 2. To show that tvs(Trn,m+2) =
2 for m > 3, we need only to give a vertex irregular total 2—labeling A of
Tin,m+2 as follows.

For m = 3, let A(u{”) = s for i = 1,2 and s = 1,2; A(u{?) = 2;
/\(ugl)ugz)) =1forj=1,2 /\(ugl)u_gz)) =jforj=12 /\(ufl)uga)) =1 for



1=1,2 /\(ugz)ug"’)) = 2 for i = 1,2. Thus, the weights of all vertices of
T35 are 4, 5, 6, 7, 8. So t’U.S‘(T35)—2

For m = 4, let A(u (3))—zforz-12s—1 2% Mul”) = s—2 for
s=3,4; )\(u(l)u(z)) =1fori,j=1,2 )\(u(l) )) =1fori=1,2,t=3,4;
)\(u(z) )) =2fori=1,2,t=3,4; )\(u(s) (4)) =2 Thus, the weights of
all vertlces of Ty ¢ are 5, 6 7, 8, 9 10 So tus(Ty6) = 2.

For m = 5, let /\(u(l)) =1 for i = 1,2, )\(u(z)) =1fori=12;
Au{?) = 2 for s = 3,4,5; /\(u(l)u(z)) =1fori,j=1,2 ,\(u“)u(‘)) =1
for i = 1,2,t = 3,4; )\(ugl) ))—zforz—1,2, /\(ufz) ))—zforz—
1,2,t = 3,5 MuPul®) =2 for i = 1,2 MaPul?) = 1; ,\( By = 2
for s =3, 4 Thus, the weights of all vertices of T; 7 are 6 , 8,9, 10,11,
12. So tvs(Ts 7)=2.

For m = 6, let A(u{?) =i fori =1,2and s = 1,2; Ay = 2 for
s=3,4,5,6; /\(u(l)u(z))-—lforzy—l 2; )\(ugl) w)—lfort—B 4,5,6;
A@Pul?y =1 for t = 3, 4,5 MuPu®) = 2 AwPu{?) =1 for t = 3,4,6;
APy = 2 A@Pul?) =1 for t = 3,5; )\(u(z)u(t)) =2 for t = 4,6;

(u(ls)u(14)) (u(a)u(lt)) =2 fort =15,6; A(u; () (c)) =2for4<s<t<
6. Thus, the wexghts of all vertices of Tg g are 7, 8 ,14. So tvs(Te 8) =2

For m > 7, we consider the two cases depending on values of m.

Case 1. m > 7 and m =1 (mod 2).

Let A(u{) =ifori =1,2, s =1,2; A(u{”) = 1 for s = 3,4,--- , 5L,
m —1; )\(u(l")) =2for s = ﬂ,;,f-l,l"—;"—:’,m ,m—2, m; A(ugl)ugz)) =1 for
i, =1,2; A(ugl)u(lt)) =1fori=1,2¢t=3,4,---,m; /\(ugmu(lt)) =1 for
i=1,2t=34,-,m-2% M\uPu))y=2fri=12t=m-1,m
/\(u(’)ugt)) =1for3<s< Bl s<t<m—s; )\(ug’)ugt)) = 2 for
3<s< B m—s+1<t<m /\(u(f')ugt))=2for-"%‘i <s<t<m.
Thus, the weights of all vertices of Try my2 arem +1,m+2,--- ,2m + 2.
So, tvs(Tim m+2) = 2.

Case 2. m > 8 and m = 0 (mod 2).

Let Mu{”) =ifori=1,2 s =12 Au!¥) =1for s = 3,4,---, 2,

m-L M) =2frs=2+1,24+2,...,m-2, m,,\(u“)u‘”)—1
fori,5 =1,2; /\(u(l) t))—lforz——12 t=3,4,---,m; AMu 52) (t)) 1
fori=1,2,t=3,4,--- ,m—2; )\(u(z) (t))—2forz—1,2,t=m—1,m;
A(ugs)ust)) =1lfor3<s<F -1 s<t<m-s; /\(u(s) (t)) = 2 for
3ss5g‘—l,m—s+15tsm;,\(u§’)u§")—2for—<s<t<m
Thus, the weights of all vertices of Tin,m42 are m+1,m+2,---,2m + 2.
So, tvs(Tm m+2) = 2.

Theorem 2.3 Let m > 3, then tvs(Thm 2m) = 2.
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Proof: Obviously, we have §(T;,, 2,,,) = A(Tm,2m) = 2m — 2. To show that
tvs(Tim,2m) = 2, we need only to give a vertex irregular total 2—labeling A

of Trm,2m 8s follows

Let )\(uﬁ")) =ifori=12and s =1,2,..-,m; /\(ugs)ugt)) = { for
i,7=1,2and 1 < s <t < m. Thus, the weights of all vertices of Tp; 21
are 2m — 1,2m,--- ,4m — 3,4m — 2. So tvs(Tin 2m) = 2.

Theorem 2.4 Let m > 3, then tvs(Trm,2m+1) = 2

Proof: Obviously, we need only to give a vertex irregular total 2—labeling
Aof T omys form > 3.

For m = 3, let )\(ugl)) =1fori=12 /\(ugl)) =2 /\(usz)) = 1 for
i=1,2 Au) =ifori=1,2 MuMu{’) = jfor j = 1,2 and t = 2,3;
A(u(l)u(z)) =jfori=23and j =1,2 A(u(l) (3)) = 2 for ¢ = 2,3 and
i=12 A(usz)u;»s)) =i for 1,5 = 1,2. Thus, the weights of all vertices of
T37 are 6, 7, 8, 9, 10, 11, 12. So tvs(T3,7) = 2

For m > 4, let A(u{") =1 for i =1,2,3; A(u{”) =i fori=1,2 and
s=2,3,-,m—1; Au{™) =2 fori=1,2 )\(u(l) =1 forj=1,2
and t = 2,3,--- ,m; ,\(uzl) g:)) =1 forj=1,2andt=2,3,---,m—1;
MufPul™) = 5 for j = 1,2 Au{"u?) =1 for j = 1,2 and ¢ =
2,3, ,m—1; Auul™) =2 for j = 1,2 Mu{u{?) =1 for j = 1,2
and2<s<t<m-1; A(u’) J(.'")) =2forj=1,2ands=2,3,--- ,m—1;
)\(ugs)u;t) )=2 for j=1,2 and 2 < s < t < m. Thus, the weights of all
vertices of T, om41 are 2m — 1,2m,--- ,4dm — 1. So tvs(Tn 2m+1) = 2.

Theorem 2.5 T, am—) has no vertez irregular total 2—labeling for m > 4.

Proof: First, we have §(Tin 3m-1) = 3m — 4, A(Tm,3m-1) = 3m — 3.
Assume that Tm a3m—1 has a vertex irregular total 2—labehng The smallest
weight is at least 3m — 3 and the largest weight is at least 6m — 4. And
it is impossible that both 3m — 3 and 6m — 4 are the weights of two
vertices of Tin 3m—1. Furthermore, the smallest weight does not exceed
3m — 2. (Otherwwe, the largest weight is at least 6m — 3, a contradiction.)
Suppose that the vertex with the smallest weight is u a.nd the vertex with
the largest weight is v.

Claim: If the smallest weight wt(u) is 3m — 3, then

(i) the vertex u with smallest weight is of the minimum degree;

(ii) wt(v) = 6m — 5 and v is of the maximum degree;

(iii) the vertex z with weight 6m — 6 is either in the part with « or in
the part with v.

(i) and (ii) hold obviously. For (iii), suppose z is neither in the part
with u nor in the part with v. Then the weight of z is the sum of 3m — 3
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numbers in {1,2}, but one of the numbers is 1 (that is, the weight of edge
uz). So wt(z) < 6m — 7, a contraction.

Based on the above Claim, we discuss by distinguishing the following
four cases. Let y; denote the vertex with weight i for ¢ = 3m — 3,3m —
2,..-,6m —5in case 1 and case 2 or for i = 3m — 2,
3m—1,-..,6m — 4 in case 3 and case 4 in the following discussions.

Case 1. The smallest weight is 3m — 3 (The largest weight must be
6m —5) and the vertex x with weight 6m — 6 and the vertex u with weight
3m — 3 are in the same part.

Let wt(u) = 3m — 3, wt(v) = 6m — 5 and wt(z) = 6m — 6, then the
weights of vertex u and the edges incident with u are 1, the weights of
vertex = and the edges incident with = are 2 and the weights of vertex v
and the edges incident with v except for uv are 2.

Note that yam_2 is not in the same part as v = ygm—-s. (Otherwise,
Y3m—2 is a vertex of maximuin degree and the weight of yam_2yem—s6 is 2,
so the weight of y3,,—2 is at least 3m — 1. This is a contradiction.) If y3m—2
and Y3m—3, Ysm—g are not in the same part, then the weights of y3m—2¥sm—s
and y3m—2Yem—6 are 2. But d(yam—2) = 3m — 4. So wt(yzm—2) = 3Im — 1,
a contradiction. Therefore, y3m—2 and ysm—3, Yem—6 are in the same part.
Besides, the weights of ysm—3yem—7 and yYam—2yem—7 are 1 ensures that
Yém—7 and Ysm—5 are in the same part.(Otherwise, wt(yem-7) < 6m —8, a
contradiction.)

Since the weights of ysm-1Yem-6 and ysm—i1Ysm—s are 2, then the
weights of vertex ysn—1 and the edges incident with yz,—; except for
Y3m—1Y6m—6; Y3m—1Yem—5 are 1. And the weight of y3m—_1Yem—7 is 1. The
vertices Yem-~s and yYsm_; are in the same part because of the weights of
Y6m—8Y3m—3; Y6m—8Y3m—2 are 1. Besides, yam and Y3m—1, Yem-s are in the
same part for the weights of Y3 ¥Ysm—5, Y3m¥Yem—6 and yYamYsm—7 are 2.

Thus, V(T 3m—1) has a m—partition {A;, Az, -+ , A} such that A =
{me—-hyﬁm-S}a Ap = {ySm—Say3m—2yy6m—6}1 Az = {yam—l,yam,yem—s}
and |A4| = |As| =-+- = |An| = 3. See Fig. 1.

o 8Yims XYeos  Ysma.o

Fig. 1 m—partition ofthe vertices of Tin 3m—1

Note that for the edges that do not appear in Fig. 1, their weights are
2 if they incident with Yem—s, Y6m—6, Y6m—7 OF Yem—s and 1 if they incident
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with y3;,-3, ¥am—2, Y3am—1 OF Yam, as well as in Fig. 2, Fig. 3 and Fig. 4.

According to Fig. 1, the weights of Ysm—9¥3m—3, Yem—-9¥3m—-2, Yem—9
Y3m—1 and Yem—9Y3m are 1 wherever Yem—g is in Ay (k = 4,5,--- ,m). But
d(Yem—9) = 3m — 4, so wt(ysm~9) < 6m — 10. This is a contradiction.

Case 2. The smallest weight is 3m — 3 and the vertex z with weight
6m — 6 and the vertex u with weight 3m — 3 are not in the same part. By
Claim, the vertices z and v are in the same part.

Let wt(u) = 3m — 3, wt(v) = 6m — 5 and wi(z) = 6m — 6, then the
weights of vertex u and the edges incident with u are 1, the weights of
vertex v and the edges incident with v except for uv are 2.

Case 2.1. The vertex y3,,—o with weight 3m — 2 and u are in the same
part.

Since the weight of ysm-2Yem—s5 is 2, the weights of ys,—2 and the
edges incident with y3,,_2 except for ysm—_2ysm-s are 1. Then the weights
of yem-e and the edges incident with ygm-¢ except for yem-—syam—3 and
Y6m—6Y3sm—2 are 2. Assume that ygm—7 and yzm—3, ¥Ysm—2 are not in
the same part, then the weights of ¥Y6m—7Y3m—3, Yem—-7Yam—2 are 1. But
d(Yem—7) = 3m — 4, s0 wt(yem—7) < 6m — 8, a contradiction. Therefore,
Y6m—7 and Yzm-3, Ysm—2 are in the same part.

Because the weights of yam—1Y6m—5; Ysm—1Yem—6 are 2, the weights
of yam—1 and the edges incident with ys,,—1 except for ysm—1¥em—5 and
Yam—1Y6m—6 are 1. Thus, the weight of Ygm—7y3m—-1 is 1 and the weights
of yem—7 and the edges incident with yg,—7 except for ygm—_7yam—1 are 2.
Duing to the weights of Y6m—s8Y3m—3, Y6m—8Yam—2 are 1, Yem—s and yzm_1
are in the same part. Moreover, Y3, and ¥snm_1, Ysm—s are in the same
part because of the weights of ysmYem—5, Y3mYsm—6, YamYem—_7 are 2.

Thus, V(Trm,3m—1) has a m—partition {A,;, Ag,--- , A} such that 4; =
{Y6m—6,¥6m—-5}, A2 = {Y3m—3,Y3m—2,Y6m-7}, A3 = {Yam—1,Y3m, Yem—8}
and [A4] =|As| =--- = |A;n| = 3. See Fig. 2.

! X=Yem-6 \\
2)Yens
{i‘

RO SR S
. U%Y3ma Va2 y‘]’,‘..’lw-»'

Fig. 2 m-—partition of the vertices of T 3m—1

According to Flg' 2) the weights of Y6m-9Y3m-3, Y6m-9Yam—-2, Yem-9
Y3m—1 and Yem—oYsm are 1 wherever ygm—g is in A; (k =4,5,--- ,m). But
d(Yem—9) = Im — 4, so wt(Yysm—-9) < 6m — 10. This is a contradiction.
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Case 2.2. The vertex ys,_2 with weight 3m — 2 and « are not in the
same part.

First, the weights of the vertex ysm—¢ and the edges incident with ygm—6
except for Yem—6Y3m—3, Yem—-6Yam—2 are 2 and the weights of vertex yzm—2
and the edges incident with yam—2 except for yam—2yem—s are 1. Then we
consider the following two cases according to the fact that the vertex ygm—7
is either in the same part as y3m—3 or in the same part as yam-2.

Case 2.2 (a). The vertex ygm—7 is in the same part as yam-3.

If y3m—1 and Yam—3, Yem—7 are not in the same part, then the weights of
Y3m—1Y6m—5, Y3m—1Y6m—6 8nd Yam_1Yem—7 are 2. But d(yam-1) = 3m — 4,
50 wt(yam-1) = 3m, a contradiction. Thus, yam—1 and Y3m-3, Yem-—7 are in
the saine part and the weights of vertex ys,1 and the edges incident with
Y3m—1 except for Yam—1Y6m—6, Y3m—1Yem—s are 1. The vertices yem-s and
Yam—2 are in the same part for the weights of Yem—8¥3m—3, Yem—8¥am—1
are 1. Because the weights of ysm¥ysm—5, Ysm¥6m—6 and YsmYsm—7 are 2,
Y3m and Ysm—-2, Yém—s are in the saimne part.

Thus, V(T 3m—1) has a m—partition {A;, A2, -+, Am} such that A; =
{Y6m—6,Yom—5}, A2 = {Ysm-3,Y3m—1,Y6m-7}, A3 = {¥3m—-2,Y3m, Yem—8}
and |Ay| = |As| = -+ = |Am| = 3. See Fig. 3.

T arn
iy Year  Yim o

Fig. 3 m—partition of the vertices of T}, 3m—1

According to Fig. 3, the weights of Ysm—9Y3m—3, Y6m-9Yam—2, Y6m—9
Y3m—1 and Yem—9Y3m are 1 wherever ygm—g is in Ax (k = 4,5, .- ,m). But
d(Yem—9) = 3m — 4, 50 wt(Ysm—9) < 6m — 10. This is a contradiction.

Case 2.2 (b). The vertex ygm—7 is in the same part as yam—2.

The weights of vertex ygm -7 and the edges incident with yg,—7 except
for Ysm—7yYam—3 are 2. If ys;n—1 and Yysm—2, Yem—7 are not in the same part,
then the weights of ¥3m—1Y6m-5, Y3m—1Y6m—6 and Yam—1Yem—7 are 2. But
d(yam-1) = 3m — 4, so wt(ysm—-1) = 3m, a contradiction. Thus, y3m-1
and Y3m—2, Ysm—7 are in the same part. The vertices ygm—s and yam-—3 are
in the same part for the weights of ¥sm—8¥am—1, Yem—8Yam—2 are 1. The
weights of Y3mYem—5, Y3mY6m—6, Y3mY6m—7 are 2, SO Y3m and Yzm-3, Yem—8s
are in the same part.

414



Thus, V(T;s,3m—1) has a m—partition {A;, Ag, - , A} such that A; =
{y6m-5,Ysm—6}, A2 = {Y3m—3,Y3m,Y6m-8}, Az = {Y3m-2,Y3m—1,Y6m-7}
and |A4| = |As| =-- = |A,n| = 3. See Fig. 4.

) 12 1
"-..‘,,.gjy,,,.., Yems Yia .

Fig. 4 m—partition of the vertices of Ty, 3m—1

According to Fig. 4, the weights of Yem—o¥y3am—3, Yem—9Y3m—2, Yem—9
Y3m—1 and Ygm—9Yam are 1 wherever ygm—g is in Ag (k= 4,5,--- ,m). But
d(yem—9) = 3m — 4, so wt(yem—9) < 6m — 10. This is a contradiction.

Case 3. The vertex u with the smallest weight 3m—2 is of the minimum
degree.

Let wt(u) = 3m — 2, wt(v) = 6m — 4, then the weights of vertex u
and the edges incident with u except for uv are 1, the weights of vertex
v and the edges incident with v are 2. In addition, ygmn_5 and ygm—_4 are
in the same part and the weights of yem-s and the edges incident with
Yem—s except for yzm—2yem-—s are 2. Thus, A; = {Yem—5,Yem—a} is a part
of Trn 3m—1.

If Yem-6 and ys,m—2 are not in the same part, then the weight of
Yom—6Yam~2 1S 1. But d(yem-6) = 3m — 4, s0 wt(yem-s) < 6m —7, a
contradiction. Thus, ygn-6 and Y32 are in the same part. Because the
weights of Ysm—1Yem—5, Ysm—1Y6m—a are 2, ysm_1 and yam—2, Yem—6 are
in the same part. So A = {Y3m—2,Y3m—1,Yem—s} is a part of Tpn 3m-1.
Moreover, the weights of Yam—2Y6m—7, ¥3m—1Yem—7 are 1 and d(ygm-7) =
3m — 4, so wt(Yem—7) < 6m — 8, a contradiction.

Case 4. The vertex u with the smallest weight 3m—2 is of the maximum
degree.

Let wt(u) = 3m — 2, wt(v) = 6m — 4. Since d(u) = d(v) = 3m — 3, then
the weights of vertex u and the edges incident with u are 1, the weights of
vertex v and the edges incident with v are 2. But d(ygm-5) = 3m —4 and
the weight of y3m—2¥em-—5 is 1, so wt(yem—s) < 6m — 7, a contradiction.

Thus, we have tvs(Tm 3m—1) 2 3 for m > 4.

Theorem 2.6 Let m > 3, then T,,, , doesn’t have a vertez irregular total
2—labeling forn=3m+r, r=1,2,--- ,m—1.
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Proof: Suppose that n =3m +r,r =1,2,.-- ,m — 1. Assume that T,
has a vertex irregular total 2—labeling. Since 6(Trnn) = 3m +r — 4 and
A(Ts,n) = 3m+7r —3, the minimum weight is 3m +7—3 and the maximum
weight is 2(A + 1) = 6m + 2r — 4. So the weight of each vertex in V(T 5)
is a number in the set {3m+7r—3,3m+r—2,--- ,6m+ 2r — 4}. But this
set has just n elements and any two different vertices have distinct weights.
Thus each number in the set {3m +r —3,3m+r—2,.-. ,6m+2r —4} is
a weight of some vertex in V(Tpn,n).

If wt(v) = 3m+r—3 for v € V(Tin n), then the degree of v is 3m +r—4
and the weights of vertex v and the edges incident with v are 1. But there
exists a vertex u with weight 6m + 2r — 4, then the vertex u with degree
3m +r — 3 is of the maximum degree and the weights of vertex u and the
edges incident with u are 2. This is not true because the edge uv has weight
1. This is a contradiction. So Ty, . doesn’t have a vertex irregular total
2-labeling forn=3m+7r,r=1,2,--- ,m—1L

Theorem 2.7 Forn = 4,5,6,7,8, tvs(T3,) = 2.

Proof: By Theorem 2.1, Theorem 2.2, Theorem 2,3 and Theorem 2.4, we
can easily obtain that tvs(T3,) = 2 for n = 4,5,6,7. For n = 8, we need
only to give a vertex irregular total 2—labeling A of T3 g in the following.

Let A(u{) = 1 for i = 1,2 and s = 1,2 AulP) = 2 for t = 1,2;
/\(ugs)) =2fori=1,2; )\(ugl)'u.;z)) =1forj=123; ,\(uﬁ"uf’) =1
for j = 1,2 ,\(ugl)u?)) =1forj =123 /\(ugl)u§3)) =gforj=1,2
MufPu@®) = 2 for 5 = 1,2,3; Mu§ul¥) = 2 for j = 1,2 AMuPu{) = j
for j=1,2; /\(ufz)ug-s)) =2 for i = 2,3 and j = 1,2. Thus, the weights of
all vertices of T3 g are 6, 7, 8, 9, 10, 11, 12, 13. So tvs(T3s) = 2.

Theorem 2.8 Let n > 9, then tus(T3,) = 3.

Proof: To prove the Theorem, we consider the following three cases de-
pending on values of m.

Case 1. n > 9 and n =0 (mod 3)

2n
For n > 9, we have tvs(T3.) = | g_..i_'fl— =1 fg]=3 by Lemma 1.1.
3 n

To show that tvs(T3,,) < 3, we need only to give a vertex irregular total
3—labeling A of T3, in the following.

Let \(u®) =t fort=1,2,3andi=1,2,---,2; foré,j=1,2,---,%,

1, fori+j<2;
1<s<t<3,let Mely @) =4 2, foritj=3+1;
3, fori+j=>3+2.

Thus, the weights of all vertices of T3, are wt(ugs)) =23 4 4i4+s5-2
fori=1,2,.--,%,8=1,2,3. It is easy to see that the weights at different
vertices are distinct. Therefore tvs(T3,,) = 3 for n > 9 and n =0 (mod 3).

Case 2. n > 10 and n =1 (mod 3)
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By Theorem 2.6, T3 10 doesn’t have a vertex irregular total 2—labeling.

For n > 10, we have tvs(T3 ) > [?1'5('?—“] [g:;i —[-2-(1 - .1%2-)] =3

according to Lemma 1.1.
To show that tvs(T3,) < 3, the vertex irregular total 3—labeling A of
T3,» when n > 10 are described as follows.

Let A(ui") = 2 Aul’) =3 fork = 2,3,---,252 + 1; A(W?)

1 forl=1,2-..,255 x\ul)) = 2 form=1,2,---,"T“1;fors=
Lt=234i=12---,2324+1,;=1,2,-., 2%  ors =2t =3,i,j =
1, forz+J<"‘1+1
1,2,---, let)\(e(s)(‘))—{z forz+_7-—"‘1+2
3, forz+_1>"_1+3

Thus, the weights of all vertices of T3, are wt(u (’)) Jﬁ_—z + 5+
n-1

1 fors=1,2,3; wt(u,(")) = J%T—z+4z+s—4 fori=2,3,---,25%,s=
1,2,3; wt(ugl)) =2n—-1 fori = "—;—1 + 1. Clearly, all the weights at
different vertices are distinct. Therefore tvs(T3,) = 3 for n > 10 and
n =1 (mod 3).

Case 3. n > 11 and n = 2 (mod 3)

By Theorem 2.6, T3 ;; doesn’t have a vertex irregular total 2—labeling

"+gﬂsﬂl—1'| 5n—~| r2

For n > 11, we have tvs(T3,,) > [ T, SeTs

2 2n+5] =3

according to Lemma 1.1.
To show that tvs(T3,) < 3, the vertex irregular total 3—labeling A of

T3,n when n > 11 are described as follows.

Let Auf’) =1 fork=1,2,--- , 2 Au{?) =2 forl=1,2,-.., 2,
/\(u,(,s,))=1 form=1,2,---,-3—2-, ndfors—lt_219—12 -sﬂ-
ors = 1,2t =3,i=12,...,2: 5 =1,2,..., "‘2 let )\(e(’)(t)) =

1, fori+j< ltf;

2, fori+j==% 1
{ 3, fori-t;>l‘—§£l+

Thus, the weights of all vertices of T3 ,, are wt(u(’)) = M+s for s =
1,2; wt(u(’)) 2("+1) +4i+s—5 fori=2,3,-.- 8 s=1,2; wt(uga)) =
M +4i-1 for i=1,2,- ; It is easy to see that the weights
at dxfferent vertices are chstmct Therefore tvs(T3,) = 3 for n > 11 and
n =2 (mod 3).

In the Theorem 2.5 and Theorem 2.6, we prove that T, 3m—1 (m > 4)
and Trpn (n=3m+7r,r=1,2,-.- ,m — 1) have no vertex 1rregular total
2—labeling. But we obtain that tvs(Tm 3m—1)=tvs(Tm »)=3 for some m
and n. So we propose the following Conjecture.

Conjecture 2.1 Let m > 4, then tvs(Tm sm—-1) = 3.
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Conjecture 2.2 Let m > 3, n =3m+7r andr = 1,2,--- ,m — 1, then
tvs(Tmn) = 3.
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