Super connectivity of Kronecker products of some graphs *

Litao Guo [†] and Xiaofeng Guo School of Mathematical Sciences, Xiamen University Xiamen Fujian 361005, China

Abstract: Let G_1 and G_2 be two connected graphs. The Kronecker product $G_1 \times G_2$ has vertex set $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ and the edge set $E(G_1 \times G_2) = \{(u_1, v_1)(u_2, v_2) : u_1u_2 \in E(G_1), v_1v_2 \in E(G_2)\}$. In this paper, we show that $K_m \times K_n$ is super- κ for $n \geq m \geq 2$ and n + m > 5, $K_m \times P_n$ is super- κ for $n \geq m \geq 3$, and $K_m \times C_n$ is super- κ for $n \geq m \geq 3$.

Key words: Kronecker product; Super connectivity; Cut set

1 Introduction

We only consider undirected simple connected graphs without loops and multiple edges. Unless stated otherwise, we follow Bondy and Murty [3] for terminology and definitions.

There have been several proposals for measures of stability of a communication network. The first such parameters one generally encounters are connectivity and edge connectivity, which

^{*} The project is supported by NSFC (No. 10831001).

[†] Corresponding author. E-mail address: ltguo@yahoo.cn (L.Guo).

measure the vulnerability of a graph or network. The connectivity gives the minimum cost to disrupt the network.

Let G = (V, E) be a connected graph. $S \subseteq V, x \in V, N(x)$ is the set of neighbors of x in G, $N_S(x) = N(x) \cap S$. The connectivity $\kappa(G)$ of a connected graph G is the least positive integer k such that there is $S \subset V, |S| = k$ and G - S is disconnected or reduces to the trivial graph K_1 and such a set S is called vertex cut. A graph G is super connected, or simply $super-\kappa$, if every minimum vertex cut is the neighbors of a vertex of G, that is every minimum vertex cut isolates a vertex.

Let G_1 and G_2 be two nontrivial connected graphs. The Kronecker product (also named direct product, tensor product and cross product) $G_1 \times G_2$ has vertex set $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ and the edge set $E(G_1 \times G_2) = \{(u_1, v_1)(u_2, v_2) : u_1u_2 \in E(G_1), v_1v_2 \in E(G_2)\}$. It is known that the Kronecker product of two nontrivial graphs is connected if and only if at least one of the factors is not bipartite [5]. The Kronecker product of graphs has been extensively investigated concerning graph colorings, graph recognition and decomposition, graph embeddings, matching theory and stability in graphs (see, for example, [1] and [4], and the references therein), and this graph product has several applications, for instance, it can be used in modeling concurrency in multiprocessor system [8] and in automata theory [6].

The Kronecker product of graphs is the natural product in the category of graphs [7] and is also a widely used tool in the study of intersection networks. Moreover, it is universal in the sense that every graph is an induced subgraph of a suitable Kronecker product of complete graphs [10]. Since the Kronecker product

of graphs have been widely used as the models of some practical structures used in the design of certain optimal networks (see [2] and [6]), it is of significance to consider the vulnerability parameters of this product of graphs.

2 Main results

When considering the Kronecker product $G_1 \times G_2$ of G_1 and G_2 with $|G_1| = m$, $|G_2| = n$, we shall always label $V_1 = V(G_1) = \{u_1, \dots, u_m\}$, $V_2 = V(G_2) = \{v_1, \dots, v_n\}$, and set $S_i = V_1 \times \{v_i\}$, $i = 1, \dots, n$. Moreover, for convenience, we shall abbreviate (u_i, v_j) as w_{ij} for $i = 1, \dots, m, j = 1, \dots, n$. Then $S_i = \{w_{1i}, \dots, w_{mi}\}(i = 1, 2, \dots, n)$ is an independent set in $G_1 \times G_2$, and $V(G_1 \times G_2)$ has a partition $V_1 \times V_2 = S_1 \cup S_2 \cup \dots \cup S_n$. For two vertices u and v in a graph v0, we write v1 and v2 otherwise. We denote by v3 the complete graph, v4 a cycle of v5 vertices, v6 a path of v7 vertices, respectively.

Lemma 2.1. [9] Let m, n be integers with $n \ge m \ge 2$ and $n \ge 3$. Then $\kappa(K_m \times K_n) = (m-1)(n-1)$.

Theorem 2.2. Let m, n be integers with $n \ge m \ge 2$ and n+m > 5. Then $G = K_m \times K_n$ is super- κ .

Proof. By contradiction. Suppose that $G = K_m \times K_n$ is not super- κ . Then there is a vertex cut S with |S| = (m-1)(n-1) such that G - S is not connected but has no isolated vertex. Thus each component of G - S has at least two vertices.

Let w_{kt} and w_{pq} be two vertices in different components in G-S. Clearly k=p or t=q. Without loss of generality, let k=p. Since no component is isolated, w_{kt} has a neighbor, say, $w_{k't'}$.

Since w_{kt} and w_{pq} are in different components in G-S, $w_{k't'}$ is not adjacent to w_{pq} and thus t'=q. Also w_{pq} has a neighbor, say, $w_{p'q'}$ in G-S and by our assumption the only possibility is that p'=k' and q'=t. Every other vertex is adjacent to at least one of the vertices from both of the components. And the vertices other than these four must be in S. Thus $(m-1)(n-1)=|S|\geq mn-4$ which implies that $m+n\leq 5$, a contradiction.

Lemma 2.3. Let m, n be integers with $n \ge m \ge 3$, $G = K_m \times P_n$. Then $\kappa(G) = m - 1$.

Proof. Obviously the set $T_1 = \{w_{i2} : 2 \le i \le m\}$ is a cut set of G with $|T_1| = m - 1$. Let S be a cut set of G with |S| < m - 1. We shall prove that G - S is connected.

Take arbitrary vertices, say w_{pk} and w_{qt} with $k \leq t$, in two components of G - S. Then $|S_l - S| \geq 2$ for any l.

Case 1. k = t.

If $|S_{k+1} - S| \geq 3$, then there is a (w_{pk}, w_{qk}) -path (if k = n, then take S_{k-1}). We are done. So assume that $|S_{k+1} - S| = 2$, then $S = \{w_{i(k+1)} : 1 \leq i \leq m, i \neq p, q\}$. That is $S_{k+1} - S = \{w_{p(k+1)}, w_{q(k+1)}\}$. Therefore, there is vertex $w_{jk} \in S$ in S_k with $j \neq p, q$. Hence we have a (w_{pk}, w_{qk}) -path (if k = n, then let $S_{k+1} = S_{k-1}$). Then it is proved.

Case 2. k < t

Since w_{pk} and w_{qt} are nonadjacent vertices, and because $|S_l - S| \ge 2$ for any l, there is a path from w_{qt} to any S_l with $l \ne k$ and there is a path from w_{qt} to some vertex $w_{p'k}$ of S_k . Hence by Case 1, there is a path from w_{qt} to w_{pk} in G - S. Then the required result follows.

Theorem 2.4. Let m, n be integers with $n \ge m \ge 3$. Then $G = K_m \times P_n$ is super- κ .

Proof. Assume that $G = K_m \times P_n$ is not super- κ . There is a set $S \subseteq V(G)$ with |S| = m - 1 such that G - S is not connected but has no isolated vertex. Take arbitrary vertices, say w_{kt} and w_{pq} with $t \leq q$, in two components of G - S.

Case 1. t = q.

If there is no vertex in S_{t+1} in G-S, then $S_{t+1} \subseteq S$, a contradiction. If there is a vertex $w_{i(t+1)}(i \neq k, p)$ in G-S, then there is a (w_{kt}, w_{pt}) -path, which is impossible (If t = n, we take $w_{i(t-1)}$). Hence i = k or p. Say i = k. Then $S = \{w_{j(t+1)} : 1 \leq j \leq m, j \neq k\}$ or $S_{t+1} - \{w_{k(t+1)}, w_{p(t+1)}\} \subseteq S$.

- (1) $S = \{w_{j(t+1)} : 1 \le j \le m, j \ne k\}$. If t = 1 or t + 2 = n, then there would be an isolated vertex, a contradiction. Then $t \ge 2$ and t+2 < n. Clearly G-S is connected, a contradiction.
- (2) $S_{t+1} w_{k(t+1)} w_{p(t+1)} \subseteq S$. Even if we remove the last vertex of S, G S is connected, a contradiction.

Case 2. t < q.

If there is some l such that $|S_l - S| = 1$, since there is no isolated vertex, then G - S is connected. Hence $|S_l - S| \ge 2$ for any l. It is similar to Lemma 2.3 Case 2, there is a path from w_{pq} to w_{kt} in G - S Then the required result follows. \square

Lemma 2.5. Let m, n be integers with $n \ge m \ge 3$, $G = K_m \times C_n$. Then $\kappa(G) = 2(m-1)$.

Proof. If n=m=3, then by Lemma 2.1 we are done. We can easily verify $\kappa(K_4 \times C_3) = 6$. We assume that $n \geq 5$. Obviously, $T = \{w_{i2}, w_{in} : i = 2, 3, \dots, m\}$ is a vertex cut with |T| = 2(m-1). Let S be a vertex set of G with |S| < 2(m-1).

We will show that G - S is connected. Take arbitrary vertices w_{kt} and w_{pq} with $t \leq q$ in two components of G - S.

Case 1. t = q.

Firstly if there is a vertex $w_{k_1k_2}$ in S_{q+1} or S_{q-1} (if q=n, take $S_1=S_{q+1}$) with $k_1\neq k,p$, then there is a (w_{kq},w_{pq}) -path, G-S is connected. Secondly if there are no such vertices, then $(S_{q-1}-w_{k(q-1)}-w_{p(q-1)})\cup (S_{q+1}-w_{k(q+1)}-w_{p(q+1)})\subseteq S$. We have $|S_{q-1}|-2+|S_{q+1}|-2=2m-4, |S|\leq 2m-3$, and $|N_{S_{q-2}}(w_{k(q-1)})\cap N_{S_{q-2}}(w_{p(q-1)})|\geq 1, |N_{S_{q+2}}(w_{k(q+1)})\cap N_{S_{q+2}}(w_{p(q+1)})|\geq 1$. Although we remove the last vertex of S, there is a (w_{kq},w_{pq}) -path in G-S. Hence G-S is also connected.

Case 2. t < q.

Without loss of generality, we assume that 1 < t < q < n. Since w_{kt} and w_{pq} are nonadjacent vertices, $q - t \ge 2$.

Claim: Any connected subgraph H of G-S in $\{S_i, S_{i+1}, \dots, S_{j-1}, S_j\}$, there are edges between H and S_{i-1} or between H and S_{j+1} (If i = 1, then let $S_{i-1} = S_n, S_{i-2} = S_{n-1}, \dots$ And if j = n, then let $S_{j+1} = S_1, S_{j+2} = S_2, \dots$).

We prove it by contradiction. Without loss of generality, we assume that H has at least one vertex in each of $\{S_i, S_{i+1}, \dots, S_{i-1}, S_i\}$.

- (1) H has only one vertex w_{i_1i} and w_{j_1j} in S_i and S_j , respectively. Then w_{i_1i} has no neighbors in S_{i-1} , and w_{j_1j} has no neighbors in S_{j+1} . Since $|N_{S_{i-1}}(w_{i_1i})|+|N_{S_{j+1}}(w_{j_1j})|=2(m-1)>|S|$, a contradiction.
- (2) H has at least two vertices in S_i or S_j , say two vertices w_{j_1j} and w_{j_2j} in S_j . Then w_{j_1j} and w_{j_2j} have no neighbors in S_{j+1} , that is $S_{j+1} \subseteq S$. Let w_{i_1i} be a vertex of H in S_i . Then

 w_{i_1i} has no neighbors in S_{i-1} , that is $N_{S_{i-1}}(w_{i_1i}) \subseteq S$. Thus $|S_{j+1}| + |N_{S_{i-1}}(w_{i_1i})| = 2m - 1 > |S|$, which is impossible.

And w_{kt} has a neighbor in S_{t-1} or S_{t+1} . Otherwise $N(w_{kt}) \subseteq S$, but $|N(w_{kt})| = 2(m-1) > |S|$, which is a contradiction. Then by Claim there is a path P from w_{kt} to some vertex $w_{k'q}$ of S_q . Then by Case 1, there is a path from w_{kt} to w_{pq} , we are done.

Theorem 2.6. Let m, n be integers with $n \ge m \ge 3$, $G = K_m \times C_n$. Then G is super- κ .

Proof. If n=m=3, then by Theorem 2.2 we are done. We can easily verify $K_4 \times C_3$ is super- κ . We assume that $n \geq 5$. Assume that G is not super- κ . There is a vertex set $S \subseteq V(G)$ with |S| = 2(m-1) such that G - S is not connected but has no isolated vertex. Take arbitrary vertices, say w_{kt} and w_{pq} with $t \leq q$, in two components of G - S.

Case 1. t = q.

Assume that 1 < q < n. Since G - S has no isolated vertex, if there is a vertex $w_{k_1k_2} \in S_{q+1}$ or S_{q-1} with $k_1 \neq k, p$, then there is a (w_{kt}, w_{pq}) -path. That is G - S is connected, a contradiction. Thus there are no such vertices. So $(S_{q-1} - w_{k(q-1)} - w_{p(q-1)}) \cup (S_{q+1} - w_{k(q+1)} - w_{p(q+1)}) \subseteq S$, and $|(S_{q-1} - w_{k(q-1)} - w_{p(q-1)}) \cup (S_{q+1} - w_{k(q+1)} - w_{p(q+1)})| = 2m - 4, |S| = 2m - 2$. Notice that G - S has no isolated vertex, even if we remove the last two vertices of S, there is also a (w_{kt}, w_{pq}) -path. That is G - S is connected, which is a contradiction.

Case 2. t < q.

Assume that 1 < t < q < n. Since w_{kt} and w_{pq} are nonadjacent vertices, $q - t \ge 2$.

Claim: Any connected subgraph H of G-S in $\{S_i, S_{i+1}, \dots, S_{j-1}, S_j\}$, there are edges between H and S_{i-1} or between H and S_{j+1} (If i = 1, then let $S_{i-1} = S_n, S_{i-2} = S_{n-1}, \dots$. And if j = n, then let $S_{j+1} = S_1, S_{j+2} = S_2, \dots$).

The proof is similar to the Claim of Lemma 2.5.

Because G - S has no isolated vertex, w_{kt} has a neighbor in S_{t-1} or S_{t+1} . Then by Claim there is a path P from w_{kt} to S_q with $P = w_{kt} \cdots w_{p'q}$. By Case 1, there is also a (w_{kt}, w_{pq}) -path, that is G - S is connected, a contradiction.

References

- [1] N.Alon, E.Lubetzky, Independent set in tensor graph powers, J. Graph Theory 54 (2007) 73-87.
- [2] T.Arika, Y.Shibata, Optimal design of diagnosable systems on networks constructed by graph operations, Electronics and communications in Japan Part 3, Vol.85 (2002) No.2.
- [3] J.A.Bondy, U.S.R.Murty, Graph theory and its application, Academic Press, 1976.
- [4] B. Brešar, W. Imrich, S. Klavžar, B. Zmazek, Hypercubes as direct products, SIAM J. Discrete Math. 18 (2005) 778-786.
- [5] A. Bottreou, Y. M. tivier, Some remarks on the Kronecker product of graphs, Inform. Process. Lett. 68 (1998) 55 -61.

- [6] S.A. Ghozati, A finite automata approach to modeling the cross product of interconnection networks, Mathematical and Computer Modeling 30 (1999) 185 200.
- [7] P. Hell, An Introduction to the Category of Graphs, in: Topics in Graph Theory, Ann. New York Acad. Sci., vol. 328, New York Acad. Sci., New York, 1979, pp. 120 136.
- [8] R.H. Lammprey, B.H. Barnes, Products of graphs and applications, Modeling and Simulation 5 (1974) 1119 1123.
- [9] A.Mamut, E.Vumar, Vertex vulnerability parameters of Kronecker products of complete graphs, Information Processing Letters 106 (2008) 258 262.
- [10] J. Neštřil, Representation of graphs by means of products and their complexity, in: Mathematical Foundations of Computer Science, Lecture Notes in Computer Sci., vol. 118, Springer, Berlin, 1981, pp. 94-102.