Total vertex irregularity strength of certain equitable complete *m*-partite graphs*

Jing Guo¹, Xiang'en Chen¹, Zhiwen Wang², Bing Yao¹

- ¹ College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
- ² School of Mathematics and Computer Sciences, Ningxia University, Yinchuan, Ningxia 750021, P. R. China

Abstract

For a simple undirected graph G with vertex set V and edge set E, a total k-labeling $\lambda: V \cup E \to \{1,2,\cdots,k\}$ is called a vertex irregular total k-labeling of G if for every two distinct vertices x and y of G their weights wt(x) and wt(y) are distinct where the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum k for which the graph G has a vertex irregular total k-labeling. The complete m-partite graph on n vertices in which each part has either $\lfloor \frac{n}{m} \rfloor$ or $\lceil \frac{n}{m} \rceil$ vertices is denoted by $T_{m,n}$. The total vertex irregularity strength of some equitable complete m-partite graphs, namely, $T_{m,m+1}$, $T_{m,m+2}$, $T_{m,2m}$, $T_{m,2m+1}$, $T_{m,3m-1}$ ($m \geq 4$), $T_{m,n}$ ($n = 3m + r, r = 1, 2, \cdots, m-1$), and equitable complete 3-partite graphs have been studied in this paper.

Key Words: vertex irregular total k-labeling; weight; total vertex irregularity strength; equitable complete 3-partite graph. AMS(2000) Subject Classification: 05C15.

1 Introduction and Preliminaries

Let us consider a simple (without loops and multiple edges) undirected graph G=(V,E) with vertex set V and edge set E. For a graph G, we define a labeling $\lambda:V\cup E\to\{1,2,\cdots,k\}$ to be a total k-labeling. A total k-labeling λ is defined to be an edge irregular total k-labeling of the graph G if for every two different edges xy and x'y' their weights

^{*}This work was supported by the National Natural Science Foundation of China (Grant Nos. 61163037, 61163054, 61363060 and 11261046) and the Project of One-hundred Scholars Plan of Ningxia.

 $\lambda(x)+\lambda(xy)+\lambda(y)$ and $\lambda(x')+\lambda(x'y')+\lambda(y')$ are distinct. Similarly, a total k-labeling λ is defined to be a vertex irregular total k-labeling of G if for every two distinct vertices x and y of G their weights wt(x) and wt(y) are distinct. Here, the weight wt(x) in G is the sum of the label of x and the labels of all edges incident with the vertex x.

The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength of G, denoted by tes(G). Analogously, the minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G, denoted by tvs(G). Combining both of these notions, G. C. Marzuki et al. in [3] introduced a new irregular total k-labeling of a graph G called totally irregular total k-labeling. The minimum K for which a graph K has a totally irregular total K-labeling is called the total irregularity strength of K, denoted by K which is required to be at the same time both vertex and edge irregular.

A complete m-partite graph is a simple graph whose vertex set can be partitioned into m non-empty subsets and in which each vertex is adjacent to every vertex that is not in the same subset. The m non-empty subsets are called the parts of the complete m-partite graph. The complete m-partite graph on n vertices in which each part has either $\lceil \frac{n}{m} \rceil$ or $\lfloor \frac{n}{m} \rfloor$ vertices is denoted by $T_{m,n}$.

Let n=mq+r, $0 \le r \le m-1$. We suppose that the m parts of $T_{m,n}$ are V_1, V_2, \cdots, V_m , where $V_s = \{u_i^{(s)} | i=1,2,\cdots,\frac{n}{m}\}$ when r=0 and $V_s = \{u_i^{(s)} | i=1,2,\cdots,\lceil \frac{n}{m} \rceil \}$, $s=1,2,\cdots,r$ and $V_s = \{u_i^{(s)} | i=1,2,\cdots,\lceil \frac{n}{m} \rceil \}$, $s=r+1,r+2,\cdots,m$ when $1 \le r \le m-1$.

Obviously, the degree of each vertex in $V(T_{m,n})$ is either δ or Δ , and $\Delta = \delta$ or $\Delta = \delta + 1$.

The vertex irregular total labeling and the edge irregular total labeling were introduced by M. Bača et al. in [4]. The total vertex irregularity strength of complete bipartite graphs $K_{m,n}$ for some m and n had been found by K. Wijaya et al. in [9], namely, $K_{2,n}$, $K_{n,n}$, $K_{n,n+1}$, $K_{n,n+2}$, and $K_{n,an}$. K. Wijaya and S. Slamin also showed in [8] that the values of total vertex irregularity strength of wheels W_n , fans F_n , suns M_n and friendship graphs f_n . The total vertex irregularity strength of Jahangir graphs $J_{n,2}$ for $n \geq 4$ and several types of trees were proved in [1, 5, 6]. Furthermore, the total vertex irregularity strength of several disjoint union of t copies of path with order n had been determined by N. Nurdin et al. in [7]. Recently, A. Ahmad and M. Bača determined the total vertex irregularity strength of several disjoint union of n—cycles in [2].

Lemma 1.1 [4]. Let a graph G have minimum degree δ and maximum degree Δ , then $\lceil \frac{|V|+\delta}{\Delta+1} \rceil \leq tvs(G) \leq |V| + \Delta - 2\delta + 1$.

In this paper, we determine the total vertex irregularity strength of some equitable complete m-partite graphs $T_{m,m+1}$, $T_{m,m+2}$, $T_{m,2m}$, $T_{m,2m+1}$, $T_{m,3m-1}$ $(m \ge 4)$, $T_{m,n}$ $(n = 3m + r, r = 1, 2, \cdots, m-1)$ and $T_{3,n}$.

2 Main Results

Note that the weight wt(v) is either the sum of $\delta+1$ numbers or the sum of $\Delta+1$ numbers in $\{1,2,\cdots,k\}$ for each $v\in V(T_{m,n})$ when we consider the vertex irregular total k-labeling of $T_{m,n}$.

Theorem 2.1 Let $m \geq 3$, then $tvs(T_{m,m+1}) = 2$.

Proof: It is easy to see that $tvs(T_{m,m+1}) \ge 2$. To show that $tvs(T_{m,m+1}) = 2$ for $m \ge 3$, we need only to give a vertex irregular total 2-labeling λ of $T_{m,m+1}$ in the following.

For m=3, let $\lambda(u_i^{(1)})=1$ for i=1,2; $\lambda(u_1^{(s)})=1$ for s=2,3; $\lambda(u_1^{(1)}u_1^{(s)})=1$ for s=2,3; $\lambda(u_2^{(1)}u_1^{(t)})=t-1$ for t=2,3; $\lambda(u_1^{(2)}u_1^{(3)})=2$. Thus, the weights of all vertices of $T_{3,4}$ are 3, 4, 5, 6. So $tvs(T_{3,4})=2$.

For m=4, let $\lambda(u_i^{(1)})=1$ for i=1,2; $\lambda(u_1^{(s)})=2$ for s=2,3,4; $\lambda(u_1^{(1)}u_1^{(t)})=1$ for t=2,3,4; $\lambda(u_2^{(1)}u_1^{(t)})=1$ for t=2,3; $\lambda(u_2^{(1)}u_1^{(4)})=2$; $\lambda(u_1^{(2)}u_1^{(t)})=1$ for t=3,4; $\lambda(u_1^{(3)}u_1^{(4)})=2$. Thus, the weights of all vertices of $T_{4,5}$ are 4,5,6,7,8. So $tvs(T_{4,5})=2$.

For $m \geq 5$, we consider the two cases depending on values of m.

Case 1. $m \ge 5$ and $m \equiv 1 \pmod{2}$.

Let $\lambda(u_i^{(1)})=1$ for $i=1,2;\ \lambda(u_1^{(2)})=2;\ \lambda(u_1^{(s)})=1$ for $3\leq s\leq \frac{m+1}{2};\ \lambda(u_1^{(s)})=2$ for $\frac{m+3}{2}\leq s\leq m;\ \lambda(u_1^{(1)}u_1^{(t)})=1$ for $t=2,3,\cdots,m;$ $\lambda(u_2^{(1)}u_1^{(t)})=1$ for $t=2,3,\cdots,m-1;\ \lambda(u_2^{(1)}u_1^{(m)})=2;\ \lambda(u_1^{(2)}u_1^{(t)})=1$ for $t=3,4,\cdots,m;\ \lambda(u_1^{(s)}u_1^{(t)})=1$ for $3\leq s\leq \frac{m-1}{2},\ s< t\leq m-s+1;$ $\lambda(u_1^{(s)}u_1^{(t)})=2$ for $3\leq s\leq \frac{m-1}{2},\ m-s+2\leq t\leq m;\ \lambda(u_1^{(s)}u_1^{(t)})=2$ for $\frac{m+1}{2}\leq s< t\leq m.$ Thus, the weights of all vertices of $T_{m,m+1}$ are $m,m+1,\cdots,2m.$ So, $tvs(T_{m,m+1})=2.$

Case 2. $m \ge 6$ and $m \equiv 0 \pmod{2}$.

Let $\lambda(u_1^{(1)})=1$ for $i=1,2;\ \lambda(u_1^{(2)})=2;\ \lambda(u_1^{(s)})=1$ for $3\leq s\leq \frac{m}{2};\ \lambda(u_1^{(s)})=2$ for $\frac{m}{2}+1\leq s\leq m;\ \lambda(u_1^{(1)}u_1^{(t)})=1$ for $t=2,3,\cdots,m;\ \lambda(u_2^{(1)}u_1^{(t)})=1$ for $t=2,3,\cdots,m-1;\ \lambda(u_2^{(1)}u_1^{(m)})=2;\ \lambda(u_1^{(2)}u_1^{(t)})=1$ for $t=3,4,\cdots,m;\ \lambda(u_1^{(s)}u_1^{(t)})=1$ for $3\leq s\leq \frac{m}{2},\ s< t\leq m-s+1;\ \lambda(u_1^{(s)}u_1^{(t)})=2$ for $3\leq s\leq \frac{m}{2},\ m-s+2\leq t\leq m;\ \lambda(u_1^{(s)}u_1^{(t)})=2$ for $\frac{m}{2}+1\leq s< t\leq m.$ Thus, the weights of all vertices of $T_{m,m+1}$ are $m,m+1,\cdots,2m.$ So, $tvs(T_{m,m+1})=2.$

Theorem 2.2 Let $m \geq 3$, then $tvs(T_{m,m+2}) = 2$.

Proof: Obviously, we have $tvs(T_{m,m+2}) \ge 2$. To show that $tvs(T_{m,m+2}) = 2$ for $m \ge 3$, we need only to give a vertex irregular total 2-labeling λ of $T_{m,m+2}$ as follows.

For m = 3, let $\lambda(u_i^{(s)}) = s$ for i = 1, 2 and s = 1, 2; $\lambda(u_1^{(3)}) = 2$; $\lambda(u_1^{(1)}u_i^{(2)}) = 1$ for j = 1, 2; $\lambda(u_2^{(1)}u_i^{(2)}) = j$ for j = 1, 2; $\lambda(u_i^{(1)}u_i^{(3)}) = 1$ for

 $i=1,2;\ \lambda(u_i^{(2)}u_1^{(3)})=2$ for i=1,2. Thus, the weights of all vertices of $T_{3,5}$ are 4, 5, 6, 7, 8. So $tvs(T_{3,5})=2.$

For m=4, let $\lambda(u_i^{(s)})=i$ for i=1,2,s=1,2; $\lambda(u_1^{(s)})=s-2$ for s=3,4; $\lambda(u_i^{(1)}u_j^{(2)})=1$ for i,j=1,2; $\lambda(u_i^{(1)}u_1^{(t)})=1$ for i=1,2,t=3,4; $\lambda(u_i^{(2)}u_1^{(t)})=2$ for i=1,2,t=3,4; $\lambda(u_1^{(3)}u_1^{(4)})=2$. Thus, the weights of all vertices of $T_{4,6}$ are 5, 6, 7, 8, 9, 10. So $tvs(T_{4,6})=2$.

For m=5, let $\lambda(u_i^{(1)})=i$ for i=1,2,; $\lambda(u_i^{(2)})=1$ for i=1,2,; $\lambda(u_1^{(s)})=2$ for s=3,4,5; $\lambda(u_i^{(1)}u_j^{(2)})=1$ for i,j=1,2; $\lambda(u_i^{(1)}u_1^{(t)})=1$ for i=1,2,t=3,4; $\lambda(u_i^{(1)}u_1^{(5)})=i$ for $i=1,2,\lambda(u_i^{(2)}u_1^{(t)})=i$ for i=1,2,t=3,5; $\lambda(u_i^{(2)}u_1^{(4)})=2$ for $i=1,2,\lambda(u_1^{(3)}u_1^{(4)})=1$; $\lambda(u_1^{(s)}u_1^{(5)})=2$ for s=3,4. Thus, the weights of all vertices of $T_{5,7}$ are 6, 7, 8, 9, 10,11, 12. So $tvs(T_{5,7})=2$.

For m=6, let $\lambda(u_i^{(s)})=i$ for i=1,2 and s=1,2; $\lambda(u_1^{(s)})=2$ for s=3,4,5,6; $\lambda(u_i^{(1)}u_j^{(2)})=1$ for i,j=1,2; $\lambda(u_1^{(1)}u_1^{(t)})=1$ for t=3,4,5,6; $\lambda(u_2^{(1)}u_1^{(t)})=1$ for t=3,4,5; $\lambda(u_2^{(1)}u_1^{(6)})=2$; $\lambda(u_1^{(2)}u_1^{(t)})=1$ for t=3,4,6; $\lambda(u_1^{(2)}u_1^{(5)})=2$; $\lambda(u_2^{(2)}u_1^{(t)})=1$ for t=3,5; $\lambda(u_2^{(2)}u_1^{(t)})=2$ for t=4,6; $\lambda(u_1^{(3)}u_1^{(4)})=1$; $\lambda(u_1^{(3)}u_1^{(t)})=2$ for t=5,6; $\lambda(u_1^{(s)}u_1^{(t)})=2$ for t=4,6; $\lambda(u_1^{(s)}u_1^{(s)})=1$; $\lambda(u_1^{(s)}$

Case 1. $m \ge 7$ and $m \equiv 1 \pmod{2}$.

Let $\lambda(u_i^{(s)})=i$ for $i=1,2,\ s=1,2;\ \lambda(u_1^{(s)})=1$ for $s=3,4,\cdots,\frac{m-1}{2},\ m-1;\ \lambda(u_1^{(s)})=2$ for $s=\frac{m+1}{2},\frac{m+3}{2},\cdots,m-2,\ m;\ \lambda(u_i^{(1)}u_j^{(2)})=1$ for $i,j=1,2;\ \lambda(u_i^{(1)}u_1^{(t)})=1$ for $i=1,2,\ t=3,4,\cdots,m;\ \lambda(u_i^{(2)}u_1^{(t)})=1$ for $i=1,2,\ t=3,4,\cdots,m-2;\ \lambda(u_i^{(2)}u_1^{(t)})=2$ for $i=1,2,\ t=m-1,m;\ \lambda(u_1^{(s)}u_1^{(t)})=1$ for $3\leq s\leq \frac{m-1}{2},\ s< t\leq m-s;\ \lambda(u_1^{(s)}u_1^{(t)})=2$ for $3\leq s\leq \frac{m-1}{2},\ m-s+1\leq t\leq m;\ \lambda(u_1^{(s)}u_1^{(t)})=2$ for $3\leq s\leq \frac{m-1}{2},\ m-s+1\leq t\leq m;\ \lambda(u_1^{(s)}u_1^{(t)})=2$ for $3\leq s\leq t\leq m$. Thus, the weights of all vertices of $3\leq t\leq t\leq m$. Thus, the weights of all vertices of $3\leq t\leq t\leq t\leq t$.

Case 2. $m \ge 8$ and $m \equiv 0 \pmod{2}$.

Let $\lambda(u_i^{(s)})=i$ for $i=1,2,\ s=1,2;\ \lambda(u_1^{(s)})=1$ for $s=3,4,\cdots,\frac{m}{2},\ m-1;\ \lambda(u_1^{(s)})=2$ for $s=\frac{m}{2}+1,\frac{m}{2}+2,\cdots,m-2,\ m;\ \lambda(u_i^{(1)}u_j^{(2)})=1$ for $i,j=1,2;\ \lambda(u_i^{(1)}u_1^{(t)})=1$ for $i=1,2,\ t=3,4,\cdots,m;\ \lambda(u_i^{(2)}u_1^{(t)})=1$ for $i=1,2,\ t=3,4,\cdots,m-2;\ \lambda(u_i^{(2)}u_1^{(t)})=2$ for $i=1,2,\ t=m-1,m;\ \lambda(u_1^{(s)}u_1^{(t)})=1$ for $3\leq s\leq \frac{m}{2}-1,\ s< t\leq m-s;\ \lambda(u_1^{(s)}u_1^{(t)})=2$ for $3\leq s\leq \frac{m}{2}-1,\ m-s+1\leq t\leq m;\ \lambda(u_1^{(s)}u_1^{(t)})=2$ for $3\leq s\leq \frac{m}{2}-1,\ \lambda(u_1^{(s)}u_1^{(s)}u_1^{(s)})=2$ for $3\leq s\leq \frac{m}{2}-1,\ \lambda(u_1^{(s)}u_1^{(s)}u_1^{(s)}u_1^{(s)}u_$

Theorem 2.3 Let $m \geq 3$, then $tvs(T_{m,2m}) = 2$.

Proof: Obviously, we have $\delta(T_{m,2m}) = \Delta(T_{m,2m}) = 2m-2$. To show that $tvs(T_{m,2m}) = 2$, we need only to give a vertex irregular total 2-labeling λ of $T_{m,2m}$ as follows.

Let $\lambda(u_i^{(s)})=i$ for i=1,2 and $s=1,2,\cdots,m;$ $\lambda(u_i^{(s)}u_j^{(t)})=i$ for i,j=1,2 and $1\leq s< t\leq m$. Thus, the weights of all vertices of $T_{m,2m}$ are $2m-1,2m,\cdots,4m-3,4m-2$. So $tvs(T_{m,2m})=2$.

Theorem 2.4 Let $m \geq 3$, then $tvs(T_{m,2m+1}) = 2$.

Proof: Obviously, we need only to give a vertex irregular total 2-labeling λ of $T_{m,2m+1}$ for $m \geq 3$.

For m=3, let $\lambda(u_i^{(1)})=1$ for i=1,2; $\lambda(u_3^{(1)})=2$; $\lambda(u_i^{(2)})=i$ for i=1,2; $\lambda(u_i^{(3)})=i$ for i=1,2; $\lambda(u_1^{(1)}u_j^{(t)})=j$ for j=1,2 and t=2,3; $\lambda(u_i^{(1)}u_j^{(2)})=j$ for i=2,3 and j=1,2; $\lambda(u_i^{(1)}u_j^{(3)})=2$ for i=2,3 and j=1,2; $\lambda(u_i^{(2)}u_j^{(3)})=i$ for i,j=1,2. Thus, the weights of all vertices of $T_{3,7}$ are 6,7,8,9,10,11,12. So $tvs(T_{3,7})=2$.

For $m \geq 4$, let $\lambda(u_i^{(1)}) = 1$ for i = 1, 2, 3; $\lambda(u_i^{(s)}) = i$ for i = 1, 2 and $s = 2, 3, \cdots, m-1$; $\lambda(u_i^{(m)}) = 2$ for i = 1, 2; $\lambda(u_1^{(1)}u_j^{(t)}) = 1$ for j = 1, 2 and $t = 2, 3, \cdots, m$; $\lambda(u_2^{(1)}u_j^{(t)}) = 1$ for j = 1, 2 and $t = 2, 3, \cdots, m-1$; $\lambda(u_2^{(1)}u_j^{(m)}) = j$ for j = 1, 2; $\lambda(u_3^{(1)}u_j^{(t)}) = 1$ for j = 1, 2 and $t = 2, 3, \cdots, m-1$; $\lambda(u_3^{(1)}u_j^{(m)}) = 2$ for j = 1, 2; $\lambda(u_1^{(s)}u_j^{(t)}) = 1$ for j = 1, 2 and $2 \leq s < t \leq m-1$; $\lambda(u_1^{(s)}u_j^{(m)}) = 2$ for j = 1, 2 and $s = 2, 3, \cdots, m-1$; $\lambda(u_2^{(s)}u_j^{(t)}) = 2$ for j = 1, 2 and $2 \leq s < t \leq m$. Thus, the weights of all vertices of $T_{m,2m+1}$ are $2m-1, 2m, \cdots, 4m-1$. So $tvs(T_{m,2m+1}) = 2$.

Theorem 2.5 $T_{m,3m-1}$ has no vertex irregular total 2-labeling for $m \geq 4$.

Proof: First, we have $\delta(T_{m,3m-1})=3m-4$, $\Delta(T_{m,3m-1})=3m-3$. Assume that $T_{m,3m-1}$ has a vertex irregular total 2-labeling. The smallest weight is at least 3m-3 and the largest weight is at least 6m-4. And it is impossible that both 3m-3 and 6m-4 are the weights of two vertices of $T_{m,3m-1}$. Furthermore, the smallest weight does not exceed 3m-2. (Otherwise, the largest weight is at least 6m-3, a contradiction.) Suppose that the vertex with the smallest weight is u and the vertex with the largest weight is v.

Claim: If the smallest weight wt(u) is 3m-3, then

- (i) the vertex u with smallest weight is of the minimum degree;
- (ii) wt(v) = 6m 5 and v is of the maximum degree;
- (iii) the vertex x with weight 6m-6 is either in the part with u or in the part with v.
- (i) and (ii) hold obviously. For (iii), suppose x is neither in the part with u nor in the part with v. Then the weight of x is the sum of 3m-3

numbers in $\{1,2\}$, but one of the numbers is 1 (that is, the weight of edge ux). So $wt(x) \leq 6m - 7$, a contraction.

Based on the above Claim, we discuss by distinguishing the following four cases. Let y_i denote the vertex with weight i for $i = 3m - 3, 3m - 2, \dots, 6m - 5$ in case 1 and case 2 or for $i = 3m - 2, 3m - 1, \dots, 6m - 4$ in case 3 and case 4 in the following discussions.

Case 1. The smallest weight is 3m-3 (The largest weight must be 6m-5) and the vertex x with weight 6m-6 and the vertex u with weight 3m-3 are in the same part.

Let wt(u) = 3m - 3, wt(v) = 6m - 5 and wt(x) = 6m - 6, then the weights of vertex u and the edges incident with u are 1, the weights of vertex x and the edges incident with x are 2 and the weights of vertex v and the edges incident with v except for uv are 2.

Note that y_{3m-2} is not in the same part as $v=y_{6m-5}$. (Otherwise, y_{3m-2} is a vertex of maximum degree and the weight of $y_{3m-2}y_{6m-6}$ is 2, so the weight of y_{3m-2} is at least 3m-1. This is a contradiction.) If y_{3m-2} and y_{3m-3} , y_{6m-6} are not in the same part, then the weights of $y_{3m-2}y_{6m-5}$ and $y_{3m-2}y_{6m-6}$ are 2. But $d(y_{3m-2})=3m-4$. So $wt(y_{3m-2})\geq 3m-1$, a contradiction. Therefore, y_{3m-2} and y_{3m-3} , y_{6m-6} are in the same part. Besides, the weights of $y_{3m-3}y_{6m-7}$ and $y_{3m-2}y_{6m-7}$ are 1 ensures that y_{6m-7} and y_{6m-5} are in the same part. (Otherwise, $wt(y_{6m-7})\leq 6m-8$, a contradiction.)

Since the weights of $y_{3m-1}y_{6m-6}$ and $y_{3m-1}y_{6m-5}$ are 2, then the weights of vertex y_{3m-1} and the edges incident with y_{3m-1} except for $y_{3m-1}y_{6m-6}$, $y_{3m-1}y_{6m-5}$ are 1. And the weight of $y_{3m-1}y_{6m-7}$ is 1. The vertices y_{6m-8} and y_{3m-1} are in the same part because of the weights of $y_{6m-8}y_{3m-3}$, $y_{6m-8}y_{3m-2}$ are 1. Besides, y_{3m} and y_{3m-1} , y_{6m-8} are in the same part for the weights of $y_{3m}y_{6m-5}$, $y_{3m}y_{6m-6}$ and $y_{3m}y_{6m-7}$ are 2.

Thus, $V(T_{m,3m-1})$ has a m-partition $\{A_1, A_2, \dots, A_m\}$ such that $A_1 = \{y_{6m-7}, y_{6m-5}\}$, $A_2 = \{y_{3m-3}, y_{3m-2}, y_{6m-6}\}$, $A_3 = \{y_{3m-1}, y_{3m}, y_{6m-8}\}$ and $|A_4| = |A_5| = \dots = |A_m| = 3$. See Fig. 1.

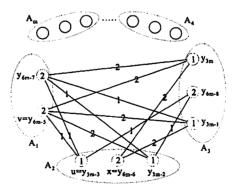


Fig. 1 m-partition of the vertices of $T_{m,3m-1}$

Note that for the edges that do not appear in Fig. 1, their weights are 2 if they incident with y_{6m-5} , y_{6m-6} , y_{6m-7} or y_{6m-8} and 1 if they incident

with $y_{3m-3}, y_{3m-2}, y_{3m-1}$ or y_{3m} , as well as in Fig. 2, Fig. 3 and Fig. 4.

According to Fig. 1, the weights of $y_{6m-9}y_{3m-3}$, $y_{6m-9}y_{3m-2}$, $y_{6m-9}y_{3m-1}$ and $y_{6m-9}y_{3m}$ are 1 wherever y_{6m-9} is in A_k $(k=4,5,\cdots,m)$. But $d(y_{6m-9})=3m-4$, so $wt(y_{6m-9})\leq 6m-10$. This is a contradiction.

Case 2. The smallest weight is 3m-3 and the vertex x with weight 6m-6 and the vertex u with weight 3m-3 are not in the same part. By Claim, the vertices x and v are in the same part.

Let wt(u) = 3m - 3, wt(v) = 6m - 5 and wt(x) = 6m - 6, then the weights of vertex u and the edges incident with u are 1, the weights of vertex v and the edges incident with v except for uv are 2.

Case 2.1. The vertex y_{3m-2} with weight 3m-2 and u are in the same part.

Since the weight of $y_{3m-2}y_{6m-5}$ is 2, the weights of y_{3m-2} and the edges incident with y_{3m-2} except for $y_{3m-2}y_{6m-5}$ are 1. Then the weights of y_{6m-6} and the edges incident with y_{6m-6} except for $y_{6m-6}y_{3m-3}$ and $y_{6m-6}y_{3m-2}$ are 2. Assume that y_{6m-7} and y_{3m-3} , y_{3m-2} are not in the same part, then the weights of $y_{6m-7}y_{3m-3}$, $y_{6m-7}y_{3m-2}$ are 1. But $d(y_{6m-7}) = 3m-4$, so $wt(y_{6m-7}) \le 6m-8$, a contradiction. Therefore, y_{6m-7} and y_{3m-3} , y_{3m-2} are in the same part.

Because the weights of $y_{3m-1}y_{6m-5}$, $y_{3m-1}y_{6m-6}$ are 2, the weights of y_{3m-1} and the edges incident with y_{3m-1} except for $y_{3m-1}y_{6m-5}$ and $y_{3m-1}y_{6m-6}$ are 1. Thus, the weight of $y_{6m-7}y_{3m-1}$ is 1 and the weights of y_{6m-7} and the edges incident with y_{6m-7} except for $y_{6m-7}y_{3m-1}$ are 2. Duing to the weights of $y_{6m-8}y_{3m-3}$, $y_{6m-8}y_{3m-2}$ are 1, y_{6m-8} and y_{3m-1} are in the same part. Moreover, y_{3m} and y_{3m-1} , y_{6m-8} are in the same part because of the weights of $y_{3m}y_{6m-5}$, $y_{3m}y_{6m-6}$, $y_{3m}y_{6m-7}$ are 2.

Thus, $V(T_{m,3m-1})$ has a m-partition $\{A_1, A_2, \dots, A_m\}$ such that $A_1 = \{y_{6m-6}, y_{6m-5}\}, A_2 = \{y_{3m-3}, y_{3m-2}, y_{6m-7}\}, A_3 = \{y_{3m-1}, y_{3m}, y_{6m-8}\}$ and $|A_4| = |A_5| = \dots = |A_m| = 3$. See Fig. 2.

Fig. 2 m-partition of the vertices of $T_{m,3m-1}$

According to Fig. 2, the weights of $y_{6m-9}y_{3m-3}$, $y_{6m-9}y_{3m-2}$, $y_{6m-9}y_{3m-1}$ and $y_{6m-9}y_{3m}$ are 1 wherever y_{6m-9} is in A_k $(k = 4, 5, \dots, m)$. But $d(y_{6m-9}) = 3m - 4$, so $wt(y_{6m-9}) \le 6m - 10$. This is a contradiction.

Case 2.2. The vertex y_{3m-2} with weight 3m-2 and u are not in the same part.

First, the weights of the vertex y_{6m-6} and the edges incident with y_{6m-6} except for $y_{6m-6}y_{3m-3}$, $y_{6m-6}y_{3m-2}$ are 2 and the weights of vertex y_{3m-2} and the edges incident with y_{3m-2} except for $y_{3m-2}y_{6m-5}$ are 1. Then we consider the following two cases according to the fact that the vertex y_{6m-7} is either in the same part as y_{3m-3} or in the same part as y_{3m-2} .

Case 2.2 (a). The vertex y_{6m-7} is in the same part as y_{3m-3} .

If y_{3m-1} and y_{3m-3} , y_{6m-7} are not in the same part, then the weights of $y_{3m-1}y_{6m-5}$, $y_{3m-1}y_{6m-6}$ and $y_{3m-1}y_{6m-7}$ are 2. But $d(y_{3m-1}) = 3m-4$, so $wt(y_{3m-1}) \geq 3m$, a contradiction. Thus, y_{3m-1} and y_{3m-3} , y_{6m-7} are in the same part and the weights of vertex y_{3m-1} and the edges incident with y_{3m-1} except for $y_{3m-1}y_{6m-6}$, $y_{3m-1}y_{6m-5}$ are 1. The vertices y_{6m-8} and y_{3m-2} are in the same part for the weights of $y_{6m-8}y_{3m-3}$, $y_{6m-8}y_{3m-1}$ are 1. Because the weights of $y_{3m}y_{6m-5}$, $y_{3m}y_{6m-6}$ and $y_{3m}y_{6m-7}$ are 2, y_{3m} and y_{3m-2} , y_{6m-8} are in the same part.

Thus, $V(T_{m,3m-1})$ has a m-partition $\{A_1, A_2, \dots, A_m\}$ such that $A_1 = \{y_{6m-6}, y_{6m-5}\}$, $A_2 = \{y_{3m-3}, y_{3m-1}, y_{6m-7}\}$, $A_3 = \{y_{3m-2}, y_{3m}, y_{6m-8}\}$ and $|A_4| = |A_5| = \dots = |A_m| = 3$. See Fig. 3.

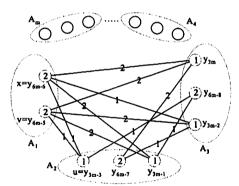


Fig. 3 m-partition of the vertices of $T_{m,3m-1}$

According to Fig. 3, the weights of $y_{6m-9}y_{3m-3}$, $y_{6m-9}y_{3m-2}$, $y_{6m-9}y_{3m-1}$ and $y_{6m-9}y_{3m}$ are 1 wherever y_{6m-9} is in A_k $(k=4,5,\cdots,m)$. But $d(y_{6m-9})=3m-4$, so $wt(y_{6m-9})\leq 6m-10$. This is a contradiction.

Case 2.2 (b). The vertex y_{6m-7} is in the same part as y_{3m-2} .

The weights of vertex y_{6m-7} and the edges incident with y_{6m-7} except for $y_{6m-7}y_{3m-3}$ are 2. If y_{3m-1} and y_{3m-2} , y_{6m-7} are not in the same part, then the weights of $y_{3m-1}y_{6m-5}$, $y_{3m-1}y_{6m-6}$ and $y_{3m-1}y_{6m-7}$ are 2. But $d(y_{3m-1}) = 3m-4$, so $wt(y_{3m-1}) \geq 3m$, a contradiction. Thus, y_{3m-1} and y_{3m-2} , y_{6m-7} are in the same part. The vertices y_{6m-8} and y_{3m-3} are in the same part for the weights of $y_{6m-8}y_{3m-1}$, $y_{6m-8}y_{3m-2}$ are 1. The weights of $y_{3m}y_{6m-5}$, $y_{3m}y_{6m-6}$, $y_{3m}y_{6m-7}$ are 2, so y_{3m} and y_{3m-3} , y_{6m-8} are in the same part.

Thus, $V(T_{m,3m-1})$ has a m-partition $\{A_1, A_2, \dots, A_m\}$ such that $A_1 = \{y_{6m-5}, y_{6m-6}\}, A_2 = \{y_{3m-3}, y_{3m}, y_{6m-8}\}, A_3 = \{y_{3m-2}, y_{3m-1}, y_{6m-7}\}$ and $|A_4| = |A_5| = \dots = |A_m| = 3$. See Fig. 4.

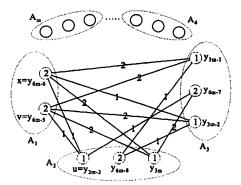


Fig. 4 m-partition of the vertices of $T_{m,3m-1}$

According to Fig. 4, the weights of $y_{6m-9}y_{3m-3}$, $y_{6m-9}y_{3m-2}$, $y_{6m-9}y_{3m-1}$ and $y_{6m-9}y_{3m}$ are 1 wherever y_{6m-9} is in A_k $(k=4,5,\cdots,m)$. But $d(y_{6m-9})=3m-4$, so $wt(y_{6m-9})\leq 6m-10$. This is a contradiction.

Case 3. The vertex u with the smallest weight 3m-2 is of the minimum degree.

Let wt(u) = 3m-2, wt(v) = 6m-4, then the weights of vertex u and the edges incident with u except for uv are 1, the weights of vertex v and the edges incident with v are 2. In addition, y_{6m-5} and y_{6m-4} are in the same part and the weights of y_{6m-5} and the edges incident with y_{6m-5} except for $y_{3m-2}y_{6m-5}$ are 2. Thus, $A_1 = \{y_{6m-5}, y_{6m-4}\}$ is a part of $T_{m,3m-1}$.

If y_{6m-6} and y_{3m-2} are not in the same part, then the weight of $y_{6m-6}y_{3m-2}$ is 1. But $d(y_{6m-6}) = 3m-4$, so $wt(y_{6m-6}) \le 6m-7$, a contradiction. Thus, y_{6m-6} and y_{3m-2} are in the same part. Because the weights of $y_{3m-1}y_{6m-5}$, $y_{3m-1}y_{6m-4}$ are 2, y_{3m-1} and y_{3m-2} , y_{6m-6} are in the same part. So $A_2 = \{y_{3m-2}, y_{3m-1}, y_{6m-6}\}$ is a part of $T_{m,3m-1}$. Moreover, the weights of $y_{3m-2}y_{6m-7}$, $y_{3m-1}y_{6m-7}$ are 1 and $d(y_{6m-7}) = 3m-4$, so $wt(y_{6m-7}) \le 6m-8$, a contradiction.

Case 4. The vertex u with the smallest weight 3m-2 is of the maximum degree.

Let wt(u) = 3m-2, wt(v) = 6m-4. Since d(u) = d(v) = 3m-3, then the weights of vertex u and the edges incident with u are 1, the weights of vertex v and the edges incident with v are 2. But $d(y_{6m-5}) = 3m-4$ and the weight of $y_{3m-2}y_{6m-5}$ is 1, so $wt(y_{6m-5}) \le 6m-7$, a contradiction.

Thus, we have $tvs(T_{m,3m-1}) \geq 3$ for $m \geq 4$.

Theorem 2.6 Let $m \geq 3$, then $T_{m,n}$ doesn't have a vertex irregular total 2-labeling for n = 3m + r, $r = 1, 2, \dots, m - 1$.

Proof: Suppose that n=3m+r, $r=1,2,\cdots,m-1$. Assume that $T_{m,n}$ has a vertex irregular total 2-labeling. Since $\delta(T_{m,n})=3m+r-4$ and $\Delta(T_{5,n})=3m+r-3$, the minimum weight is 3m+r-3 and the maximum weight is $2(\Delta+1)=6m+2r-4$. So the weight of each vertex in $V(T_{m,n})$ is a number in the set $\{3m+r-3,3m+r-2,\cdots,6m+2r-4\}$. But this set has just n elements and any two different vertices have distinct weights. Thus each number in the set $\{3m+r-3,3m+r-2,\cdots,6m+2r-4\}$ is a weight of some vertex in $V(T_{m,n})$.

If wt(v)=3m+r-3 for $v\in V(T_{m,n})$, then the degree of v is 3m+r-4 and the weights of vertex v and the edges incident with v are 1. But there exists a vertex u with weight 6m+2r-4, then the vertex u with degree 3m+r-3 is of the maximum degree and the weights of vertex u and the edges incident with u are 2. This is not true because the edge uv has weight 1. This is a contradiction. So $T_{m,n}$ doesn't have a vertex irregular total 2-labeling for $n=3m+r, \ r=1,2,\cdots,m-1$.

Theorem 2.7 For n = 4, 5, 6, 7, 8, $tvs(T_{3,n}) = 2$.

Proof: By Theorem 2.1, Theorem 2.2, Theorem 2.3 and Theorem 2.4, we can easily obtain that $tvs(T_{3,n}) = 2$ for n = 4, 5, 6, 7. For n = 8, we need only to give a vertex irregular total 2-labeling λ of $T_{3,8}$ in the following.

Let $\lambda(u_i^{(s)})=1$ for i=1,2 and s=1,2; $\lambda(u_3^{(t)})=2$ for t=1,2; $\lambda(u_i^{(3)})=2$ for i=1,2; $\lambda(u_i^{(1)}u_j^{(2)})=1$ for j=1,2,3; $\lambda(u_1^{(1)}u_j^{(3)})=1$ for j=1,2,3; $\lambda(u_2^{(1)}u_j^{(2)})=1$ for j=1,2,3; $\lambda(u_2^{(1)}u_j^{(3)})=j$ for j=1,2,3; $\lambda(u_3^{(1)}u_j^{(3)})=j$ for j=1,2,3; $\lambda(u_3^{(1)}u_j^{(3)})=j$ for j=1,2,3; $\lambda(u_3^{(1)}u_j^{(3)})=j$ for j=1,2,3; $\lambda(u_3^{(2)}u_j^{(3)})=j$ for j=1,2,3; $\lambda(u_3^{(2)}u_j^{(2)})=j$ for j=1,2,3; $\lambda(u_3^{(2)}$

Theorem 2.8 Let $n \geq 9$, then $tvs(T_{3,n}) = 3$.

Proof: To prove the Theorem, we consider the following three cases depending on values of m.

Case 1. $n \ge 9$ and $n \equiv 0 \pmod{3}$

For $n \geq 9$, we have $tvs(T_{3,n}) \geq \lceil \frac{n+\frac{2n}{3}}{\frac{2n}{3}+1} \rceil = \lceil \frac{5}{2+\frac{3}{n}} \rceil = 3$ by Lemma 1.1. To show that $tvs(T_{3,n}) \leq 3$, we need only to give a vertex irregular total 3-labeling λ of $T_{3,n}$ in the following.

Let
$$\lambda(u_i^{(t)}) = t$$
 for $t = 1, 2, 3$ and $i = 1, 2, \dots, \frac{n}{3}$; for $i, j = 1, 2, \dots, \frac{n}{3}$, $1 \le s < t \le 3$, let $\lambda(e_{ij}^{(s)(t)}) = \begin{cases} 1, & \text{for } i+j \le \frac{n}{3}; \\ 2, & \text{for } i+j = \frac{n}{3}+1; \\ 3, & \text{for } i+j \ge \frac{n}{3}+2. \end{cases}$

Thus, the weights of all vertices of $T_{3,n}$ are $wt(u_i^{(s)}) = \frac{2n}{3} + 4i + s - 2$ for $i = 1, 2, \dots, \frac{n}{3}, s = 1, 2, 3$. It is easy to see that the weights at different vertices are distinct. Therefore $tvs(T_{3,n}) = 3$ for $n \geq 9$ and $n \equiv 0 \pmod{3}$.

Case 2. $n \ge 10$ and $n \equiv 1 \pmod{3}$

By Theorem 2.6, $T_{3,10}$ doesn't have a vertex irregular total 2-labeling. For n > 10, we have $tvs(T_{3,n}) \ge \lceil \frac{n + \frac{2(n-1)}{3}}{\frac{2(n-1)}{3} + 1 + 1} \rceil = \lceil \frac{5n-2}{2n+4} \rceil = \lceil \frac{5}{2}(1 - \frac{6}{n+2}) \rceil = 3$ according to Lemma 1.1.

To show that $tvs(T_{3,n}) \leq 3$, the vertex irregular total 3-labeling λ of $T_{3,n}$ when $n \geq 10$ are described as follows.

$$\text{Let } \lambda(u_1^{(1)}) = 2; \ \lambda(u_k^{(1)}) = 3 \quad \text{for } k = 2, 3, \cdots, \frac{n-1}{3} + 1; \ \lambda(u_l^{(2)}) = 1 \quad \text{for } l = 1, 2, \cdots, \frac{n-1}{3}; \ \lambda(u_m^{(3)}) = 2 \quad \text{for } m = 1, 2, \cdots, \frac{n-1}{3}; \ \text{for } s = 1, t = 2, 3, i = 1, 2, \cdots, \frac{n-1}{3} + 1, \ j = 1, 2, \cdots, \frac{n-1}{3} \text{ or } s = 2, t = 3, i, j = 1, 2, \cdots, \frac{n-1}{3}, \text{ let } \lambda(e_{ij}^{(s)(t)}) = \begin{cases} 1, & \text{for } i+j \leq \frac{n-1}{3} + 1; \\ 2, & \text{for } i+j = \frac{n-1}{3} + 2; \\ 3, & \text{for } i+j \geq \frac{n-1}{3} + 3. \end{cases}$$

Thus, the weights of all vertices of $T_{3,n}$ are $wt(u_1^{(s)})=\frac{2(n-1)}{3}+s+1$ for s=1,2,3; $wt(u_i^{(s)})=\frac{2(n-1)}{3}+4i+s-4$ for $i=2,3,\cdots,\frac{n-1}{3},s=1,2,3;$ $wt(u_i^{(1)})=2n-1$ for $i=\frac{n-1}{3}+1.$ Clearly, all the weights at different vertices are distinct. Therefore $tvs(T_{3,n})=3$ for $n\geq 10$ and $n\equiv 1 \pmod 3$.

Case 3. $n \ge 11$ and $n \equiv 2 \pmod{3}$

By Theorem 2.6, $T_{3,11}$ doesn't have a vertex irregular total 2-labeling. For n > 11, we have $tvs(T_{3,n}) \ge \lceil \frac{n + \frac{2(n+1)}{3} - 1}{\frac{2(n+1)}{3} + 1} \rceil = \lceil \frac{5n-1}{2n+5} \rceil = \lceil \frac{5}{2} - \frac{27}{2} \cdot \frac{1}{2n+5} \rceil = 3$ according to Lemma 1.1.

To show that $tvs(T_{3,n}) \leq 3$, the vertex irregular total 3-labeling λ of $T_{3,n}$ when $n \geq 11$ are described as follows.

Let
$$\lambda(u_k^{(1)})=1$$
 for $k=1,2,\cdots,\frac{n+1}{3}$; $\lambda(u_l^{(2)})=2$ for $l=1,2,\cdots,\frac{n+1}{3}$; $\lambda(u_m^{(3)})=1$ for $m=1,2,\cdots,\frac{n-2}{3}$; and for $s=1,t=2,i,j=1,2,\cdots,\frac{n+1}{3}$ or $s=1,2,t=3,i=1,2,\cdots,\frac{n+1}{3},j=1,2,\cdots,\frac{n-2}{3}$, let $\lambda(e_{ij}^{(s)(t)})=\begin{cases} 1, & \text{for } i+j\leq \frac{n+1}{3};\\ 2, & \text{for } i+j=\frac{n+1}{3}+1;\\ 3, & \text{for } i+j\geq \frac{n+1}{3}+2. \end{cases}$

Thus, the weights of all vertices of $T_{3,n}$ are $wt(u_1^{(s)})=\frac{2(n+1)}{3}+s$ for s=1,2; $wt(u_i^{(s)})=\frac{2(n+1)}{3}+4i+s-5$ for $i=2,3,\cdots,\frac{n+1}{3},s=1,2;$ $wt(u_i^{(3)})=\frac{2(n+1)}{3}+4i-1$ for $i=1,2,\cdots,\frac{n-2}{3}$. It is easy to see that the weights at different vertices are distinct. Therefore $tvs(T_{3,n})=3$ for $n\geq 11$ and $n\equiv 2 \pmod 3$.

In the Theorem 2.5 and Theorem 2.6, we prove that $T_{m,3m-1}$ $(m \ge 4)$ and $T_{m,n}$ $(n = 3m + r, r = 1, 2, \dots, m-1)$ have no vertex irregular total 2-labeling. But we obtain that $tvs(T_{m,3m-1})=tvs(T_{m,n})=3$ for some m and n. So we propose the following Conjecture.

Conjecture 2.1 Let $m \geq 4$, then $tvs(T_{m,3m-1}) = 3$.

Conjecture 2.2 Let $m \geq 3$, n = 3m + r and $r = 1, 2, \dots, m - 1$, then $tvs(T_{m,n}) = 3$.

References

- [1] A. Ahmad, M. Bača, On vertex irregular total labelings, Ars Combinatoria, 112 (2013), 129-140.
- [2] A. Ahmad, M. Bača and M. K. Siddiqui, Irregular total labeling of disjoint union of prisms and cycles, Australasian Journal of Combinatorics, 59(1) (2014), 98-106.
- [3] C. C. Marzuki, A. N. M. Salman and M. Miller, On the total irregularity strength on cycles and paths, Far East Journal of Mathematical Sciences, 82(1)(2013), 1-21.
- [4] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Mathematics, 307(11) (2007), 1378-1388.
- [5] N. Nurdin, E. T. Baskoro, A. N. M. Salman and N. N. Gaos, On total vertex-irregular labellings for several types of trees, Utilitas Mathematica, 83 (2010), 277-290.
- [6] N. Nurdin, E. T. Baskoro, A. N. M. Salman and N. N. Gaos, On the total vertex irregularity strength of trees, Discrete Mathematics, 310(21) (2010), 3043-3048.
- [7] N. Nurdin, A. N. M. Salman, N. N. Gaos and E. T. Baskoro, On the total vertex-irregular strength of a disjoint union of t copies of a path, Journal of Combinatorial Mathematics and Combinatorial Computing, 71 (2009), 227-233.
- [8] K. Wijaya and S. Slamin, Total vertex irregular labelings of wheels, fans, suns and friendship graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 65 (2008), 103-112.
- [9] K. Wijaya, S. Slamin and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 55 (2005), 129-136.