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Abstract: Multireceiver authentication codes allow one sender to construct an au-
thenticated message for a group of receivers such that each receiver can verify the authen-
ticity of the received message. In this paper, we construct one multireceiver authentication
codes from pseudo-symplectic geometry over finite fields. The parameters and the proba-
bilities of deceptions of the two codes are also computed.
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§1 Introduction

Multireceiver authentication codes (MRA-codes) were introduced by Desmedt,
Frankel and Yung (DFY) [!) as an extension of Simmons’ model of unconditional-
ly secure authentication. In MRA-codes, a sender wants to authenticate a message
for a group of receivers such that each receiver can verify authenticity of the re-
ceived message. There are three phases in an MRA-codes:

1. Key distribution. The KDC (key distribution centre) privately transmits the
key information to the sender and each receiver (the sender can also be the KDC).

2. Broadcast. For a source state, the sender generates the authenticated mes-
sage using his/her key and broadcasts the authenticated message.

3. Verification. Each user can verify the authenticity of the broadcast mes-
sage.
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Denote by X; X --- X X, the direct product of sets Xj,---,X,, and by p; the
projection mapping of X, - - -xX, on X;. Thatis, p; : X; X- - -xX, — X, defined by
pixX1, %2, ++, X,) = x;. Let gy : X; = Yy and g3 : Xz — Y2 be two mappings, we
denote the direct product of g; and g, by g1 X g2, where g1 X g2 : X; XXz = Y1 XY,
is defined by (g1 X g2)(x1, x2) = (g1(x1), g2(x2)). The identity mapping on a set X
is denoted by 1y.

LetC=(S,M,E,f)and C; = (S,M,Ei fi)
(i = 1,2, ..., n) be authentication codes. We call (C; C1,C2, - -, C,) a multireceiver
authentication code (MRA-code) if there exist two mappings 7 : E — E;X---XE,
andx : M = M) X -+ X Mn such that for any (s,e) € S X Eandany 1 < i <n,
the following identity holds

pi(nf(s,e)) = fi((1s X pit(s, €)).
Let 1; = p;7 and n; = p;n. For each (s, €) € S X E, then we have

"if(sv e) = ﬁ(ls X T,')(S, e)~

We adopt Kerckhoff’s principle that everything in the system except the actual
keys of the sender and receivers is public. This includes the probability distribu-
tion of the source states and the sender’s keys.

Attackers could be outsiders who do not have access to any key information,
or insiders who have some key information. We only need to consider the latter
group as it is at least as powerful as the former. We consider the systems that
protect against the coalition of groups of up to a maximum size of receivers, and
we study impersonation and substitution attacks.

Assume there are n receivers Ry, -+, R,. LetL={i},---, i} S {l,---,n},R. =
{Ri,---,Ry} and E, = Eg, X - - X Ep,. We consider the attack from R; on a
receiver R;, where i ¢ L.

Impersonation attack: R, after receiving their secret keys, send a message m
to R;. Ry is successful if m is accepted by R; as authentic. We denote by Py[i, L]
the success probability of R, in performing an impersonation attack on R;. This
can be expressed as:
P,[i, L} = max max P(m is accepted by R;le,) where i ¢ L.
e €EL meM

Substitution attack: Ry, after observing a message m that is transmitted by the
sender, replace m with another message m’. R is successful if m’ is accepted by
R; as authentic. We denote by Ps [i, L] the success probability of R, in performing
a substitution attack on R; . We have

Ps{i,L] = max max max P(R; accepts m’|m,e.) wherei ¢ L.
er.€EL meM m'tmeM
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§1 Pseudo-Symplectic Geometry

Let F, be the finite field with ¢ elements, where g is a power of 2, n = 2v + 6 and

6=1,2. Let
K
v K
K=(1?v) 0 ) Sn=( 1),Sz=[ <1) :J

and S;is an (2v + 8) X (2v + 6) non-alternate symmetric matrix.

The pseudo-symplectic group of degree (2v + &) over F is defined to be the
set of matrices Psay.s(Fy) = {TITSs'T = S5} denoted by Ps3y.5(Fy).

Let Ff,z"*‘” be the (2v + J) -dimensional row vector space over F,. Psy,.s(F,)
has an action on Ff,2""6’ defined as follows:
F(([2v+6) x P 32v+6( Fq) - Fézva-a)
((x1, 22, .., X248), T) = (X1, X2, ..., X2v48)T .

The vector space Fff"""’ together with this group action is called the pseudo-
symplectic space over the finite field F, of characteristic 2.

Let P be an m-dimensional subspace of F, ;2‘"'6), then PS; 'P is cogredient to
one of the following three normal forms

0 I®
M(m, 2s,s)=[ 9 0 ]
o(m-zs)

0 I®
(s)
M(m,2s+1,s)= I 0 1
0(m-2s-l)
0 I¥
9 0
M(m, 25+2,s5)= 0
1
0(m-2s-2)

for some s such that 0 < s < [m/2]. We say that P is a subspace of type (m, 2s +
7,5, €), where 7 =0,1 or 2 and € =0 or 1, if

(i) PS; 'P is cogredient to M(m,2s + 7, 5), and
(ii) e2,+1 € P or €3,4) € P according to € = 0 or € = 1, respectively.

Let P be an m-dimensional subspace of Fzz‘"’”. Denote by P+ the set of
vectors which is orthogonal to every vector of P, i.e.,
Pt={ye F},z"‘nysa 'x=0for all x € P).
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Obviously, P* is a (2v + & — m)-dimensional subspace of Fg"*.

More properties of pseudo-symplectic geometry over finite fields can be found
in [2].

In [1], Desmedt, Frankel and Yung gave two constructions for MRA-codes
based on polynomials and finite geometries, respectively. There are other con-
structions of multireceiver authentication codes be given in [3 —7]. The construc-
tion of authentication codes is a combinational design in its nature. We know that
the geometry of classical groups over finite fields, including symplectic geome-
try, pseudo-symplectic geometry, unitary geometry and orthogonal geometry, can
provide a better combination of structure and is easy to count. In this paper, we
construct one multireceiver authentication codes from pseudo-symplectic geom-
etry over finite fields. The parameters and the probabilities of deceptions of the
codes are also computed.

§2 Construction

Let F, be a finite field with g elements and e;(1 < i < 2v + 2) be the row vector
in F((f"*z) whose i—th coordinate is 1 and all other coordinates are 0. Assume that
2<n<n <r<v.U={e,e ", e, ie, U is an n—dimensional subspace of
Ff,z"m generated by e, ez, -+, e,, then Ut = (e}, -+, €y, €ysne1, ** 1 €2042). The
set of source states S ={s|s is a subspace of type (2r—n+1,2(r-n),r-n,1)and U C
s C U*); the set of transmitter’s encoding rules Er={erler is a subspace of type
(2n’,2n’,n’,0) and U C er }; the set of ith receiver’s decoding rules Eg ={eg ler, is
a subspace of type (n+1, 1, 0,0) which is orthogonal to {ey, - -+, €i_1, €is1, -, €n)}s
1 < i < n; the set of messages M = {m|m is a subspace of type (2(r + n’ — n) +
1,2(r+n’ —n),(r+n’ —n),1)and U C m}.

1. Key Distribution. The KDC randomly chooses a subspace er € Er, then
privately sends er to the sender T. Then KDC randomly chooses a subspace
er, € Eg, and eg, C er, then privately sends eg, to the ith receiver, where 1 <i < n.

2. Broadcast. For a source state s € S, the sender calculates m = s + ey and
broadcast m.

3. Verification. Since the receiver R; holds the decoding rule eg,, R; accepts
m as authentic if eg, C m. R; can get s from s = mn U*.

Lemma 1 The above construction of multireceiver authentication codes is rea-
sonable, that is

(1) s+er=me M, forallse S ander € Er;

(2) forany m € M, s = mn Ut is the uniquely source state contained in m
and there is er € Et, such thatm = s + er.
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Proof: (1) Forany s € S, er € Er, because s is a subspace of type (2r — n +
1,2(r=n),r—n,1) and U C s C U*}, we can assume that
o 0 0 0

U n U ! U (re-n)
S=[Q ]zu—n),[Q]Sz[ Q]= o 1 o ol

[ 1 [ €
2v+1 2v+l 2v+l 0 0 0 0

= v " UStU = 0 I bviously, for an
=\ v wam "\ v )22l v ]T e o | OOVIOUSH: y

U
veVandv#0,yv¢s,therefore, m=s+er= (‘; ,and
€241

¢ 0 I 90 0 0

“f t,’ ™ o 0 0 0

0 So 0 =| 0 0 0 Im 9

. e 0 0 Im 0O 0

2v+] 2v+1 0 0 0 0 0

From above, m is a subspace of type 2(r~n+n")+1,2(r—n+n’),(r—-n+n’), 1)
andUcCcm,ie,meM.

(2) For any m € M, m is a subspace of type 2(r + n’ —n) + 1,2(r + n’ —
n),(r+n’ —n), 1) and U C m, so there is a subspace V C m and satisfies

1 n’)
(U)SZ(U)=( 0 I ).Thenwecanassumethatm=s+e1=

1% 14 ™ 9
(U )
v and satisfying
Qo
€2v+1 J
' 0 ™ 0 0 O
( “f ) g ™ o 0 0 0 U
0 S2 0 =] 0 0 0 I*™m 04, §S= o |
e ) e 0 0 I("-") 0 0 e2y+l
2v+1 2v+1 O 0 o 0 O

then s is a subspace of type (2r-n+1,2(r=n),r=n,1)and U c s c U+,ie..s €S
is a source state. For anyv € Vandv # 0, v ¢ s is obvious, i.e., VN U* = {0}.

U

Therefore, m N U+ = Q =s. Leter = v , then er is a transmitter’s

. vV
2v+l
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encoding rule and satisfies m = s + er.

If 5’ is another source state contained in m, then U Cc s’ ¢ U*. Therefore,
s’ ¢ mn U* = s, while dims’=dims, so s'=s, i.e., s is the uniquely source state
contained in m.

From Lemma 1, we know that such construction of multireceiver authentica-
tion codes is reasonable and there are n receivers in this system. Next we compute
the parameters of this codes.

Lemma 2 The parameters of this construction are |S| = NQ2r — n,2(r — n),r -
n, 0; v + 2); |ET| = an(v—n'+l); IER,l = q"”’*".

Proof: Since U c s ¢ U, s has the form as follows:
I 0 0 0 00
5= [ 0 B, 0 B, 00 ]
0 0 0 0 10

where B;, B, are subspaces of type (2r — n,2(r — n),r — n,1) in the pseudo-
symplectic space F,**?. S0 |S| = N(2r - n,2(r = n),r —n,0;2v +2).

Since er is a subspace of type (2n’,2n’,n’,0), er has the form as follows:
or = “ 0 0 0 0 O
T\ 0 R, I Ry Rs Rg |~

’ ’

n v—n v—n' [} 1

For er is a subspace of type (2n’,2n’,n’,0), so R4 = 0 and Rg = 0, where Rz, Rs
are arbitrary. Therefore |[Er| = g"*-"*D,

n

For any eg, € Eg,, g, is a subspace of type (n + 1, 1,0, 0) which is orthogonal
to{e1, -, e€i-1,€is1," -, €n), 1 £i < n. So we can assume that

O b o0 0 0 0 0 0 0 0

0 0 R 0 O 1 0 R Ry Ri,

Il n-l v-n ! i-1-1 1 n-f v-n 1 1
Since eg, is a subspace of type (n + 1,1,0,0), so R'8 = 0,R’10 = 0 and R'3,R’'9
are arbitrary. Therefore, |[Eg/| = g""*!.

M o o0 0 0 0 0 O 0 0
eR;, =

Lemma 3 (1) The number of er contained in m is g""~"+Y;
(2) The number of the messages is |M| = g vrINQ(r = n), 2r = n),r —
n,0;2v+2).

Proof: (1) Let m be a message, since the transitivity properties of the same
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type subspace under the pseudo-symplectic groups, we may take m as follows:

1) 0 0 0 0 0 00
0o 1" 90 0 0 0 00
m=| 0 O 0o I 0 0o o0 0],
0 0 0 0o Ir-m 0 00
0 0 0 0 0 0 1 0
n r-n v+n-r-n’ n’ r-n ven-r-n’ 1 1
if er C m, then we can assume that
er = ) 0 0 0 0 0 0O 0
TV 0 R, 0 I™ o0 o R, 0]

n r-n v+n-r-n' n r-n v+n-r-n’ 1 1

where R,, R7 are arbitrary, therefore the number of er contained in m is g% ¢~"*D;
(2) We know that a message contains only one source state and the number of
the transmitter’s encoding rules contained in a message is " "~"*!), Therefore we
have |[M| = |S||E7|/q" -+ = g"O+n=r-"INQ2(r — n), 2(r — n), r — n,0;2v + 2)
Assume there are n receivers Ry, -+, R,. Let L = {i},---, i) € {1,---,n)}, R, =
{Ri,,-+-,R,}and E; = ER,-. X oo X ER,,. We consider the impersonation attack
and substitution attack from Ry on a receiver R;, wherei ¢ L.

Without loss of generality, we can assume that R, = {Ry,---, Ry}, E = Eg, X
«++ X Ep,, where 1 <! < n - 1. First, we will proof the following results:

Lemmad For any e, = (eg,,---,er,) € EL, the number of er containing e, is
q(n'-l)(v—n’-i- 1 ).

Proof: For any e;, = (eg,,- -, ¢g,) € EL, we can assume that
I 0 0 0 0 0 0 0 0 0
ee=1 0 b o0 0 0 0 O 0 o 0],
0 0 R R I 0 0 0 R O
! n-l n'-n  v-n' ! n-l n'-n v-n’ 1 1
therefore, er containing e, has the form as follows:

U 0 0 0 O 0 0 0O 0 O

0 =D 0 0 0 0 0 0 0 O

|10 0 ¥ o 0 0 0 0 Ry O
=0 0o R R I® 0 0 0 R 0

0 0 0 R, 0 1= 0 0 Ry O

0 0 0 R, O 0 [-n 9 Ry 0O

{ n-| n-n v-n' ! n—{ n'-n v-n' 1 1

where R}, Ry, Rg, Ry are arbitrary. Therefore, the number of er containing e, is
q(n’-l)(v-n +1)
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Lemma5 Foranyme M andeg, e, Cm,

(1) the number of ey contained in m and containing ey is q“

(2) the number of er contained in m and containing ey, eg, is q

=D(r-n+l1).

Proof: (1) From the definition of m, we may take m as follows:

m=
\
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
1 1
eL=[
0
0
Ry
1 1
er =

>

J&

~ 00000000

0 0 0 0 0 0
1%=h 0 0 0 0 0
0 m 0 0 0 0
0 0 =" 0 0 0
0 0 0 0 m 0
0 0 0 0 0 1D
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
n-l n’-n r-n  v+n-r-n’ 1 n-l
]
n-l
r-n
! . For any e, C m, we assume that
n-1
n'-n
r-n
1
0 0 0 0 0 0
“=h 9 0 0 0 0
0 Ry R4 o 0
n-l  n'-n r-n v+n—r-n' ] n-l
{
n-1 . If ey c mander D e, then
I
0 0 0 0 0 0
1= 0 0 0 0 0
0o - 0 0 0 0
0 0 R4 o I o0
o o0 R, 0 0 [
0 o0 R 0O 0 O
n-{ n-n r-n vtn-r-n' ] n-{
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(n'—l—l)(r—n+l)_

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
“-m 9 0
0 P i B 1]
0 0 0
n'-n r-n  ven-r-n’
0 0 0
0 0 0
0 0 0
'-n  r-n  vin-r-n’
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
=m0 0
n'~n r-n  v+n-r-n’



0 0 !

0 0 n-{
R(l)l 8 ;"_" , where R}, R, R}, R}, are arbitrary. Therefore, the num-
R, 0 n-{

R;,l 0 n'=n
1 1
ber of er contained in m and containing e, is g ~Xr-n+1)
(2) Similarly, by computation, we can proof that the number of e7 contained
in m and containing e, eg, has the following form:

( M 0 0 0 0 0 0 0 o0 0 0
0 D 0 0 0 0 0 0 o 0 0
0 0 - 0 0 0 0 0 0 0 0
0 0 0 Ry 0 0 0 0 0 0 0
°=[o o o R o0 o0 D g o 0 0
0 0 0 R% 0 0 0 1 0 0 0
o o o0 R o 0o 0 0md o o0
) 0 0 Ry 0 0 0 0 0 1= 0
! n-l n'-n r-n v+n-r-n' ! i-1-1 1 n—-i n’'-n r-n
0 0 0) ¢
0 0 0 | nt
0 0 0 n-n
0 Ry 0 where R}, R3,R” and R!,, R3,, R”, are arbitrary. There-
0 Ry 0| it 4 B 1y TERSTERA T Y
0 Ril 0|
0 R“ 0 n-i
0 Ri’l 0/ w-n
ven-r-n' | |

fore, the number of er contained in m and containing ey, eg, is g ~/~Dtr=2+1),

Lemma 6 Assume that m, and m; are two distinct messages which commonly
contain a transmitter’s encoding rule er. s\ and sy contained in m; and m; are
two source states, respectively. Assume that so = s N 52, dim 5o = k, then
n < k < 2r—n. Forany e,, eg, C my N\ my, the number of er contained in my Nm;
and containing ey, eg, is g ~=D&-",

Proof: From the definition of the message, we may take m;, i = 1, 2 as follows:
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=
S
=
3
S
o

m; =

Sooooo

cooocolFooo
cooocoocooco
-}

~ 000000 OCO
coooococo
cocoo©
=}
=
1
2

1
-~
3

|

]
3
b

!
3

r-n  v+n-r-n’ n

3
]
-
3,
]
3

P,

[cNeNolNeNelNoNollee]
—_ 00000 OCC
[N eNoNeNallolloe o]

cococoo0o0OOCO
3
2
3
5]
I

(=N =Nl o]

-
-
- NeNeNeNoNo NNl S‘OOOO%OOOO
o
o
(=]

: n-l n'-n r-n v+n-r-n’

v+n—-r-n
0
0
0
0
0
I(Il—l)
0 I(n'—n)
0 0 Ir-m
0 0 0
! n-l n'-n r-n vin-r-n’ 1 |
of Lemma 5, since my = s; + er,my = s, + er and my # my, then 51 # s2.
Obviously, n < k < 2r — n. We assume that s/ is the complementary subspace of
5o in the s;, then s; = so + 5} (i = 1,2). Fromm; = s; + er = 5o + s; + er,
we have my N my = so + er. then dim(my N my) = k + 2n’ — n, therefore,
dim( 134 g 8 (1) 8) =(k+2n -n-Q@n +r-n) = k- r. For any
€L, er, C my N my, we can assume that

OO0
—

Py
~
-~
=

. Similar to the proof

[~ NN o)

QO OCOO0OO0
COO0OO0OOOOO0O
—_— 0000000 O
[« NNl Nl i)

[« = e R ]

M o0 o0 0 0 0o 0 0O 0 O 0 0
ee=| 0 1D 0 0 0 O 0 0 o0 O 0 0
0 0 O Ry 0 ™ o 0 0 O 0 0

{ n-{ n'-n r-n ven-r-n’ [ £ | 1 n-i n'-n  r-n  vin-r-n’
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I“h 0 0 0O 0 o0 o

o o0)' » 0 0 0 0 O 0 0
O,CR‘—O
0 0 0 0 R 0 0 0 1
!

n-{ n'-n r-n ven-r-n’ | i-l-1 1

1
0O 0 0 0 O 0):
0 0 O 0O O 0 | »-t . Sinceer € m Nmy and contains ey, eg,,
0 0 o 0

n-i n'-n r-n ven-r-n’ 1 1
er has the form as follows:

(19 0 0 0 0 0 0 0 0 0
0 [=D 0 0 0 0 0 0 0 0
0 0 =m0 0 0 0 0 0 0
10 0 0 Ry 0 10 0 0 0 0
‘=l o o0 0 R 0 0 [-D o 0 0
0 0 0 Rg 0 0 0 1 0 0
0 0 0 Rg 0 0 0 (VI L) 0
\ 0 0 0 Rg 0 0 0 0 0 o-n
] n-{ n'~n r-n  v+a-r-n ! i-l-1 i n~i n'-n
0 0 0 01!
0 0 0 0 | nt
0 0 0 0 n-n Rl 0 0 Rl 0
0 0 Ry 0 ] 1
H ) , whereeveryrowof| R; 0 0 R} O
0 o Ry, 0[] i [ 0 0 ! 0 ]
0 0 Ril 011 4 n
0 0 R 0 n-i
0 0 R‘}: 0 ) w-n
r-n  v+n-r-n’ 1 1

. . . Py, 00 OO
is the linear combination of the base of ( 0 0010 )

So it is easy to know that the number of er C m; N m;, and containing e, eg, is
(n’ ~1-1)(k-r)
q .

Theorem 1 In the constructed multireceiver authentication codes, the largest
probabilities of success for imper sonation attack and substitution attack from Ry,
on a receiver R; are

v+n—r—-n

1 1
Pl[i’L]= YR Ps[i»L]=‘
q q
respectively, where i & L.

Proof: Impersonation attack: R, after receiving their secret keys, send a
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message m to R;. Ry is successful if m is accepted by R; as authentic. Therefore

Pli, L] max

max | {er € Erler Cmand er D e, egr,} |
meM
(73313

| {er € Erler D eL} |

q(n'-l)(r—n-l- 1) 1

q(n'—l)(v-n’+l) = qv+n—r-n' *

Substitution attack: Ry, after observing a message m that is transmitted by
the sender, replace m with another message m’. Ry is successful if m’ is accepted
by R; as authentic. Therefore,

|{er € Erler cmander D e} |

mah); |ler € Erler ¢ m,m’ and er D ey, eg} |
me
e €E; meM

Pgli,L] = max max‘

q(n’—-l- 1)}k-r) 1 1

nikedron g DA  ger—I-D@re1-n—h =7

We can find that Ps[i, L] gets to the minimum value é, so this construction about
multireceiver authentication codes is good.

References

[1] Y. Desmedt, Y. Frankel, and M. Yung, Multi-receiver/Multi-sender network
security: Efficient authenticated multicast/feedback, IEEE INFOCOM’92,
1992, pp.2045-2054.

[2] Wan Zhe-xian, Geometry of Classical Groups over Finite Fields (2nd Edi-
tion), Science Press, Beijing/New York, 2002.

[3] R.Safavi-Naini and H. Wang, Multi-receiver Authentication Codes:Models,
Bounds, Constructions and Extensions, Information and Computation,
151(1), 1999, pp.148-172.

[4] R.Safavi-Naini and H. Wang, New results on multi-receiver authentication
codes, in Advances in Cryptology-Eurocrypt 98 (Lecture Notes in Computer
Science), Berlin, Germany: Springer-Verlag, 1438, 1998, pp.527-541.

[5] Li Xiyang, Qin Cong, New Constructions of Multi-receiver Authentication
Codes, Calculator Engineering, 34(15), 2008, pp.138-175.

[6] Satoshi Obana and Kaoru Kurosawa, Bounds and combinatorial structure
of (k,n) multi-receiver A-Codes, Designs,codes and cryptography, 22, 2001,

pp-47-63.
{71 G.J.Simmons, Message authentication with arbitration of transmit-

ter/receiver disputes, Proc. Eurcrypt 87. Lecture Notes in Computer Science,

304, 1985, pp.151-165.
[8] Cheng Shang-di, Yang Chun-li, A New Construction of Multisender Au-

thentication Codes from Pseudo-Symplectic Geometry over Finite Fields.
Ars Combinatoria, 106, 2012, pp.353-366.

430



