On Star Chromatic Number of Sunlet Graph Families

KOWSALYA.V, VERNOLD VIVIN.J AND VENKATACHALAM.M

Abstract. In this paper, we find the star chromatic number χ_s for the central graph of sunlet graphs $C(S_n)$, line graph of sunlet graphs $L(S_n)$, middle graph of sunlet graphs $M(S_n)$ and the total graph of sunlet graphs $T(S_n)$.

Mathematics Subject Classification (2010). 05C15, 05C75, 05C76.

Keywords. Star coloring, sunlet graph, central graph, line graph, middle graph and total graph.

1. Introduction

The notion of star chromatic number was introduced by Branko Grünbaum in 1973. A star coloring [1, 3, 6] of a graph G is a proper vertex coloring in which every path on four vertices uses at least three distinct colors. Equivalently, in a star coloring, the induced subgraphs formed by the vertices of any two colors have connected components that are star graphs. The star chromatic number $\chi_s(G)$ of G is the minimum number of colors needed to star color G.

Guillaume Fertin et al.[6] gave the exact value of the star chromatic number of different families of graphs such as trees, cycles, complete bipartite graphs, outerplanar graphs, and 2-dimensional grids. They also investigated and gave bounds for the star chromatic number of other families of graphs, such as planar graphs, hypercubes, d-dimensional grids ($d \ge 3$), d-dimensional tori ($d \ge 2$), graphs with bounded treewidth, and cubic graphs.

Albertson et al.[1] showed that it is NP-complete to determine whether $\chi_s(G) \leq 3$, even when G is a graph that is both planar and bipartite. The problem of finding star colorings is NP-hard and remain so even for bipartite graphs [7, 8].

2. Preliminaries

The sunlet graph on 2n vertices is obtained by attaching n pendant edges to the cycle C_n and is denoted by S_n .

For a given graph G = (V, E) we do an operation on G, by subdividing each edge exactly once and joining all the non-adjacent vertices of G. The graph obtained by this process is called *central graph* [9] of G denoted by C(G).

The line graph [2, 5] of a graph G, denoted by L(G), is a graph whose vertices are the edges of G, and if $u, v \in E(G)$ then $uv \in E(L(G))$ if u and v share a vertex in G.

The *middle graph* [4] of G, is defined with the vertex set $V(G) \cup E(G)$ where two vertices are adjacent iff they are either adjacent edges of G or one is the vertex and the other is an edge incident with it and it is denoted by M(G).

The total graph [2, 4, 5] of G has vertex set $V(G) \cup E(G)$, and edges joining all elements of this vertex set which are adjacent or incident in G.

Additional graph theory terminology used in this paper can be found in [2, 5].

In the following sections we find the star chromatic number for the central graph of sunlet graphs $C(S_n)$, line graph of sunlet graphs $L(S_n)$, middle graph of sunlet graphs $M(S_n)$ and the total graph of sunlet graphs $T(S_n)$.

In order to prove our results, we shall use the following theorem and proof by Guillaume et.al [6].

Theorem 2.1. [6] If C_n is a cycle with $n \geq 3$ vertices, then

$$\chi_s(C_n) = \begin{cases} 4 & when \quad n=5 \\ 3 & otherwise. \end{cases}$$

Proof. It can be easily checked that $\chi_s(C_5) = 4$. Now let us assume $n \neq 5$. Clearly at least 3 colors are needed to star color C_n . We now distinguish three cases:

Case(i): If n = 3k, we color alternatively the vertices around the cycle by colors c_1, c_2 and c_3 . Thus, for any vertex u, its two neighbours are assigned distinct colors, and consequently this is a valid star coloring. Hence $\chi_s(C_{3k}) \leq 3$.

Case(ii): If n=3k+1, in this case, let us color 3k vertices of C_n consequently, by repeating the sequence of colors c_1, c_2 and c_3 . There remains one uncolored vertex, to which we assign color c_2 . One can check easily that this is also a valid star coloring, and thus $\chi_s(C_{3k+1}) \leq 3$.

Case(iii): If n = 3k + 2. Since the case n = 5 is excluded here, we can assume $k \ge 2$. Thus n = 3(k - 1) + 5, with $k - 1 \ge 1$. In that case, let us color 3(k - 1) consecutive vertices along the cycle, alternating colors c_1, c_2 and c_3 .

For the 5 remaining vertices, we give the following coloring: c_2, c_1, c_2, c_3, c_2 . It can be checked that this is a valid star coloring, and thus $\chi_s(C_{3k+2}) \leq 3$ for any $k \geq 2$. Globally, we have $\chi_s(C_n) = 3$ for any $n \neq 5$, and the result is proved.

3. Star coloring on central graph of sunlet graph

Theorem 3.1. Let S_n be a sunlet graph with 2n vertices, then

$$\chi_s(C(S_n)) = n+2, \, \forall \, n \geq 3.$$

Proof. Let $V(S_n) = \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\}$ and $E(S_n) = \{e_i : 1 \le i \le n\} \cup \{e_i' : 1 \le i \le n\}$ where e_i is the edge $v_i v_{i+1} (1 \le i \le n-1)$, e_n is the edge $v_n v_1$ and e_i' is the edge $v_i u_i (1 \le i \le n)$. For $1 \le i \le n$, u_i is the pendant vertex and v_i is the adjacent vertex to u_i . By the definition of central graph $V(C(S_n)) = V(S_n) \cup E(S_n) = \{u_i : 1 \le i \le n\} \cup \{v_i : 1 \le i \le n\} \cup \{v_i' : 1 \le i \le n\} \cup \{v_i' : 1 \le i \le n\} \cup \{v_i' : 1 \le i \le n\}$ where v_i' and v_i' represents the edge e_i and e_i' , $(1 \le i \le n)$ respectively.

Assign the following coloring for $C(S_n)$ as star chromatic:

- For $1 \le i \le n$, assign the color c_i to u_i
- For $1 \le i \le n$, assign the color c_i to v_i
- For $1 \le i \le n$, assign the color c_{n+1} to u_i'
- For $1 \le i \le n$, assign the color c_{n+2} to v_i'

Thus, $\chi_s(C(S_n)) \leq n+2$.

To prove $\chi_s(C(S_n)) \geq n+2$. Assume that $\chi_s(C(S_n))$ is less than n+2, say n+1. We need at least n colors say $\{c_1,c_2,\ldots,c_n\}$, since the subgraph induced by $\{u_i:1\leq i\leq n\}$ is a complete graph K_n and the coloring should be proper. The vertices $\{u_i':1\leq i\leq n\}$ are adjacent to the vertices $\{u_i:1\leq i\leq n\}$ and $\{v_i:1\leq i\leq n\}$ needs a distinct color say c_{n+1} for proper star coloring. If we assign the same n+1 colors to the vertices $\{v_i':1\leq i\leq n\}$, then an easy check shows that there exists a bicolored path. A contradiction to proper star coloring. Thus, $\chi_s(C(S_n)) \geq n+2$. Hence, $\chi_s(C(S_n)) = n+2$, $\forall n\geq 3$.

4. Star coloring on line graph of sunlet graph

Theorem 4.1. Let S_n be a sunlet graph with 2n vertices and $n \geq 3$, then

$$\chi_s(L(S_n)) = \begin{cases} 5 & if \quad n=5\\ 4 & otherwise. \end{cases}$$

Proof. Let $V(S_n)=\{u_1,u_2,\ldots,u_n\}\cup\{v_1,v_2,\ldots,v_n\}$ and $E(S_n)=\{e_i:1\leq i\leq n\}\cup\{e_i':1\leq i\leq n\}$ where e_i is the edge $v_iv_{i+1}(1\leq i\leq n-1)$, e_n is the edge v_nv_1 and e_i' is the edge $v_iu_i(1\leq i\leq n)$. By the definition of line graph $V(L(S_n))=E(S_n)=\{u_i':1\leq i\leq n\}\cup\{v_i':1\leq i\leq n-1\}\cup\{v_n'\}$ where v_i' and u_i' represents the edge e_i and e_i' , $(1\leq i\leq n)$ respectively. Now

 $\{v_i': 1 \le i \le n\}$ forms a cycle C_n with n vertices.

Case(i): When n = 5

Assign the coloring as follows:

- For $1 \le i \le 4$, assign the color c_i to v'_i
- Assign the color c_2 to the vertex v_5'
- For $1 \le i \le 4$, assign the color c_5 to u_i'

Thus, $\chi_s(L(S_n)) \leq 5$.

To prove $\chi_s(L(S_n)) \geq 5$. Suppose $\chi_s(L(S_n))$ is less than 5, say 4. By theorem 2.1, the cycle C_n with vertices $\{v_i': 1 \leq i \leq 5\}$ needs at least 4 colors. If we assign the existing colors to the vertices $\{u_i': 1 \leq i \leq 5\}$, then an easy check shows that there exists a bicolored path of length 3. A contradiction to proper star coloring. Thus, $\chi_s(L(S_n)) \geq 5$. Hence, $\chi_s(L(S_n)) = 5$ for n = 5.

Case(ii): When $n \neq 5$

Assign the coloring as follows:

- For $1 \le i \le n$, color the vertices v_i' by repeating the sequence of colors c_1, c_2, c_3
- For $1 \le i \le n$, color the vertices u_i' with color the c_4

Thus, $\chi_s(L(S_n)) \leq 4$.

To prove $\chi_s(L(S_n)) \geq 4$. Suppose $\chi_s(L(S_n))$ is less than 4, say 3. By theorem 2.1, the cycle C_n with vertices $\{v_i': 1 \leq i \leq n\}$ needs at least 3 colors. If we assign the existing colors to the vertices $\{u_i': 1 \leq i \leq n\}$, then an easy check shows that there exists a bicolored path of length 3. A contradiction to proper star coloring. Thus, $\chi_s(L(S_n)) \geq 4$. Hence, $\chi_s(L(S_n)) = 4$ for $n \neq 5$.

5. Star coloring on middle graph of sunlet graph

Theorem 5.1. Let S_n be a sunlet graph with 2n vertices and $n \geq 3$, then

$$\chi_s(M(S_n)) = \begin{cases} 6 & if \quad n=5\\ 5 & otherwise \end{cases}$$

Proof. Let $V(S_n)=\{u_1,u_2,\ldots,u_n\}\cup\{v_1,v_2,\ldots,v_n\}$ and $E(S_n)=\{e_i:1\leq i\leq n\}\cup\{e_i':1\leq i\leq n\}$ where e_i is the edge $v_iv_{i+1}(1\leq i\leq n-1)$, e_n is the edge v_nv_1 and e_i' is the edge $v_iu_i(1\leq i\leq n)$. By definition of middle graph $V(M(S_n))=V(S_n)\cup E(S_n)=\{u_i:1\leq i\leq n\}\cup\{v_i:1\leq i\leq n\}\cup\{v_i':1\leq i\leq n\}\cup\{v_i':1\leq i\leq n\}$ where v_i' and u_i' represents the edge e_i and e_i' , $(1\leq i\leq n)$ respectively. Now $\{v_i':1\leq i\leq n\}$ forms a cycle C_n with n vertices .

Case(i): When n = 5

By theorem 2.1, $\chi_s(C_n) = 4$. Assign the color c_5 to the pendant vertices

 $\{u_i: 1 \leq i \leq n\}$ and the vertices $\{v_i: 1 \leq i \leq n\}$. Assign the color c_6 to the vertices $\{u_i': 1 \leq i \leq n\}$. Thus, $\chi_s(M(S_n)) \leq 6$.

To prove $\chi_s(M(S_n)) \geq 6$. Suppose $\chi_s(M(S_n))$ is less than 6, say 5. By theorem 2.1, we need at least 4 colors to star color the cycle C_n with vertices $\{v_i': 1 \leq i \leq n\}$. The vertices $\{u_i: 1 \leq i \leq n\}$ and the vertices $\{v_i: 1 \leq i \leq n\}$ needs a distinct color, say c_5 for proper star coloring. If we assign the existing colors for the vertices $\{u_i': 1 \leq i \leq n\}$, then an easy check shows that there exists a bicolored path of length 3. A contradiction to proper star coloring. Thus, $\chi_s(M(S_n)) \geq 6$. Hence, $\chi_s(M(S_n)) = 6$.

Case(ii): When $n \neq 5$

By theorem 2.1, $\chi_s(C_n) = 3$. Assign the color c_4 to the pendant vertices $\{u_i : 1 \le i \le n\}$ and to the vertices $\{v_i : 1 \le i \le n\}$. Assign the color c_5 to the vertices $\{u_i' : 1 \le i \le n\}$. Thus, $\chi_s(M(S_n)) \le 5$.

To prove $\chi_s(M(S_n)) \geq 5$. Suppose $\chi_s(M(S_n))$ is less than 5, say 4. By theorem 2.1, we need at least 3 colors to star color the cycle C_n with vertices $\{v_i': 1 \leq i \leq n\}$. The vertices $\{u_i: 1 \leq i \leq n\}$ and the vertices $\{v_i: 1 \leq i \leq n\}$ needs a distinct color, say c_4 for proper star coloring. If we assign the existing colors for the vertices $\{u_i': 1 \leq i \leq n\}$, then an easy check shows that there exists a bicolored path of length 3. A contradiction to proper star coloring. Thus, $\chi_s(M(S_n)) \geq 5$. Hence, $\chi_s(M(S_n)) = 5$.

6. Star coloring on total graph of sunlet graph

Theorem 6.1. Let S_n be a sunlet graph with 2n vertices and $n \geq 3$, then

$$\chi_s(T(S_n)) = \begin{cases} 7 & if \quad n \equiv 0 \pmod{5} \\ 8 & otherwise. \end{cases}$$

Proof. Let $V(S_n) = \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_n\}$ and $E(S_n) = \{e_i : 1 \le i \le n\} \cup \{e'_i : 1 \le i \le n\}$ where e_i is the edge $v_i v_{i+1} (1 \le i \le n-1)$, e_n is the edge $v_n v_1$ and e'_i is the edge $v_i u_i (1 \le i \le n)$. By the definition of total graph $V(T(S_n)) = V(S_n) \cup E(S_n) = \{u_i : 1 \le i \le n\} \cup \{v_i : 1 \le i \le n\} \cup \{v'_i : 1 \le i \le n\} \cup \{v'_i : 1 \le i \le n\} \cup \{v'_i : 1 \le i \le n\}$ where v'_i and u'_i represents the edge e_i and e'_i , $(1 \le i \le n)$ respectively.

Case(i): When $n \equiv 0 \pmod{5}$

We color the vertices $\{v_i: 1 \leq i \leq n\}$ of the cycle C_n with color sequence c_1, c_2, c_3, c_4 and c_5 and the vertices $\{v_i': 1 \leq i \leq n\}$ of cycle C_n' with color sequence c_4, c_5, c_1, c_2 and c_3 , alternatively. Assign color c_6 to vertices $\{u_i': 1 \leq i \leq n\}$ and c_7 to the pendant vertices $\{u_i: 1 \leq i \leq n\}$. The coloring is a valid star coloring. Thus, $\chi_s(T(S_n)) \leq 7$ for $n \equiv 0 \pmod{5}$.

To prove $\chi_s(T(S_n)) \geq 7$. Suppose that $\chi_s(T(S_n))$ is less than 7, say 6. The vertices of the cycles C_n and C'_n are colored with 5 colors c_1, c_2, c_3, c_4 and c_5 . We assign the color c_6 to the vertices $\{u'_i : 1 \leq i \leq n\}$ for proper star coloring. If we assign one of the existing colors to the pendant vertices

 $\{u_i: 1 \leq i \leq n\}$, then an easy check shows that there exists a bicolored path of length 3. A contradiction, star coloring with 6 colors is not possible. Thus, $\chi_s(T(S_n)) \geq 7$. Hence, $\chi_s(T(S_n)) = 7$.

Case(ii): When $n \not\equiv 0 \pmod{5}$ Assign the coloring as follows:

Subcase(i): When n=3k, we color alternatively the vertices $\{v_i: 1 \leq i \leq n\}$ around the cycle C_n by colors c_1, c_2 and c_3 and the vertices $\{v_i': 1 \leq i \leq n\}$ around the cycle C_n' by colors c_4, c_5 and c_6 . Assign color c_7 to $\{u_i': 1 \leq i \leq n\}$ and c_8 to the pendant vertices $\{u_i: 1 \leq i \leq n\}$.

Subcase(ii): When n=3k+1. Let us color 3k vertices of cycle C_n and C'_n consecutively by repeating the sequence of colors c_1, c_2, c_3 and c_4, c_5, c_6 respectively. There remains one uncolored vertex in C_n and C'_n , to them we assign colors c_2 and c_5 respectively. Assign color c_7 to $\{u'_i: 1 \le i \le n\}$ and c_8 to the pendant vertices $\{u_i: 1 \le i \le n\}$.

Subcase(iii): When n=3k+2. Here $n\not\equiv 0 \pmod 5$ are excluded. Thus n=3(k-1)+5 with $k\not=5i-4, i=1,2,3,\ldots$ and $k\ge 2$. Let us color 3(k-1) consecutive vertices along the cycles C_n and C_n' with alternating sequence of colors c_1,c_2,c_3 and c_4,c_5,c_6 respectively. For the remaining 5 vertices we assign the following coloring: c_2,c_1,c_2,c_3,c_2 in cycle C_n and c_5,c_4,c_5,c_6,c_4 in cycle C_n' . It can be checked that this is a valid star coloring. Assign color c_7 to $\{u_i':1\le i\le n\}$ and c_8 to the pendant vertices $\{u_i:1\le i\le n\}$.

In all the subcases above, $\chi_s(T(S_n)) \leq 8$ for $n \not\equiv 0 \pmod 5$. To prove $\chi_s(T(S_n)) \geq 8$. Suppose, $\chi_s(T(S_n))$ is less than 8, say 7. We have assigned the colors c_1, c_2, c_3, c_4, c_5 and c_6 for the vertices of the cycles C_n and C'_n as given above. We assign the color c_7 for the vertices $\{u'_i : 1 \leq i \leq n\}$ for proper star coloring. If we assign one of the existing colors to the pendant vertices $\{u_i : 1 \leq i \leq n\}$, then an easy check shows that there exists a bicolored path of length 3. A contradiction, star coloring with 7 colors is not possible. Thus, $\chi_s(T(S_n)) \geq 8$. Hence, $\chi_s(T(S_n)) = 8$ for $n \not\equiv 0 \pmod 5$. \square

Acknowledgment

The authors sincerely thank the anonymous reviewer for the careful reading, constructive comments and fruitful suggestions that have resulted in the improvement of the quality of this manuscript.

References

 Albertson, Michael O, Chappell, Glenn G, Kierstead, Hal A, Kündgen, André and Ramamurthi, Radhika, Coloring with no 2-Colored P₄'s, The Electronic Journal of Combinatorics 11 (2004), Paper # R26,13.

- [2] Bondy.J.A and Murty.U.S.R, Graph theory with Applications, London, MacMillan 1976.
- [3] Branko Grünbaum, Acyclic colorings of planar graphs, Israel J.Math 14(1973), 390—408.
- [4] Danuta Michalak, On middle and total graphs with coarseness number equal 1, Springer Verlag Graph Theory, Lagow proceedings, Berlin Heidelberg, New York, Tokyo, (1981), 139-150.
- [5] Frank Harary, Graph Theory, Narosa Publishing home, New Delhi 1969.
- [6] Fertin, Guillaume, Raspaud, André and Reed, Bruce, Star coloring of graphs, Journal of Graph Theory 47 (3)(2004),163–182.
- [7] Thomas F.Coleman and Jin-Yi Cai, The cyclic coloring problem and estimation of sparse Hessian matrices, SIAM J. Alg. Disc. Math 7 (1986),221-235.
- [8] Thomas F.Coleman and Jorge J.Moré, Estimation of sparse Hessian matrices and graph coloring problems, Mathematical Programming, 28(3)(1984),243– 270.
- [9] Vernold Vivin.J, Ph.D Thesis, Harmonious coloring of total graphs, n-leaf, central graphs and circumdetic graphs, Bharathiar University, (2007), Coimbatore, India.

Kowsalya.V
Part-Time Research Scholar (Category-B)
Research & Development Centre
Bharathiar University
Coimbatore-641 046
and
Department of Mathematics
RVS Technical Campus
Coimbatore-641 402
Tamilnadu
India
e-mail: vkowsalya090gmail.com

VERNOLD VIVIN.J
DEPARTMENT OF MATHEMATICS
UNIVERSITY COLLEGE OF ENGINEERING NAGERCOIL
(ANNA UNIVERSITY, CONSTITUENT COLLEGE)
KONAM
NAGERCOIL-629 004
TAMILNADU
INDIA
e-mail: vernoldvivin@yahoo.in

VENKATACHALAM.M
DEPARTMENT OF MATHEMATICS
RVS FACULTY OF ENGINEERING
COIMBATORE-641 402
TAMILNADU
INDIA

e-mail: venkatmaths@gmail.com