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Abstract

Let Fy be a finite field of odd order ¢g. In this note the genera-
tor polynomials and the numbers of all self-dual and self-orthogonal
cyclic and negacyclic codes of length 2™ over F; are precisely char-
acterized.
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1 Introduction

Self-dual and self-orthogonal cyclic and negacyclic codes over finite field-
s play a very significant role in the theory of error-correcting codes. A
great deal of effort has been devoted to them from either a theoretical or a
practical point of view ( e.g. see [2], [4]-[6], [9]-[11], [16],[17] ).

It is known that self-dual cyclic codes of length n over F, exist if and
only if n and q are both even ([9], [10]). In [15], Pless linked self-orthogonal
and self-dual cyclic codes with the class of duadic codes. Kathuria and
Raka [12] showed a necessary and sufficient condition for the nonexistence
of self-orthogonal cyclic codes over a finite field, of which the lengths are
coprime to the characteristic of the underlying field. Lin, Liu and Chen
(14] obtained a necessary and sufficient condition under which nonzero self-
orthogonal negacyclic codes over finite fields do not exist.
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Dinh [7] explicitly determined repeated-root self-dual negacyclic codes
of length 2p° over Fpm. All self-dual cyclic and negacyclic codes of length
3p® over F,m were obtained concretely in (8]. Bakshi and Rake [2] obtained
the self-dual and self-orthogonal negacyclic codes of length 2¢" over Fg,
where £ is an odd prime different from the characteristic of Fj.

Let F, be a finite field of odd order ¢ and N a positive integer coprime
to g. Any negacyclic code of length N over F, is identified with exactly
one ideal in the quotient algebra Fy[X]/(X" + 1). Since every ideal in
Fy[X]/(X" 4+ 1) can be generated by a monic divisor of XV + 1, it fol-
lows that the irreducible factorization of X + 1 in Fy[X] determines all
negacyclic codes of length N over F.

Obviously, (X¥ +1)(X" —1) = XN —1. We know that the irreducible
factors of X2V — 1 over Fy can be described by the g-cyclotomic cosets
modulo 2N. One can recognize the irreducible factors of X2V —1 in Fy[X]
which are corresponding to the irreducible factors of XV + 1. In other
words, the generator polynomials of all negacyclic codes of length N over
F, can be given by the g-cyclotomic cosets modulo 2N. Using these facts,
Bakshi and Raka in [1] characterized all self-dual negacyclic codes of length
2™ over F, according to the g-cyclotomic cosets modulo m+l,

In this note we study self-dual and self-orthogonal cyclic and negacyclic
codes of length 2™ over Fy. Explicit expressions for the generator polyno-
mials and the numbers of these codes are obtained. Further, the algebraic
structures of codes mentioned above are exactly clear. In contrast to the
proof in [1], the methods proposed in this paper are more succinct and
intuitive. Based on the explicit irreducible factorization of X 2" 41 over
F, ([3, Theorem 1] and (13, Theorem 3.75]), we obtain our results without
the need of cyclotomic cosets. Moreover, one can easily get the dimension
of each code, since the degree of each irreducible factor of X2 + 1 over F,
is explicitly determined.

2 Preliminaries

Throughout this paper, F; denotes the finite field of odd order g. Let N be
a positive integer coprime to g and FqN the Fy-vector space of N-tuples. A
linear code C of length N over F, is an Fy-subspace of FqN . For a nonzero
element A in F,, a linear code C of length N over Fy is called A-constacyclic
if (Aen—1,¢€0, -+ ,cN—2) € C, for every (co,c1,- - ,en-1) € C. If A =1, A-
constacyclic codes are known as cyclic codes and if A = —1, A-constacyclic
codes are known as negacyclic codes.

For any A-constacyclic code C of length N over F,, the Euclidean dual
code of C is defined as C* = {u € F¥ |u-v = 0,for any v € C}, where
u - v denotes the standard Euclidean inner product of « and v in FqN . The



code C is said to be self-orthogonal if C C C* and self-dual if C = CL.
It turns out that the dual of a A-constacyclic code is a A~!-constacyclic
code; specifically, the dual of a cyclic code is a cyclic code and the dual of
a negacyclic code is a negacyclic code (e.g. see 7, Proposition 2.2.]).

We know that any A-constacyclic code C of length NV over Fy is identified
with exactly one ideal of the quotient algebra Fy[X]/(X" — A), which is
generated uniquely by a monic divisor g(X) of X" — J; in this case, g(X)
is called the generator polynomial of C and it is denoted by C = (g(X)).
In particular, the irreducible factorization of X” — X in F,[X] determines
all A-constacyclic codes of length N over F,.

Assume that C = (g(X)) is a A-constacyclic code of length N over

F,, where g(X) is the generator polynomial of C. Let h(X) = Zngf%. It

is known that its dual code C* has generator polynomial h*(X), where
h*(X) = h(0)~!Xdehp(LY is called the reciprocal polynomial of h(X);
note that A*(X) is a monic polynomial and it divides X — A~1. If a poly-
nomial is equal to its reciprocal polynomial, then it is called self-reciprocal.

In this paper, we focus on cyclic and negacyclic codes of length 2™
over the finite field F;. The following lemmas characterize all cyclic and
negacyclic codes of this length over Fy according to the cases ¢ = 3 ( mod 4)
and ¢ =1 (mod 4), respectively. If ¢ =3 (mod 4), we adopt the notation
2% || (¢ + 1), which means 2% | (g + 1) but 2°+! § (g + 1). The following
result was presented in [3, Theorem 1].

Lemma 2.1. Assume that ¢ = 3 (mod 4). Set G; = {0}; recursively

define .
G = {:':(‘q;—l)g-t_ Ig S Gi—l}s

fori =2,3,.-- ,a—1; and set
Go = {£(351)* |g€ Gar}.
If1<m<a-1,then

X7 +1= [ (X*-2¢X +1);
QGGm

if m > a, then

X7 41= [ X —2gx? " 1),

gEGu
If 1 <m<a, then
m~—1
X —1=(x-1yx+1) [] [T (x?-29x +1);
i=1 gec;

41



ifm>a+1, then
X7 -1 = (X-1)(X+1)
[T x*-20x+1 J] X¥" —20x% -1).

9€G;, 9€Ga,
1€i<a-1 0<jS(m—a=-1)

All the factors in the above products are irreducible over Fy.

On the other hand, if ¢ = 1 (mod 4), we write ¢ — 1 = 2°c with
ged(2,¢c) = 1. The next result was presented in [13, Theorem 3.75, Page
124).

Lemma 2.2. Assume that ¢ =1 (mod 4), then the irreducible decomposi-
tion of X2" + 1 over F, is given by:

2* m—s+1 :
I1(x? &), mz=s;

i=1,
X" 14 A
T (X —99), ifm<s,
&
where § is a primitive 2°-th root of unity in Fy for m > s and J is a
primitive 2™+ 1_th root of unity in Fy for m<s.
The irreducible decomposition of X 2" _1 over F, is given by:

2m-1

I x -7, ifm<s;
sz —-1= 2l:i? m—s2°-1

H x-MTI []&EY -¢), ifmzs+1.

...1 t=1
24
where 1 is a primitive 2™-th root of unity in F, for m < s and { is a
primitive 2°-th root of unity in F, form > s+ 1.

3 Main Results

Let F, be a finite field of odd order g as before. In this section, we deter-
mine the algebraic structures of all self-dual and self-orthogonal cyclic and
negacyclic codes of length 2™ over F;. We first begin with self-orthogonal
negacyclic codes under the condition 4t g — 1.

Before giving our result, we adopt the following notations. According
to

Ga—{ (S_)L—lgeGa_ }
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as in Lemma 2.1, we put
Gt ={(5) % |g € Gams }-

Therefore, the cardinality of G} is equal to 222,

Theorem 3.1. With the notations introduced in Lernma 2.1, the following

statements hold. \
(i) If m > a, then there are precisely 32" self-orthogonal negacyclic
codes of length 2™ over Fy generated by:

H (sz-u+l _ 2gX2m—a _ I)Tg (sz—a+l + 2gX2m—n _ 1)‘79,
geGt

where 79,04 € {0,1} and 7y + 04 > 1.

(ii) If m < a, then there does not exist non-zero self-orthogonal nega-
cyclic codes of length 2™ over F,.
Proof. Suppose C = (g(X)) is a self-orthogonal negacyclic code of length
2™ over F,; with generator polynomial g(X).

(i) If m > a, by Lemma 2.1 we have

X7 1= [T X7 —29x2" 1.
9€Ga
For any ag(X) = X2" "7 —29X?"™" —1, g € G,, we get a)(X) =
X" 4+ 2gX?"7" — 1. It is clear that aj(X) # ag(X). This means all

the irreducible factors of X2 + 1 in Fy[X] are not self-reciprocal. Note
that g is always paired with —g in G,. We have

sz + 1 — H (X2m—n.+l _ 2gX2m—a — 1)(X2vn-u+l + 2gX
9€GY

gm=—u

~1).

Without loss of generality, we can assume that

o(X)= T] (X7 29X — 1) (X 429X - )7,

geG}

where 74,0, € {0,1}. Therefore

X2"'+l
MO = Ty
— H (sz-u-f-l _ 2gX2m—a _ 1)1—1‘9
9€GT
m—a meo 1-
(XTT pogx? T 1)
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Thus,

gm=—q Tg

R(X) = JI (X7 420X
geGT
(XTTTT 09X — 1)
Since C C C*, then A*(X) | g(X). This is possible if and only if
1 -0, < 74 for every g € G?, namely 7, + 04 > 1 and 74,04 € {0,1} for
each g € Gf.
As g runs over the set G, there exist 32*"* distinct self-orthogonal
negacyclic codes of length 2™ over F,; and

C _ < H (sz-a-n _ 2gX2m-u _ l)fg(x2vn-n+1 + 2gX2m—a _ l)ag>’
9€GT

where 74,04 € {0,1},7, + 04 > 1. .
(i) If m < a, By Lemma 2.1, the irreducible factorization of X" +1
over Fy is given by

_1)

l—oyg

X +1= J] (X*-29X +1),
9€Gm
Working the same as in the proof of part (i), we find that for any g € G,
(X2 - 29X +1)* = X% —2¢X + 1. This implies that all the irreducible
factors of X2” + 1 in F,[X] are self-reciprocal. We deduce that, in this
case, non-zero self-orthogonal negacyclic codes do not exist. 0

Next we investigate self-orthogonal negacyclic codes of length 2™ over
F, under the condition 4 | ¢ — 1.

Theorem 3.2. With the notations of Lemma 22 2, we have that
(i) If m > s, then there are precisely 32"~ self-orthogonal negacyclic
codes of length 2™ over F, generated by:

Zﬁ(xz,n_.+1 _ ‘Si)rt(xzm—sﬂ _ J—i)ai,
i2=f"‘.
where 0;,7; € {0,1} and 7; + 0; > 1.
(ii) If m < s, then there are precisely 32" self-orthogonal negacyclic
codes of length 2™ over F, generated by:

om

IT (¢ - #)" (x =07)",

2¢3

where o, 7; € {0,1} and 7; +0; > 1.



Proof. Suppose C = (g(X)) is a self-orthogonal negacyclic code of length
2™ over F,.

(i) Assuming that m > s, we put a;(X) = X2™ """ —§* with 1 <i < 2°
and 2 { 4. Then af(X) = X?" """ -5 = X?"™"* _ §2"~i, Hence,
a}(X) = ai(X) if and only if i = 2°1, this is a contradiction. From
Lemma 2.2, we get all the irreducible factors of X2” + 1 in F,[X] are not
self-reciprocal. Therefore, we can write

2:—2

X2m + 1= H (sz—l+l _ 6i)(X2m—s+1 _ 6_i)'
i=1,
2t

This gives that

2.—!

o(X) = JT(x¥"™™" =&)X —579)%, gy, € {0,1}.

i=1,

2%
Hence,

2::—1

R*(X) = H (XZ"‘“"‘” _ 6—£)l~f.(x‘2""““" _ éi)l—d.‘.
i=1,
2t

Since C C C+, we have 0; +7; > 1 foreach 1 <4 < 2°1,2 ¢ 4.
As a consequence, there exist 32" distinct self-orthogonal negacyclic
codes of length 2™ over Fy and

o= (Lo sy 57,

i=1,

2¢¢
where 7; +0; > 1 and 73,0; € {0,1}.
(ii) If m < s, working the same as in the proof of part (i), we put
bj(X) = X —97. Then b}(X) = X —9~9 = X —92™*'=i, Hence, we
assume that

2'"
9(X) =[] (X -9)"(X —979)", 7,0:€{0,1}.
&h
Thus,
21"
R (x) =TT (X =979) 77 (x - 97)'7".

i=1.
2t
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As C C C*, we have 7; +0; 2 1, and 75,05 € {0,1}.
Also, one can check that there exist 32™7" distinct self-orthogonal ne-
gacyclic codes of length 2™ over F; and

o= (1 (x-#)(x-19)"),

2t;

where 0;,7; € {0,1} and 75 + 05 2 1.
d

Now we turn to determine all self-dual negacyclic codes of length 2™
over F,. Also we have to distinguish the cases ¢ = 3 (mod 4) and ¢ =1
(mod 4).

Corollary 3.3. Assume the notations given in Lemma 2.1.

(i) If m > a, then there are precisely 92°~? self-dual negacyclic codes of
length 2™ over F, generated by:

H (szn—a+l _ 2gx2m-—n _ l)Tg (X2m—n+l + 2gX2m—n _ l)vg’ (3.1)
geG¥
where 79,04 € {0,1}, 75+ 04 = 1.
(ii) If m < a, then there does not exist self-dual negacyclic codes of
length 2™ over Fj .

Proof. Let C = (g(X)) be a self-dual negacyclic code of length 2™ over F,.
(i) Working the same as in the proof of Theorem 3.1 (i), we just note
that C = C* if and only if *(X) = g(X).
(i) It is a direct consequence of Theorem 3.1 (ii). a

Corollary 3.4. Let the notations be the same as in Lemma 2.2.

(i) If m > s, then there are precisely 92""? self-dual negacyclic codes of
length 2™ over F, generated by:

2:—1
H (sz—n-{»-l _6‘)1" (sz—a-i-l _ 6_i)oi,
i2=*l‘_

where g;,7; € {0,1} and 0; + 73 = 1.

(ii) If m < s, then there are precisely 92! self-dual negacyclic codes
of length 2™ over F, generated by:

m

[T (x-9)"(x =97,
i=1,
2t

where 0;,7; € {0,1} and 05+ 7; = 1.



As mentioned in the first section, self-dual cyclic code over a finite field
exists if and only if the code length is even and the characteristic of the
field is equal to two ([9),[10]). Therefore, there does not exist self-dual
cyclic codes of length 2™ over Fj,.

Proposition 3.5. There do not exist self-dual cyclic codes of length 2™
over Fy.

In the following, we focus on the generator polynomials of self-orthogonal
cyclic codes of length 2™ over F,. We first consider the case 41q — 1.

Theorem 3.6. Notations as defined in Lemma 2.1. \
(i) If m > a + 1, then there are precisely 3(™~2)2""" self orthogonal
cyclic codes of length 2™ over F, generated by:

(X = 1)(X +1) z1:[1 T -20x +1)

TI Mpear (X —20X% - 1) (X2 4+ 20X% — 17,
where 77,07 € {0,1} and 7§ + 0] > 1.

(ii) If m < a, then th,e're d,oes not exist non-zero self-orthogonal cyclic
codes of length 2™ over F,

Proof. (i) If m 2 a + 1, by Lemma 2.1 we know

a—1
X -1 = (X-n)x+0 ][] [T x?-20x +1)
i=1 geG;

[T x¥" —29x? 1)

9€Gaq,
0£j<(m—~a~1)

With this result the same method in Theorem 3.1 is applied to get our

desired result.
(ii) If m < a, we just note that the irreducible factors of X2" —1 F,

are self-reciprocal. a

Theorem 3.7. Using the notations of Lemma 2.2, we have that
(i) If m > s+1, then there are precisely 3(m=s+22""*~1 geif orthogonal
cyclic codes of length 2™ over F, generated by:

8-t m—g2°~2 ) ) )
(X- 1)(X+1)H(X =) (X -¢7R)7 I T (X% ¢ (X% —¢—#y+,
i=1 prts

where T + 0k > 1,v] +w] > 1, and 7, 0%, v!,w! € {0,1}.
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(ii) If m < s, then there are precisely 32"7"'-1 self.orthogonal cyclic

codes of length 2™ over Fy generated by:

21n—l_l
X-10X+1) [ X-n"(X-n75)", (3.2)
k=1
where 05, 7; € {0,1} and 7 + 0, = 1 for each 1 <k < 2™~1 — 1.

Proof. (i) If m > s + 1, then the irreducible factorization of X2" — 1 over
F, is given by

2°=1 m—s2°-1 ; )
" —1=Jl&x-M]] [T -¢)
k=0 j=1 i1
Then we can rewrite it as follows
2:—! m_323-2 ) )
X" 1= (X-1)(X+1) J[J(x=c*yx—¢=*) [T TT (X% -¢Hx* —¢7).
k=1 j=1 i=1

24

Thus the following proof is similar to that of Theorem 3.2.
(i) Taking arguments similar to (i), we can get the desired result. O
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