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1 Introduction

A restricted edge cut is an edge cut S of a connected graph G such that
G — § contains no isolated vertices. The minimum cardinality A’(G) over
all restricted edge cuts of graph G is called its restricted edge connectivity.
If denote by £(G) = min{d(u) + d(v) = 2 : uv € F(G)} the minimum edge
degree of graph G, then M (G) < &(G) holds for all connected graphs of
order at least four that are not stars [7]. Graph G is called super restricted
edge connected, or for short super-)', if every minimum restricted edge cut
consists of edges adjacent to an edge. Super restricted edge connectivity
plays an important role in reliability analysis of telenets [7,12] and draws
a lot of attentions [1-3, 10, 13-16]). For details on advance of optimizing
restricted edge connectivity, the readers are suggested to refer to a survey
[9].

Given two graphs G; and G, the strong product G; ®G2 has vertex set
V(G1) x V(Gz), where two vertices (1, 1) and (2, y2) are adjacent if and
only if either z; = z; and y1y2 € E(G2), or y1 = y2 and z122 € E(Gy),
or 12 € E(G)) and y,y2 € E(G2). Occasionally one also use strong
direct product or symmetric composition rather than strong product. The
properties of strong product graphs are widely studied, the readers can
refer to (8] and a monograph [11].

In [5], [6] and elsewhere, the authors present some basic properties
on the edge connectivity of strong product graphs. This work studies the
restricted edge connectivity of these product graphs. As aresult, an explicit
expression on the restricted edge connectivity of strong product graphs is
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presented. Sufficient conditions for these graphs to be super restricted edge
connected are also obtained.

Before proceeding, let us introduce some more symbols and terminology.
For two subgraphs (or two subsets) P and Q of graph G, [P, Q] denotes
the set of edges with one end in P and the other in Q. Let MG) or
simply X indicate the edge connectivity of graph G. For other symbols and
terminology not specially stated, we follow that of [4].

2 Auxiliary lemmas

In [5, 6], the authors present an explicit expression of the edge connectivity
of any strong product graphs as follows.

Lemma 2.1 [5,6] Let G; be nontrivial connected graphs with order
n;, size m;, minimum degree §; and edge connectivity A;, ¢ = 1,2. Then
AMG1BG?) = min{)\l(ng +2mg), A2(ny + 2m,),01 + 02 + 8,02}

Let K> be a complete graph with V(K32) = {a,b} and H be a con-
nected graph. We define K, © H = K;®H — E({a} X H) - E({}} R H). It
is not difficult to see that K, ® H is connected if and only if H is connected.

Lemma 2.2 [6] Let H be a connected graph and S be an edge cut of
K,®H. If the vertices of {a}® H are in different components of Ko©H - S
as well as {b} ® H, then |S| > 2A\(H).

Lemma 2.3 [6] Let H be a connected graph and S be an edge cut of
K, ® H. If there is a vertex z € V(H) such that (a,z) and (b, z) are in
different components of Ko ® H — S, then |S| > §(H) + 1.

Let X ¢ V(G) be a nonempty subset and u be a vertex in X. Then
§(G) < d(u) < (|X] - 1) +|[X, X]|, where X = V(G) — X and d(u) repre-
sents the degree of vertex u in G. The following lemma 2.4 follows directly
from this observation.

Lemma 2.4 Let G be a connected graph. If X is a nonempty subset
of V(G), then |X| + |[X, X]| = 6(G) + 1 with the equality holding if and
only if X = {u} and d(u) =46(G). O

Lemma 2.5 Let G be a triangle-free connected graph and A be a subset
of V(G). If G[A] contains at least one edge, then |A| +|[4, A]| > £(G) + 2.

Proof. Since G is triangle-free, it follows that N(u) (YN (v) = @ holds
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for any edge uv € E(G[A]). Noticing that A contains at most |A] — 2 edges
adjacent to uv, we deduce that

|Al -2+ (4, 4| > d(u) + d(v) — 2 > £(G).

The lemma follows from above formula. O

3 Restricted edge connectivity

For convenience, we simplify dg, (t), dg,(t) and dg,mc,(t) as di(t), da(t)
and d(t) respectively in this section. For any vertex (u,v) € V(G X G3),
it’s not difficult to see that d((u,v)) = dy(u)da(v) + d;(u) + d2(v).

Lemma 3.1 If G; are nontrivial connected graphs with minimum
degree §; and minimum edge degree §;, ¢ = 1,2, then £(G; B G2) =
min{d;&2 + &2 + 401, 0261 + & + 402}

Proof. Let u be a minimum-degree vertex of G, v; v, be an edge of G2
with da(v1v2) = &. Then the set of edges of G; ® G, that are incident with
e1 = (u,v1)(u,v2) can be partitioned into following subsets: {(u,v1)(u,z) :
z € Ng,(v1) = {v2}} U {(u, v2)(u,2) : = € Ng,(v2) — {v1}}, {(u,v1)(y,v1) :
uy € B(G1)}, {(u,v2)(y, v2) : uy € B(G1)}, {(,1)(y, v2) : uy € E(G1)} U
{(u,v2)(y, 1) : uy € E(G1)} and {(u,v1)(y,z) : y € Ng, (u),z € Ng,(v1)-
{v2}} U {(u,v2)(y,z) : y € Ng,(u),z € Ng,(v2) — {v1}}. These subsets
has cardinality &2, 81, 61, 20; and 6,£2 respectively. Hence, d(e;) = §:&2 +
&2 + 46,. By symmetry of G; and G» in G ® Gy, there is an edge e; €
E(G, ® G2) with d(ez) = d2€) + & + 492. In conclusion, we have

§(G1 B Gp) < min{0:1£2 + &2 + 401, 0261 + & + 402},

To prove £(G1 ® G2) > min{d:§2 + &2 + 461,281 + & + 462}, we need
only show that d(e) > min{8,&; + &2 + 481, 2€; + €1 + 402} holds for every
edge of G1 ® G3. Now, let e = (z1,¥1)(22,y2) be an arbitrary edge of
G, ®G,.

If z; = x9, then y,y; € E(G2) and

dle) = d((z1,))+ d((z2,92)) — 2

= di(z1)(d2(y1) + d2(y2) + 2) + d2(11) + d2(y2) — 2
d1(z1)(d2(y1) + d2(y2) — 2) + 4di(z1) + (d2(y1) + d2(y2) — 2)
6162 + 46, + &o.

By symmetry, we deduce that d(e) > 826; +492 + & if y3 = y2. Fi-
nally, if £, # z2 and y; # yo, without loss of generality, assume that

AV |

57



di1(z1) > di(z2), then similarly to the case when z; = =2 one can prove
with ease that d(e) > §;&2 + 40; + £2. And so, the lemma follows. O

Theorem 3.2 Let G; be nontrivial connected graphs with order n;, size
m;, minimum degree §; , edge connectivity A; and minimum edge degree
€, 1 =1,2. If they are triangle-free, then

)\’(Gl ® G2) = min{A;(n2 + 2mg), Aa(ny + 2m;),£(G1 ® G2)}
= min{)q(ng + 2m2), /\z(nl +2m,),6:8+ & + 461,006 + &1 + 452}.

Proof By lemma 3.1, it suffices to prove the first equation. Let [X, X)
be a minimum edge cut of G;. Then [X x V(G2), X x V(G.)] is a restricted
edge cut of G, ®G,. For any given vertices u € V(G2) and v € V(G}), let
us difine G} = {v}® G, and G} = G, ®{u}. With this convention, we have
|E(GY) N [X x V(Gq), X x V(G2)1| = A;. For any edges uv € E(G2) and
zy € [X, X], we have {(z,u)(v,v), (z,2)(¥,w)} C (X x V(G2), X x V(G2)]
It follows from these observations that

)\I(Gl K Gs) < I(X X V(Gz),x X V(G2)]| = A1(n2 + 2my).
By the symmetry of G; and G; in G} B G5, we deduce that
N(G1 B Gs) < Aa(ny + 2my).

Combining the above two formulae with the well-known observatlon that if
a connected graph G of order at least four is not a star then \'(G) < &(G)
[1], we obtain the following inequality.

/\'(Gl Gg) < min{Al(ng + 2m2),/\2(n1 + 2m1),§(G’1 Gz)}.

To prove the converse of above inequality, let S = [F, F] be a minimum
restricted edge cut of Gy ® G,. For any edge e € E(G,), define S, =
SNE(e®G3). Subgraph G% is called separated by Sifand only if GENF #
0 #£# GENF. Let V(G1) = {z1,22,..-,Zny }, Sz = Si = SnE(G”‘),
r = |{zx € V(G)) : GE is separated by S }| and s = |{y € V(G2) : GY is
separated by S }|. Without loss generality, assume that §; < ds.

If 7 = ny, then |S;| > g for all 1 < i < n;. By lemma 2.2, |S.| > 2X;
holds for every edge e € E(G,). Hence

ny
1512718+ D 1Sl 2 nade +my - 22 = Aoy + 2m).
i=1 e€E(Gh)

If r = 0, then s = ny. Similarly to the case when r = n;, we have
|S] = A1(n2 + 2mg). By the symmetry of G} and G in G B G2, we deduce
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that if s = n2 or 0 then |S| > min{A;(n2 + 2my), A2(n; + 2m,)}. And so,
we may assume in what follows that 1 <r<n;—land1<s<ny-1.
The first inequality of this assumption implies that there are two vertices
z, € V(G1) and z, € Ng, (z,) such that G3* is separated by S but G3° is
not.

Without loss of generality, assume that V(G3°) C F. Let K = {y €
V(G2) : (zb,y) € F}, H be the maximum-order connected subgraph of
G: such that z, € V(H) and {y € V(G2) : (zi,y) € F} = K holds for
every vertex z; € V(H), refer to figure 1. Define Sy = [H,G, — H],
Sk =[K,G2 — K], sp = |Sy| and sx = |Sk|. From the maximality of |H]|,
we deduce that for every edge e = uv € Sy — {z,2p}, there is a vertex
Yo € V(G2) such that (u,y0) and (v,y0) are in the different components
of e® G — Se. And so, |S¢| = 02 + 1 by lemma 2.3. Noticing that
|Szazs| = 20 ek (d2(y) + 1) 2 |K|(d2 + 1), we deduce that

1SI 2 D 1S+ Y, ISel #[Seaml + Y, IS

€V (H) € E(H) e€Sy—{zazs}
> |Hlsk +2|E(H)|sk + [K|(02 + 1) + (sn —1)(62 +1). (1)

=7

-
L
L ZTe
Hxz
Zq
- K — - x -
Figure 1. The sketch of case 1 Figure 2. The sketch of case 2

Case 1. |H|>2.

Since H is connected, it follows that |[E(H)| > |H| - 1. By Lemma
2.5, we have |H| + s, > & + 2. If Ga[K] consists of isolated vertices, then
sk > J2. The combination of these observations with formula (1) implies
that

[S] |H[62 + 2(|H| — 1)d2 + sn (52 + 1)

(|H| + sn)(2 + 1) + 2(|H| — 1)é2 — |H|
(61+2)(2+ 1) +2(|H| - 1)62 — (|H| - 1) -1
162+ &+ 28+ 2+ (|H| - 1)}(202 — 1) ~ 1
E10+ 61 +200+2+4+25,—-1-1

§102 + & + 462 > £(G1 R Gy). (2)

v v v
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If G2[K] contains at least one edge, then |K| + sx > §2 + 2 by lemma
2.5. When |H| > 62 + 1, by formula (1) and the assumption that é; < d2
we have

|S| > (52 + l)sk + 2(]Hi - l)sk + |K|(62 + 1) + (sh - 1)(62 + 1)
> (|K]+ sk + sn—1)(02 + 1) + 2025%
2 (+2)(62+1)+28

€202 + &2 + 402 > £201 + &2 + 401 > £(G1 B G2); (3)

\%

when |H| < &, recalling that |K| + si > &2 +2 > 282 and noticing that
|K| + sk = 82 + 2 by lemma 2.4, from (1) we deduce that

IS] > |Hlsk + 2|E(H)|sk + |K|(02 + 1) + (s — 1)(2 + 1)
> |H|sk + 23k + (|K| = 1)(62 + 1) + sp(62 + 1)
= |H|3k+2sk+(lK| —1)+(|K|—1)52+sh(52+1)
> [HI(|K|+ sk = 1) + (25 + |[K| = 1) + sp(02 + 1)
> |H|(62 + 1) + (sk + |K]|) + sn(d2 + 1)
> (|H|+sn)(82 +1) + 25,
> (& +2)(02+1) + 25
> £18; + & + 46, > £(G1 R G,). (4)
Case 2. |H|=1.

If there is a vertex z € Ng,(zs) such that V(G3) C F then s = ng,
which contradicts our assumption that 1 < s < na—1. If V(G%) C F holds
for every vertex z € Ng,(z3), from the minimality of |S| we deduce that
V(F) = {zp} x K and that K induces a connected subgraph of order at
least two. Let G = G, ® G3. When G2[K] is an isolated edge, it’s clearly
that |S| = |[{zs} x K,V (G) — {zp} x K]| = &£(G1 B G2); otherwise, by
lemma 2.5 and the similar method employed in the proof of formula (1),
we deduce that

IS| = |K|d1 + 2|E(G2[K])|61 + 8101 + sk
= (K| + sk)01 + (|E(G2[K])[61 + sk) + | E(G2[K])|d1
> (L2+2)0+(&2+1)+24
> &(G1RGy).
And so, we may assume in what follows that there is a vertex z. € Ng, (zs)
such that G3° is separated by S. Define J = {y € V(G2) : (zc,y) € F}. Let
L be the maximum-order connected subgraph of G; such that =, € V(L)

and {y € V(Gz2) : (zi,y) € F} = J holds for every fixed vertex z; € V(L),
refer to figure 2.
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Consider at first the case when [L| > 2. Let Z =F — (V(H) x K) =
F\(G®NF),Z=FU(Gs*NF). Then S = [Z, Z] contains a restricted
edge cut of G; ®G,. If regard S', L, J as S, H and K respectively and
reason as in the proofs of formulae (1)-(4), one can show without difficult
that

1S1 = > IS+ Y ISl +ISh. ]+ > |5

z;€V(L) ecE(L) e€[L,G1—L\{zsxc}
> §(G1XGy).
Let
= Y IS+ Y IS+ > |Sel;
I{EV(L) CGE(L) ee!L’Gl—Ll\{beC}
p= > IS+ > IS+ > |Sel-
z:€V(L) ecE(L) e€[L,G1—L|\{zvzc}

Then ! = p. Noticing that |S; 4| = [[G5*,G3* N F]| = |[G3°,G3* N F]| =
|[G3¢ N F,G3* N F]| +|[G3° N F,G3* N F]|, we deduce that

1S| 2 1+1Sez| + 82z ] + |[G2* N F,G3* N F]|

> 1+([G N F,G3 N Fl| +1[G n F, G5 1 F))
+(I[G5° N F,G3* 1 F) + G5 N F,GZ* 1 F)

> I+]|[G5NF,G3NF)| +|[G3NnF,GNF)|
= I+]|[G3*NF,GP]l=p+ |s;bzc|
2 &(G1RG)).

Continue to consider the case when |L| = 1. Let ¢ = [S;_z,| + |Szyz.| +
ISs| + Sl If [K| > 3, since |K|+|Sp| > 2 + 2 by lemma 2.4 and |Sz,z.| >
d2+1 by lemma 2.3, it follows that g > |Sz,z, |+|Sz,z. |+]Ss] = |K|(62 + 1)+
02 + 1+ |Sp| > 582 + 1; if | K| = 2, then |Sp| > 2(02 — 1) and ¢ > |Szozs| +
[Szpzc + |So| 2 |K|(62 + 1) + (62 + 1) + 2(62 — 1) = 58, + 1; if |K| =1
and |J| > 3, then |Sp| > J; and |Sg,z.| > |J[62, hence ¢ > |Sp,z,| +
[Szyzel + 86| = (2 +1) +|J|62 + 62 > 502+ 1; if |K| = 1 and |J| = 1, then
|Szyz.| = 202. Hence

q= 'Sa:a:cal + ls:cbzcl + Isb' + IScI 2 (62 + 1) + 262 + 52 + 62 = 562 +1 (5)

Finally, consider the case when |K| = 1 and |J| = 2, we shall prove at first
that |Szye.| > 202 + 1. Let K = {31} and J = {y2,y3}. If y1» ¢ J, then
|Szyz. | 2 d2(y2) +da(ys) + [{(zs, y1)(Zc, 1)} > 202+ 1; if yy € T, say gy =
Yo, and [y2102 - J] 5& 01 then |S:!:5::¢| 2 d2(yZ) + d2(y3) + I[(mbayl)1 {mc} X
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V(G2 — J)]| = 26, + 1; if otherwise then da(y1) = d2(y2) = 1 = 2 and
da(y3) = 62 + 1, and so the inequality also holds. Combining |Sz,z.| >
262+1, |Sp| = 82, |Sz,z,| = 02+1 and |Sc| > 2(d2—1) by lemma 2.4 we have
0= v S FISU 1S 2 (B4 D + 2 14 1) +252-1) >
502 + 1.

In conclusion, ¢ > 532 +1 when L is an isolated vertex, with the equality
holding only if |K| = |J] = 1. Recalling that |H| = |L| = 1 in this
case, from lemma 2.3 we deduce that |Se| > d2 + 1 holds for every edge
e € {uzp : u € Ng,(zp) — {Za,Zc}} U {vze 1 v € Ng, (zc) — {zv}}. And so

> EARS > |Sel +

e€[zp,Ng, (zp)|\{TaTs,To2c} e€[zc, NG, (z)\{zbzc}

(da(zp) — 2)(62 + 1) + (da(zc) —1)(62+ 1) + ¢

(di(zs) + di(zc) — 2)02 + (di(zp) + di(zc) — 2) + 462

£102 + & + 463 2 £(G1 B G). (6)

|51

v

vV IV IV

Theorem 3.2 follows from these discussions. O

Corollary 3.3 Let G; be connected triangle-free graphs with order n; >
3, size m;, minimum degree J;, edge-connectivity A; and minimum edge de-
gree &, (i = 1,2). Then G, ®G; is super-X’ if and only if min{;(n2 +
2m2), /\2(711 + 2m1)} > &(Gy Go).

Proof By theorem 3.2, it suffices to prove the sufficiency. For conve-
nience, we adopt the symbols employed in the of theorem 3.2 for those not
specified herein. Since min{\;(ng + 2m2), A2(n; +2m1)} > §(G1 B G2), it
follows from theorem 3.2 that |S| = XM (G; B G3) = £(G1 B G2). From the
proof of theorem 3.2, we deduce that one of the following two cases occurs.

Case 1. All the inequalities of formulae (1) and (2) become equalities.

In this case, V(F) = V(H) x K since otherwise the first inequality
formula (1) would strictly hold. From the first and fifth equality of formula
(2), we deduce that |K| =1 and |H| = 2. Hence, G[F] is an isolated edge
of Gl G2 -S.

Case 2. All the inequalities of formulae (5) and (6) hold become equal-
ities.

In this case, V(F) = (V(H) x K) U (V(L) x J) since otherwise the
first inequality formula (6) would strictly hold. Notice that |H| = |L| =
|K] = |J| = 1 in this case. It is easy to see that G[F}] is an isolated edge of
G1 ® Gy — S. The corollary follows from this observation. O

Corollary 3.4. Let G; be connected triangle-free graphs with order
n; > 3, size m;, minimum degree §;, edge-connectivity A; and minimum
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edge degree &;, i = 1,2. If both G; and G, are maximally edge connected,
then G; ® G is super-)\'.

Proof. Since G, is maximally edge connected, it follows that \; = §;.
Noticing that ny > & + 2 and my > ng — 1, we have

A1(nz +2mg) 2 61(€2 + 24 2(62+ 1)) > 61&2 + &2 + 461 > £(G1 R G)).

Similarly, A2(n1+2m1) > €(Gy B G2). The corollary follows from the com-
bination of these two observations and corollary 3.3. O
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