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Abstract. In this paper, we find the star chromatic number x, for the
central graph of sunlet graphs C(Sy), line graph of sunlet graphs L(Sn),
middle graph of sunlet graphs M(S») and the total graph of sunlet
graphs T(S,).
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1. Introduction

The notion of star chromatic number was introduced by Branko Griinbaum in
1973. A star coloring [1, 3, 6] of a graph G is a proper vertex coloring in which
every path on four vertices uses at least three distinct colors. Equivalently,
in a star coloring, the induced subgraphs formed by the vertices of any two
colors have connected components that are star graphs. The star chromatic
number x; (G) of G is the minimum number of colors needed to star color G.

Guillaume Fertin et al.[6] gave the exact value of the star chromatic
number of different families of graphs such as trees, cycles, complete bipar-
tite graphs, outerplanar graphs, and 2-dimensional grids. They also investi-
gated and gave bounds for the star chromatic number of other families of
graphs, such as planar graphs, hypercubes, d-dimensional grids (d > 3), d-
dimensional tori (d > 2), graphs with bounded treewidth, and cubic graphs.

Albertson et al.[1] showed that it is NP-complete to determine whether
Xs (G) < 3, even when G is a graph that is both planar and bipartite. The
problem of finding star colorings is NP-hard and remain so even for bipartite

graphs [7, 8].
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2. Preliminaries

The sunlet graph on 2n vertices is obtained by attaching n pendant edges to
the cycle C, and is denoted by S,,.

For a given graph G = (V, E) we do an operation on G, by subdividing
each edge exactly once and joining all the non-adjacent vertices of G. The
graph obtained by this process is called central graph [9] of G denoted by
C(G).

The line graph [2, 5] of a graph G, denoted by L(G), is a graph whose
vertices are the edges of G, and if u,v € E(G) then uv € E(L(G)) if u and v
share a vertex in G.

The middle graph [4] of G, is defined with the vertex set V(G) U E(G)
where two vertices are adjacent iff they are either adjacent edges of G or one
is the vertex and the other is an edge incident with it and it is denoted by
M(G).

The total graph (2, 4, 5] of G has vertex set V(G) U E(G), and edges
joining all elements of this vertex set which are adjacent or incident in G.

Additional graph theory terminology used in this paper can be found
in [2, 5].

In the following sections we find the star chromatic number for the
central graph of sunlet graphs C(S,), line graph of sunlet graphs L(5y,),
middle graph of sunlet graphs M(S,) and the total graph of sunlet graphs
T(S,).

In order to prove our results, we shall use the following theorem and
proof by Guillaume et.al [6).

Theorem 2.1. [6] If Cy, is a cycle with n > 3 vertices, then

4 when n=25

s Cn =
xs(Cn) {3 otherwise.

Proof. It can be easily checked that x,(Cs) = 4. Now let us assume n # 5.
Clearly atleast 3 colors are needed to star color C,,. We now distinguish three
cases:

Case(i): If n = 3k, we color alternatively the vertices around the cycle by col-
ors c1, ¢ and csz. Thus, for any vertex u, its two neighbours are assigned dis-
tinct colors, and consequently this is a valid star coloring. Hence x,(Csx) < 3.

Case(ii): If n = 3k + 1, in this case, let us color 3k vertices of C, conse-
quently, by repeating the sequence of colors ¢;, ¢ and c3. There remains one
uncolored vertex, to which we assign color co. One can check easily that this
is also a valid star coloring, and thus x(Cakr+1) < 3.

Case(iii): If n = 3k + 2. Since the case n = 5 is excluded here, we can assume

k> 2 Thus n = 3(k — 1) + 5, with K — 1 > 1. In that case, let us color
3(k — 1) consecutive vertices along the cycle, alternating colors ¢, ¢2 and cs.
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For the 5 remaining vertices, we give the following coloring : ¢3, c1, ¢2, €3, ca.
It can be checked that this is a valid star coloring, and thus x,(Cak42) < 3
for any k > 2. Globally, we have x,(Cr) = 3 for any n # 5, and the result is
proved. ]

3. Star coloring on central graph of sunlet graph
Theorem 3.1. Let S, be o sunlet graph with 2n vertices, then
xs(C(Sn) =n+2,Vn 2 3.

Proof. Let V(S,) = {u1,u2,...,un}U{v1,v2,...,v,} and E(S,) = {e;:1 <
1< n} U{ € :1< i< n} where ¢; is the edge v;v;41(1 <i<n-1),e,is
the edge v,v1 and €] is the edge v;ui(1 < i < n). For 1 < i < n, u; is the
pendant vertex and v; is the adjacent vertex to u;. By the definition of central
graph V(C(S,)) = V(Sp) UE(S,) ={ui:1<i<n}U{v;:1<i<n} U
{vj:1<i<n}u{ul:1 <7< n} where v} and u/ represents the edge e; and
e}, (1 £ i £ n) respectively.
Assign the following coloring for C(S,) as star chromatic:

e For 1 < i < n, assign the color ¢; to u;

e For 1 < i < n, assign the color ¢; to v;

e For 1 < i < n, assign the color cp41 to u}

e For 1 < i < n, assign the color ¢,,4+2 to v}
Thus, x:(C(Sn)) < n+2.

To prove x,(C(Sp)) 2 n + 2. Assume that x,(C(S,)) is less than

n + 2, say n + 1. We need atleast n colors say {cj,cz,...,cn}, since the
subgraph induced by {u;:1 < ¢ < n} is a complete graph K, and the col-
oring should be proper. The vertices {u}:1< i< n} are adjacent to the
vertices {u; : 1 <7 < n} and {v; : 1 < ¢ < n} needs a distinct color say cp41
for proper star coloring. If we assign the same n + 1 colors to the vertices
{v}{ : 1 <i < n}, then an easy check shows that there exists a bicolored path.
A contradiction to proper star coloring. Thus, x,(C(S,)) > n 4 2. Hence,
xs(C(Sn))=n+2,Vn>3. a

4. Star coloring on line graph of sunlet graph

Theorem 4.1. Let S,, be a sunlet graph with 2n vertices and n > 3, then
5 if n=5

4 otherwise.

Xxs(L(Sn)) = {

Proof. Let V(S,) = {u1,u2,...,ua} U{v1,v2,...,va} and E(Sp)={e;: 1 <
i<n} U{ € :1<i<n} where ¢; is the edge v;v;41(1 i< n—1), e, is
the edge v,v; and €} is the edge v;u;(1 < ¢ < n). By the definition of line
graph V(L(S,)) = E(S,) = {¢f:1<i<n}u{vf:1<i<n-1}U {v}}
where v} and u} represents the edge e; and €}, (1 < i < n) respectively. Now
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{v{:1 < i< n} forms a cycle C,, with n vertices.

Case(i): When n =5
Assign the coloring as follows:
e For 1 < i < 4, assign the color c; to v}
o Assign the color ¢ to the vertex vg
e For 1 < < 4, assign the color cs to !
Thus, xs(L(S.)) < 5.

To prove xs(L(Ss)) = 5. Suppose x,(L(Sy)) is less than 5, say 4. By
theorem 2.1, the cycle C,, with vertices {v} : 1 < ¢ < 5} needs atleast 4 colors.
If we assign the existing colors to the vertices {u] : 1 <4 < 5}, then an easy
check shows that there exists a bicolored path of length 3. A contradiction to
proper star coloring. Thus, x,(L(S»)) > 5. Hence, xs(L(Sn)) =5 for n = 5.

Case(ii): When n # §
Assign the coloring as follows:
e For 1 < i < n, color the vertices v} by repeating the sequence of colors

C1,C2,C3

e For 1 < i < n, color the vertices »} with color the ¢4
Thus, x,(L(S.)) < 4.

To prove x.(L(Sn)) = 4. Suppose x,(L(S»)) is less than 4, say 3. By
theorem 2.1, the cycle C,, with vertices {v! : 1 < i < n} needs atleast 3 colors.
If we assign the existing colors to the vertices {u} : 1 < < n}, then an easy
check shows that there exists a bicolored path of length 3. A contradiction
to proper star coloring. Thus, x,(L(S,)) = 4. Hence, x,(L(Sr)) = 4 for
n#5. a

5. Star coloring on middle graph of sunlet graph
Theorem 5.1. Let S, be a sunlet graph with 2n vertices and n > 3, then

6 if n=5
5 otherwise

Xs(M(S5)) = {

Proof. Let V(S,) = {u1,u2,...,un}U{v1,va,...,v} and E(S,)={e; : 1 <
i <n}U{el:1< i< n} where ¢; is the edge vivi41(1 S i < n—1), ey is
the edge v,v; and € is the edge v;u;(1 < i < n). By definition of middle
graph V(M(S,)) = V(S,)UE(S,) = {u;i:1<i<n}U{v;:1<i<n}U
{v}:1<i<n}u{ul:1< i< n} where vj and u} represents the edge e; and
e}, (1 € i < n) respectively. Now {v}:1 < ¢ < n} forms a cycle C,, with n
vertices .

Case(i): When n=5
By theorem 2.1, xs(Cr) = 4. Assign the color cs to the pendant vertices
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{ui : 1 <4< n} and the vertices {v; : 1 < i < n}. Assign the color cg to the
vertices {u] : 1 < ¢ < n}. Thus, x,(M(S,)) < 6.

To prove x,(M(S,)) > 6. Suppose x,{M(S,)) is less than 6, say 5. By
theorem 2.1, we need atleast 4 colors to star color the cycle C,, with vertices
{v : 1 <4 < n}. The vertices {u; : 1 <4 < n} and the vertices {v; : 1 < i < n}
needs a distinct color, say cs for proper star coloring. If we assign the existing
colors for the vertices {u} : 1 < i < n}, then an easy check shows that there
exists a bicolored path of length 3. A contradiction to proper star coloring.
Thus, xs(M(Sn)) > 6. Hence, x,(M(S,)) =6.

Case(ii): Whenn # 5

By theorem 2.1, x,(C,) = 3. Assign the color ¢; to the pendant vertices
{ui:1<i< n} and to the vertices {v; : 1 < i < n}. Assign the color cs to
the vertices {u/ : 1 <4 < n}. Thus, x,(M(S,)) <5.

To prove x,(M(S,)) = 5. Suppose x,(M(S,)) is less than 5, say 4. By
theorem 2.1, we need atleast 3 colors to star color the cycle C, with vertices
{vi : 1 <i < n}. The vertices {u; : 1 <i < n} and the vertices {v; : 1 <i < n}
needs a distinct color, say c4 for proper star coloring. If we assign the existing
colors for the vertices {u} : 1 < i < n}, then an easy check shows that there
exists a bicolored path of length 3. A contradiction to proper star coloring.
Thus, x,(M(S,)) = 5. Hence, x,(M(S,)) = 5. 0

6. Star coloring on total graph of sunlet graph
Theorem 6.1. Let S,, be a sunlet graph with 2n vertices and n > 3, then

xXs(T(Sn)) = {7 if n=0(mod 5)

8 otherwise.

Proof. Let V(S,) = {u1,ug,...,un} U {v1,va,...,v,}and E(S,)={e;: 1<
i < n}U{e; : 1 <i < n} where e; is the edge v;vi41(1 < i < n—1), e, is
the edge v,v1 and ¢ is the edge v;u;(1 < i < n). By the definition of total
graph V(T'(Sn)) = V(SR,) UE(S,) = {wi:1<i<n}U{n;:1<i<n}uU
{vi:1<i<n}U{y;:1 < i< n} where v] and u] represents the edge e; and
e}, (1 < i < n) respectively.

Case(i): When n = 0(mod 5)
We color the vertices {v; : 1 < i < n} of the cycle C, with color sequence
c1,¢2,c3,¢4 and cs and the vertices {v; : 1 < i < n} of cycle C!, with color
sequence cq, Cs, €1, C2 and c3, alternatively. Assign color cg to vertices {uf : 1 <
¢ < n} and ¢z to the pendant vertices {u; : 1 < i < n}. The coloring is a valid
star coloring. Thus, x,(T'(S»)) < 7 for n = 0(mod 5).

To prove x(T(S,)) = 7. Suppose that x,(T(S,)) is less than 7, say 6.
The vertices of the cycles C,, and C/, are colored with 5 colors ¢, co,c3,¢4
and c5. We assign the color cg to the vertices {u}:1 < i< n} for proper
star coloring. If we assign one of the existing colors to the pendant vertices
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{ui : 1 € i < n}, then an easy check shows that there exists a bicolored path
of length 3. A contradiction, star coloring with 6 colors is not possible. Thus,
Xs(T(Sn)) 2 7. Hence, x,(T'(5n)) =17

Case(ii): When n # 0(mod 5)

Assign the coloring as follows:

Subcase(i): When n = 3k, we color alternatively the vertices {v; : 1 <i < n}
around the cycle C, by colors c;,cz and c3 and the vertices {v} : 1 < i < n}
around the cycle C/, by colors c4, cs and cg. Assign color ¢7 to {u} : 1 £ i < n}
and cg to the pendant vertices {u; : 1 <i < n}.

Subcase(ii): When n = 3k + 1. Let us color 3k vertices of cycle C, and Cj,
consecutively by repeating the sequence of colors ¢, ¢z, ¢3 and cq4,c5,cq re-
spectively. There remains one uncolored vertex in C,, and Cj, to them we
assign colors cz and cs respectively. Assign color ¢7 to {u}:1 < i < n} and
cg to the pendant vertices {u; : 1 <i < n}.

Subcase(iii): When n = 3k + 2. Here n # O(mod 5) are excluded. Thus
n=3(k—1)+5with k # 5i~4,i=1,2,3,... and k > 2. Let us color 3(k—-1)
consecutive vertices along the cycles C, and CJ, with alternating sequence
of colors ¢y, ¢, c3 and ¢, cs, cg respectively. For the remaining 5 vertices we
assign the following coloring: cg,¢1, ¢2,¢3,¢2 in cycle Cy,, and cs,c4,cs5,Cs,Ca
in cycle C/,. It can be checked that this is a valid star coloring. Assign color
cr to {u} : 1 <i < n} and cs to the pendant vertices {u; : 1 <1 < n}.

In all the subcases above, xs(T(S,)) < 8 for n # 0(mod 5).
To prove x,(T(Sn)) > 8. Suppose, xs(T(S»)) is less than 8, say 7. We have
assigned the colors ¢y, c2,¢3,¢4,¢c5 and cg for the vertices of the cycles Cy,
and C!, as given above. We assign the color c7 for the vertices {u]:1 <4<
n} for proper star coloring. If we assign one of the existing colors to the
pendant vertices {u; : 1 < i < n}, then an easy check shows that there exists
a bicolored path of length 3. A contradiction, star coloring with 7 colors is not
possible. Thus, x,(T(S.)) = 8. Hence, x,(T(S,)) = 8 for n # 0(mod 5). O
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