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Abstract: Let G; and G2 be two connected graphs. The Kronecker
product G x G has vertex set V(G1 x G2) = V(G1) x V(G3) and
the edge set E(G1 x G2) = {(u1,v1)(u2,v2) : wyus € E(G1),vn1vs €
E(G2)}. In this paper, we show that K,, x K, is super-« for n >
m 2 2and n+m > 5, K,, X P, is super-x for n > m > 3, and
K, x C, is super-k for n > m > 3.
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1 Introduction

We only consider undirected simple connected graphs without
loops and multiple edges. Unless stated otherwise, we follow
Bondy and Murty [3] for terminology and definitions.

There have been several proposals for measures of stability of
a communication network. The first such parameters one gen-
erally encounters are connectivity and edge connectivity, which
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measure the vulnerability of a graph or network. The connec-
tivity gives the minimum cost to disrupt the network.

Let G = (V, E) be a connected graph. S C V,z € V,N(z)
is the set of neighbors of z in G, Ng(z) = N(z) NS. The
connectivity kK(G) of a connected graph G is the least positive
integer k such that there is S C V,|S| = k and G — S is dis-
connected or reduces to the trivial graph K, and such a set S
is called vertex cut. A graph G is super connected, or simply
super-k, if every minimum vertex cut is the neighbors of a vertex
of G, that is every minimum vertex cut isolates a vertex.

Let G; and G, be two nontrivial connected graphs. The
Kronecker product (also named direct product, tensor prod-
uct and cross product) G; x Gy has vertex set V(G; x Ga) =
V(G1) x V(G) and the edge set E(G1 x Ga) = {(u1,v1)(u2,v2) :
wug € E(Gy),v1v2 € E(G2)}. It is known that the Kronecker
product of two nontrivial graphs is connected if and only if at
least one of the factors is not bipartite [5]. The Kronecker prod-
uct of graphs has been extensively investigated concerning graph
colorings, graph recognition and decomposition, graph embed-
dings, matching theory and stability in graphs (see, for example,
[1] and [4], and the references therein), and this graph product
has several applications, for instance, it can be used in model-
ing concurrency in multiprocessor system [8] and in automata
theory [6].

The Kronecker product of graphs is the natural product in the
category of graphs [7] and is also a widely used tool in the study
of intersection networks. Moreover, it is universal in the sense
that every graph is an induced subgraph of a suitable Kronecker
product of complete graphs [10]. Since the Kronecker product
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of graphs have been widely used as the models of some practical
structures used in the design of certain optimal networks (see
[2] and [6]), it is of significance to consider the vulnerability
parameters of this product of graphs.

2 Main results

When considering the Kronecker product G; x Gs of G; and
Gs with |G1| = m, |G2| = n, we shall always label V] = V(G) =
{u1, - ,um},Va = V(G3) = {v1,+-,v,}, and set S; = V] x

{v;},i = 1,...,n. Moreover, for convenience, we shall abbre-
viate (u;,v;) as w;; for i = 1,...,m,j = 1,...,n. Then S; =
{wii, - ,wmi (i =1,2,...,n) is an independent set in Gy X Gy,

and V(G; x G3) has a partition Vi x Vo = S1US,U---US,. For
two vertices u and v in a graph G, we write u ~ v if uv € E(G),
and u « v otherwise. We denote by K, the complete graph, C,
a cycle of n vertices, P, a path of n vertices, respectively.

Lemma 2.1. [9] Let m,n be integers with n > m > 2 and
n 2> 3. Then k(Km x K;) = (m —1)(n-1).

Theorem 2.2. Let m,n be integers withn > m > 2 and n+m >
5. Then G = K, x K,, is super-s.

Proof. By contradiction. Suppose that G = K,, x K, is not
super-£. Then there is a vertex cut S with |S| = (m—1)(n—1)
such that G — S is not connected but has no isolated vertex.
Thus each component of G — S has at least two vertices.

Let wy; and wy, be two vertices in different components in
G-S. Clearly k = p or t = q. Without loss of generality, let k =
p. Since no component is isolated, wy; has a neighbor, say, wi.
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Since wy; and wpq are in different components in G — S, wyy is
not adjacent to wp, and thus ¢’ = q. Also wy, has a neighbor,
say, Wye in G — S and by our assumption the only possibility
is that p = k¥’ and ¢ = t. Every other vertex is adjacent
to at least one of the vertices from both of the components.
And the vertices other than these four must be in §. Thus
(m —1)(n — 1) = |S| > mn — 4 which implies that m +n <5,
a contradiction. a

Lemma 2.3. Let m,n be integers withn >m > 3, G = K, X
P,. Then k(G)=m — 1.

Proof. Obviously the set T} = {wi2 : 2 < ¢ < m} is a cut set of
G with |T1] = m — 1. Let S be a cut set of G with |S| <m — 1.
We shall prove that G — S is connected.

Take arbitrary vertices, say wpx and wg with k& < ¢, in two
components of G — S. Then |S; — S| > 2 for any .

Case 1. k=t.

If |Sk+1 — S| = 3, then there is a (wpk, wek)-path (if k = n,
then take Sk_1). We are done. So assume that |Sg41 — S| = 2,
then S = {wig41) : 1 <4 < m,i # p,q}. Thatis Spyy — 5 =
{wp(k+1), Wek+1)}- Therefore, there is vertex w;, € S in Sy with
j # p,q. Hence we have a (wpk, wqx)-path (if k¥ = n, then let
Sk+1 = Sk-1). Then it is proved.

Case 2. k<t

Since wy, and wy are nonadjacent vertices, and because |S; —
S| > 2 for any [, there is a path from wg to any S; with [ # k
and there is a path from wg to some vertex wpy of S;. Hence
by Case 1, there is a path from wg to wp in G — S. Then the
required result follows. O



Theorem 2.4. Let m,n be integers with n > m > 3. Then

G = K,, X P, is super-x.

Proof. Assume that G = K, x P, is not super-«x. There is a set
S C V(G) with |S| = m — 1 such that G — S is not connected
but has no isolated vertex. Take arbitrary vertices, say w: and
wpq With ¢ < g, in two components of G — S.

Case 1. t =q.

If there is no vertex in S;;; in G — S, then S;4; C S, a
contradiction. If there is a vertex wj41)(¢ # k,p) in G — S,
then there is a (W, wpe)-path, which is impossible (If t = n, we
take w;—_1)). Hence i = k or p. Say i = k. Then S = {wj(41) :
1<j<m,j#k}or Sy1 — {We(e+1), Wy} € S

(1) S={wjesy: 1 <j<m,j#k}. Ift=1o0rt+2=n,
then there would be an isolated vertex, a contradiction. Then
t > 2and t+2 < n. Clearly G- S is connected, a contradiction.

(2) St41 — Wi(e+1) — Wp(e+1) € S. Even if we remove the last
vertex of S, G — S is connected, a contradiction.

Case 2. t < gq.

If there is some ! such that |S; — S| = 1, since there is no
isolated vertex, then G — S is connected. Hence |S; — S| > 2 for
any l. It is similar to Lemma 2.3 Case 2, there is a path from
Wpq to Wi in G — S Then the required result follows. O

Lemma 2.5. Let m,n be integers withn >m > 3, G = K,,, X
Crn. Then k(G) =2(m — 1).

Proof. If n = m = 3, then by Lemma 2.1 we are done. We
can easily verify x(Ky x C3) = 6. We assume that n > 5.
Obviously, T = {wig, Win : ¢ = 2,3, -- ,m} is a vertex cut with
[T} = 2(m—1). Let S be a vertex set of G with |S| < 2(m —1).
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We will show that G — S is connected. Take arbitrary vertices
wy; and wp, with ¢ < g in two components of G — S.

Case 1. t =q.

Firstly if there is a vertex wik, in Se+1 or Sy—1 (if ¢ = n,
take S; = Sy41) with k; # k, p, then there is a (wq, Wpq)-Path,
G — S is connected. Secondly if there are no such vertices,
then (Sg-1 — Wk(g-1) — Wp(g-1)) U (Sg+1 — Wk(g+1) = Wp(a+1) S
S. We have |Sy_1| — 2 + |Sg41] — 2 = 2m — 4,|5| £ 2m —
3, and |Ns,_,(Wk(g-1)) N Ns,_,(Wp(g-1)| = 1, [N, (Wi(g+n) N
Ns,,(wpg+1))| = 1. Although we remove the last vertex of
S, there is a (Wkq, Wpq)-path in G — S. Hence G — § is also
connected.

Case 2. t < gq.

Without loss of generality, we assume that 1 <t < ¢ < n.
Since wy; and w,, are nonadjacent vertices, ¢ — ¢ > 2.

Claim: Any connected subgraph H of G—S in {S;, Si41," - ,
Sj-1,S;}, there are edges between H and S;_; or between H
and S;;1 (If i = 1, then let S;_; = Sp, Si—2 = Sn—1,---- And if
j =, then let S;41 = S1,Sj42 = 52,-++).

We prove it by contradiction. Without loss of generality, we
assume that H has at least one vertex in each of {S;, Si+1,- -,
Sj-1,9;}

(1) H has only one vertex w;,; and wj,; in S; and S, respec-
tively. Then w;,; has no neighbors in S;_;, and wj,; has no neigh-
bors in Sj11. Since |Ng,_, (wi,i)|+|Ns,,, (wj,5)| = 2(m—1) > |S],
a contradiction.

(2) H has at least two vertices in S; or S, say two vertices
wj,; and wj,; in S;. Then wj,; and wj,; have no neighbors in
S;41, that is Sj41 € S. Let w;,; be a vertex of H in S;. Then
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w;,; has no neighbors in S;_;, that is Ng,_,(w;,;;) € S. Thus
|Sj+1] + | Ns,_, (wi,i)] = 2m — 1 > | S|, which is impossible.

And wy, has a neighbor in S;—; or S;y;. Otherwise N(wy;) C
S, but [N(wke)| = 2(m — 1) > |S|, which is a contradiction.
Then by Claim there is a path P from wy, to some vertex wg,
of S;. Then by Case 1, there is a path from wi, to wp,, We are
done. O

Theorem 2.6. Let m,n be integers withn > m > 3, G =
K, x C,. Then G is super-s.

Proof. If n = m = 3, then by Theorem 2.2 we are done. We
can easily verify K; x Cj is super-x. We assume that n > 5.
Assume that G is not super-x. There is a vertex set S C V(G)
with |S| = 2(m — 1) such that G— S is not connected but has no
isolated vertex. Take arbitrary vertices, say wi, and wp, with
t < g, in two components of G — S.

Case 1. t =g¢.

Assume that 1 < ¢ < n. Since G — S has no isolated vertex, if
there is a vertex wy,x, € Sg41 Or Sg—1 with k; # k, p, then there
is a (wke, Wpq)-path. That is G — S is connected, a contradiction.
Thus there are no such vertices. So (S;—; — Wk(g~1) — Wp(g-1)) U
(Sq+1 — Wi(g+1) — Wp(g+1)) € 5, and [(Sg-1 — Wi(g-1) — Wp(g-1)) U
(Sq+1 — Wi(g+1) — Wp(g+1))| = 2m — 4, |S| = 2m — 2. Notice that
G — S has no isolated vertex, even if we remove the last two
vertices of S, there is also a (wk:, Wpe)-path. That is G — S is
connected, which is a contradiction.

Case 2. t < q.

Assume that 1 < t < ¢ < n. Since wy; and w,, are nonadja-
cent vertices, g —t > 2.
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Claim: Any connected subgraph H of G~S in {S;, Si41,- - ,
S;—1,S;}, there are edges between H and S;—; or between H
and Sj41 (If ¢ = 1, then let S;_y = S,, Si—2 = Sp-1,--+. And if
j =n, then let Sj4; = S1,Sj42 = Sa,-++).

The proof is similar to the Claim of Lemma 2.5.

Because G — S has no isolated vertex, wy; has a neighbor in
S;—1 or S;+1. Then by Claim there is a path P from wy; to S,
with P = wys - - - wye. By Case 1, there is also a (wke, wpe)-path,
that is G — S is connected, a contradiction. (|
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