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Abstract

A graph is 1-planar if it can be drawn on the plane so that each
edge is crossed by at most one other edge. A k-(p,1)-total labelling
of a graph G is a function f from V(G) U E(G) to the color set
{0,1,--- ,k} such that [f(u) — f(v)] = 1 if wv € E(G), |f(e1) —
f(e2)] = 1ife; and e3 are two adjacent edges in G and |f(u)— f(e)| >
p if the vertex u is incident to the edge e. The minimum k such
that G has a k-(p, 1)-total labelling, denoted by )\;’,'(G'), is called the
{(p, 1)-total labelling number of G. In this paper, we prove that, if a
1-planar graph G satisfies that maximum degree A(G) > 7p+ 1 and
no adjacent triangles in G or maximum degree A(G) > 6p + 3 and
no intersecting triangles in G, then AT (G) < A+2p—2,p > 2.
Key words: 1-planar graph; (p, 1)-total labelling, minimal coun-
terexample, discharging method.

1 Introduction

In the channel assignment problems, different frequencies are assigned to
close transmitters so that they can avoid interference and communication
link failure. Moreover, a sufficient separation of the frequencies assigned to
two close transmitters is also necessary. The L(p,q)-labelling is a popular
graph theoretic model for this problem. An L(p,q)-labelling of a graph
G is a mapping from the set of vertices V(G) to the set of integers Z, =
{0,1,.-- ,k} such that |f(z) — f(y)| = pif z and y are adjacent and |f(z) —
f(y)| =2 q if z and y are at distance 2. The interested readers can refer to
the surveys by Calamoneri [5] and by Yeh [18].
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The notation of (p, 1)-total labelling is due to the L(2, 1)-labelling of the
incidence graph I(G) of a graph G, which is obtained from G by inserting
one vertex of degree 2 on each edge of G. The L(2, 1)-labelling of I(G) can
be considered as another kind of labelling, the so-called (2, 1)-total labelling
of G, which was introduced by Havet and Yu [9, 10] and generalized to the
notion of (p, 1)-total labelling,.

A k-(p, 1)-total labelling of a graph G is a function f from V(G)U E(G)
to the color set {0,1,---,k} such that |f(x) — f(v)| > 1 if ww € E(G),
|f(e1) — f(e2)] = 1 if e; and ey are two adjacent edges in G and |f(u) —
f(e)| > pif the vertex u is incident to the edge e. The minimum k such that
G has a k-(p, 1)-total labelling, denoted by )\;{'(G), is called the (p, 1)-total
labelling number of G. When p = 1, the (1,1)-total labelling is the total
coloring of graphs, which is a classic graph coloring. Among the types of the
total coloring, list total coloring and the neighbor sum distinguishing total
colorings have attracted people’s attention, recently. Interested readers can
refer to [4, 7, 13].

The next step is to look for any Brooks-typed or Vizing-typed upper
bound on the (p, 1)-total labelling number in terms of maximum degree and
p. One can see that for any graph G with maximum degree A(G) satisfies
that AZ(G) > A(G) +p — 1 with p > 1. Meanwhile, we can construct a
(p, 1)-total labelling of G by properly coloring its edges with x'(G) integers
of [0, x'(G) —1), and its vertices with x(G) integers of [x'(G)+p—1, x(G)+
x'(G) + p — 2], where x(G) and x'(G) denote the vertex chromatic number
and the edge chromatic number of G, respectively. Thus, we have the trivial
bound A(G)+p—1 < AT(G) < x(G)+x/(G)+p—2. In [10, 11], Havet and
Yu posed the (p, 1)-Total Labelling Conjecture, which is a natural extension
of the Total Coloring Conjecture.

Conjecture 1. [10, 11] Let G be a graph, Then AT(G) < min{A(G) +
2p-1,2A(G) +p—1}.

If p = 1, this conjecture is Total Coloring Conjecture, which has been
extensively studied in many papers, we give some [12, 16, 17). For p = 2,
the (2, 1)-Total Labelling Conjecture has already been confirmed for all out-
erplanar graphs [6, 8]. In [19], Yu et al. proved that every planar graphs
G with maximum degree A(G) > 12 satisfies that A(G) + 1 < A (G) <
A(G) + 2. In general, the (p,1)-Total Labelling Conjecture has been con-
sidered for planar graphs with high girth and high maximum degree (1] and
graphs with a given maximum average degree [14]. Particularly, Bazzaro,
Montassier and Raspaud proved the following theorem for all planar graphs

[1].

Theorem 2. [1] Let G be a planar graph with maximum degree A. If
A >8p+2andp>2, then /\Z'(G) <A+2p-2.
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Recently, Zhang, Yu and Liu proved the following theorem for all 1-
planar graphs [20]. A graph is 1-planar if it can be drawn on the plane so
that each edge is crossed by at most one other edge. This notion of 1-planar
graphs was introduced by Ringle [15] while trying to simultaneously colour
the vertices and faces of a plane graph G such that any pair of adjacent or
incident elements receive different colors.

Theorem 3. [20] Let p > 2 and let G be a 1-planar graph with maximum
degree A and girth g. If A > 8p+4o0or A > 6p+2 and g > 4, then
)\Z(G) <A+2p-2

For a 1-planar graph G, it is proved that x(G) < 6 by Borodin [3] and
x'(G) = A(G) provided that A(G) > 10 by Zhang et al [21]. Recall that
the trivial upper bound of AT(G) is AT(G) < x(G) + x/(G) + p—2 for every
graph G. So the (p, 1)-total labelling is better for p with A(G) +2p—2 <
A(G) + p + 4, if we want to prove that AT(G) < A(G) + 2p - 2.

In this paper, we obtain a result of 1-planar graphs by proving the
following theorem.

Theorem 4. Let p > 2 be an positive integer and let G be a 1-planar graph
satisfying that the mazimum degree A(G) > 7p-+1 and no adjacent triangles
in G or mazimum degree A(G) > 6p + 3 and no intersecting triangles in
G. Then AI(G) < A(G) +2p—2.

The following theorem is only a technical strengthening of Theorem
4. Without it we would get complications when considering a subgraph
G’ C G such that A(G') < A(G).

Theorem 5. Let M, p be two positive integers and let G be a 1l-planar
graph with mazimum degree A(G) < M. Then )\;’;(G) <M+2p—2 with
p 2 2 in the following cases:

(1) M 2 7p+ 1 and G contains no adjacent triangles;

(2) M > 6p + 3 and G contains no intersecting triangles.

Some notations should be introduced. Two triangles are said to be
adjacent if they have at least one common edge, and intersecting if they
have at least one common vertex. A k-, k*- and k~-vertex (resp. face) is
a vertex (resp. face) of degree k, at least k and at most k, respectively. A
vertex u is called a k-neighbor(resp. k™ -neighbor, k*-neighbor) of a vertex
v if uv € E(G) and dg(u) = k(resp. dg(u) < k, dg(u) > k). For other
undefined notations, we refer the readers to [2].
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2 Structural properties of the minimum coun-
terexample to Theorem 5

Let G be a counterexample to Theorem 5 with |V(G)| + |E(G)| being
minimum. First of all, we give the following lemmas.

Lemma 6. [20] For any edge uv € E(G), if
min{dg(u),dc(v)} < [(M +2p—2)/(2p)},
then dg(u) + de(v) =2 M + 2, otherwise, dg(u) +dg(v) 2 M —2p + 3.

Lemma 7. [20] For any integer k satisfying2 < k < [(M + 2p — 2)/(2p)],
let X = {z € V(G) : dg(z) < k} and Y = Uzex, Ne(z). If Xi # 0, then
there exists o bipartite subgraph My of G with partite sets Xx and Y such
that dp, (z) = 1 for every = € Xy and dp, (y) < k — 1 for every y € Y.

Following the terms of Borodin, and Woodall in [4], in Lemma 7 we call
y the k-master of z if zy € M; and z € X and we call z the k-dependent
of y. From Lemma 7, we can get the following useful lemma.

Lemma 8. [20] Every i-vertex in G has a j-master, where 2 < i < j <
(M + 2p —2)/(2p)], and every vertez in G has at most k—1 k-dependents,
2<k<|(M+2p-2)/(2p)).

The above lemmas are used to state the structural properties due to
the minimality of G. In the following, we will get some other structural
properties due to the 1-planarity of G. From now on, we always assume
that G has been embedded on a plane such that the number of crossings
is as small as possible. As for the notations of 1-planar graphs, we follow
the terms of Zhang and Wu in [21}, which are introduced as follows. The
associated plane graph G* of G is the plane graph that is obtained from G
by turning all crossings of G into new 4-vertices. A vertex in G* is called
false if it is not a vertex of G and true otherwise. Note that every 3-face
in G* is incident with at most one false vertex, so we call a 3-face in G*
false or true according to whether it is incident with a false vertex or not.
In [21]), Zhang and Wu showed some basic properties between a 1-plane
graph and its associated plane graph.

Lemma 9. [21] The following results hold for G and G*:

(1) In G*, any two false vertices are not adjacent.

(2) If there is a 3-face uvwu in G* such that dg(v) = 2, then v and w are
both true vertices.

(3) If a 3-vertez u in G is adjacent to a false vertex v in G*, then uv is
not incident with two 3-faces.
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(4) If a 3-vertez v in G is incident with two 3-faces and adjacent to two
false vertices in G*, then v must also be incident with a 5% -face.
(5) For any 4-vertez u in G, u is incident with at most three false 3-faces.

Now, we focus on the number of 3-faces incident with a vertex v in G*
for any vertex v € V(G), which is denoted by f3(v).

Lemma 10. [22] If G contains no adjacent triangles, then for every 5%-
verter v € V(G), fa(v) < [(4/5)dg(v)] in G*.

Lemma 11. If G contains no intersecting triangles, then for every vertez
v € V(G), we have

(1) If do(v) = 3, then fa(v) < 2;

(2) If dg(v) = 4, then fa{v) < 3;

(3) If dg(v) =5, then f3(v) < 4;

(4) If dg(v) = 6, then f3(v) < 4;

(5) If dg(v) =7, then f3(v) < 5;

(6) If de(v) = 8, then f3(v) < 6;

(7) If dg(v) 2 9, then f3(v) < 4+ |2(da(v) - 6)/3).

Proof. We only need to show that three consecutive adjacent 3-faces inci-
dent with a common vertex can form at least one triangle and five consec-
utive adjacent 3-faces incident with a common vertex can form at least two
triangles. Let a vertex v in G be incident with three consecutive adjacent
3-faces fi, f2 and f3, f; = vv;vipq, 1 = 1,2,3. If f, is a false 3-face, without
loss of generality, assume that v; is a false vertex. By (1) of Lemma 9, v;
and vz are true vertices. Then there is a triangle vviv;. Let a vertex v
in G be incident with five consecutive adjacent 3-faces fi, fa, f3, f4 and
fsy fi = vwvivigy, © = 1,2,3,4,5. By the result above, f), f2 and f3 can
form at least one triangle, say, vv vs. If vy is a true vertex, then there are
two triangles vv;v3 and vvavs. Otherwise, by (1) of Lemma 9, vs is a true
vertex, and it follows that there are two triangles vv;v3 and vvavs. 0O

In order to make our proof much simpler, we need the following lemma.
Before stating the lemma, we divide the false 3-faces into two types: small
3-faces and big 3-faces. A false 3-face in G* is called small if it is incident
with a ([(M + 2p — 2)/(2p)] + 1)~ -vertex and big otherwise.

Lemma 12. If M > Tp+ 1 withp > 2 and G contains no adjacent two
triangles, then for any s-vertez v in V(G), the following results hold:

(1) If s = 5t, then v is incident with at most 2t small false 3-faces in G*;
(2) If s =5t + 1, then v is incident with at most 2t small false 3-faces in
G*;

(3) If s =5t + 2, then v is incident with at most 2t + 1 small false 3-faces
in G*;
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(4) If s = 5t + 3, then v is incident with at most 2t + 2 small false 3-faces
in G*;
(5) If s = 5t + 4, then v is incident with at most 2t + 2 small false 3-faces
in G*.

Proof. By Lemma 10, for any vertex v € V(G), the number of consecutive
adjacent 3-faces incident with a common vertex v is at most four. By
minimality of G and Lemma 6, no two (|(M + 2p — 2)/(2p)] + 1)~ -vertices
are adjacent in G for M > 7p + 1 with p > 2. So there are at least two big
false 3-faces and at most two small false 3-faces in four consecutive adjacent
3-faces incident with a common vertex v in G*. O

3 The proof of Theorem 5

Firstly, we prove (1) of Theorem 5. Suppose that G is a minimum coun-
terexample to it. It is easy to verify that G is connected. Moreover,
6(G) > 2 by Lemma 6. All of the above results also hold in G*. By
Euler’s formula, we have that 3 cy cx)urcx){dex () —4) = —8. Then
we assign an initial charge c¢(z) = dgx(z) — 4 to z for every element
z € V(G*X)U F(G*). Now we redistribute the charges of vertices and
faces in G* according to the following rules and also check that the final
charge c'(z) of every element z € V(G*) U F(G*) is nonnegative. We use
7(z1 — z2) to denote the charge moved from x; to . Since our rules only
move charges around and do not affect the total charges, this leads to a
contradiction to Euler’s formula transformation in final and completes our
proof.

R1. Let f = uvw be a true 3-face in G*. If dgx(u) > 8, then 7(u — f) =
1/2.

R2. Let f = uvw be a false 3-face in G* with a false vertex u.

R2.1. If dgx(w) > dgx(v) and dgx (v) < 5, then 7(v — f) =1/3 and
T(w— f)=2/3.
R2.2. If dgx (w) > dgx(v) > 6, then 7(v = f) =7(w = f) = 1/2.

R3. Let uv be an edge in G such that u is an i-master of v for some
i € {2,3,4}. Then 7(u = v) = 2/3.

R4. Let f be a 5t-face in G* and v be a true 5~-vertex. Then 7(f —
v) =1/3.



Let f € F(G*). If f is a 5F-face, then the number of true 5~ -vertices
incident with f is at most |dgx(f)/2] by Lemma 6, and it follows that
c(f) 2 (dex (f)—4)— |dex(f)/2) x(1/3) > 0 by R4. If f is a 4-face, then
c/(f) = ¢(f) = 0. Suppose that f is a 3-face in G*. If f is a false 3-face,
then f is incident with two true vertices by (1) of Lemma 9, and it follows
that ¢/(f) > (3 — 4) + min{2 x (1/2),1/3 + 2/3} = 0 by R2. If f is a true
3-face, then c¢’(v) > (3 — 4) + 2 x (1/2) = 0 by R1, since a true 3-face is
incident with at least two 8%-vertices by Lemma 6. Hence ¢/(f) > 0 for
every face f € F(G*).

Let v € V(G*). If dgx(v) = k, then we use vy,vs, -+ ,v; to denote
its neighbors in G* in a clockwise order and f; to denote the face incident
with vv; and vy in G*, i = 1,--- , k, where the addition on subscripts
are taken modulo k.

Suppose that dgx (v) = 2. By Lemma 8, (2) of Lemma 9, R1, R2 and
R3, d(v) > 2—-443 x(2/3) = 0. Suppose that dgx(v) = 3. Since
fa(v) £ 2, by Lemma 8 and (4) of Lemma 9, we have ¢/(v) > 3—-4-2x (1/
3)+2x(2/3)+1/3 =0 by R1, R2, R3 and R4. Suppose that dgx (v) = 4
and v is a true 4-vertex. By (5) of Lemma 9, f3(v) < 3. If f3(v) < 2,
then ¢/(v) > 4 -4 -2 x (1/3) + 2/3 = 0 by R1, R2, R3 and Lemma 8.
Otherwise, f3(v) = 3, without loss of generality, we assume that f, fo and
f3 are 3-faces. If f4 is a 4-face, then there exist two adjacent triangles, a
contradiction. So fy is a 5*-face, and it follows that ¢'(v) > 4—4-3 x (1/
3)+2/3+1/3 = 0 by R1, R2, R3, R4 and Lemma 8. Suppose that
dgx (v) = 4 and v is a false 4-vertex. Then by rules, ¢’(v) = c(v) = 4—4 = 0.
Suppose that dgx(v) = 5. Then f3(v) < 4 by Lemma 10. If f3(v) < 3,
then ¢/(v) > 5 — 4 — 3 x (1/3) = 0 by R2. Otherwise, f3(v) = 4, without
loss of generality, we assume that fi, f2, f3 and f; are 3-faces. If fs is
a 4-face, then there exist two adjacent triangles, a contradiction. So fs
is a 5%-face, and it follows that ¢’(v) > 5—-4—-4x (1/3)+1/3 =0 by
R1, R2 and R4. Suppose that dgx(v) = k and 6 < k < 5p — 2. Then
c/(v) 2 k—4—(1/2) x |(4/5)k] > 0 by Lemma 10, R1 and R2. Suppose
that dgx (v) = k and 5p~1 < k < M —3. Then ¢'(v) > k—4—(2/3) x [ (4/
5)k] > 1/3 (k 2 5p—~1 > 9) by Lemma 10, R1 and R2. Suppose that
dgx(v) =k = M — 2. By Lemma 6 and Lemma 8, v has at most three
4-dependents. Then c'(v) > k—4—3 x (2/3) — (2/3) x [(4/5)k] > 1/3
(k> 7p~1 2 13) by Lemma 10, R1 and R2.

Suppose that dgx (v) =k = M ~1. By Lemma 6 and Lemma 8, v has at
most three 4-dependents and at most two 3-dependents. By using R3, the
charge of v is changed to at least k —4 —3 x (2/3) -2 x (2/3) = M — 25/
3. By Lemma 12, if & = 5¢, then ¢/(v) > (5t + 1) — 25/3 — (2t) x (1/
2) — (2t) x (2/3) = (8/3)t - 22/3 > 2/3 (t > 3) by R1 and R2 (¢t > 3 for
5t=M-12>7p2>14,p2>2);if k=541, then ¢/(v) > (5t + 2) — 25/
3—(2t)x(1/2)—(2t) x (2/3) = (8/3)t—19/3 > 5/3 (t > 3) by R1 and R2; if
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k = 5t+2, then ¢/(v) > (5t+3)—25/3—(2t) x (1/2)— (2t +1) x (2/3) = (8/
3)t -6 > 2 (t > 3) by R1 and R2; if k£ = 5t + 3, then c'(v) = (5¢ +4) — 25/
3—(2t) x (1/2) — (2t +2) x (2/3) = (8/3)t—17/3 > 7/3 (t > 3) by R1 and
R2; if k = 5t-+4, then ¢/(v) > (5t+5)—25/3—(2t+1) x (1/2) — (2t +2) x (2/
3) = (8/3)t —31/6 > 1/6 (t > 2) by R1 and R2.

Suppose that dgx(v) = k = M. By Lemma 6 and Lemma 8, v has
at most three 4-dependents, at most two 3-dependents and at most one
2-dependent. After only using R3, the charge of v is changed to at least
k—4—-3x(2/3)—2x(2/3)-2/3 =M - 8. By Lemma 12, if £ = 5t,
then ¢(v) > 5t — 8 — (2t) x (1/2) — (2t) x (2/3) = (8/3)t —8 > 0 (¢t = 3)
by Rl and R2 (t >3 for 5t = M > 7p+1 215, p > 2); if k = 5t + 1, then
c(v) > 5t+1—-8—(2t)x (1/2)—(2t) x (2/3) = (8/3)t—7 > 1 (¢ = 3) by Rl
and R2; if k = 5t + 2, then ¢/(v) > 5t +2 — 8 — (2¢) x (1/2) — (2t +1) x (2/
3) = (8/3)t —20/3 > 4/3 (t > 3) by R1 and R2; if k = 5t + 3, then
cd(v) > 5t+3—8—(2t) x (1/2) — (2t +2) x (2/3) = (8/3)t —19/3 2> 5/3
(t > 3) by R1 and R2; if k = 5t +4, then ¢/(v) > 5t +4—-8— (2t +1) x (1/
2) — (2t +2) x (2/3) = (8/3)t —35/6 > 13/6 (¢t > 3) by R1 and R2.

Now, the final charge on each vertex and each face in G* is nonneg-
ative, which leads to a contradiction to Euler’s formula transformation.
Therefore, we complete our proof of (1) of Theorem 5.

Secondly, we prove (2) of Theorem 5. Euler’s formula transformation,
the initial charge of an element = and each of the discharging rules are the
same to those in the proof of (1), z € V(G*)UF(G*). Since the condition
that no intersecting triangles is much stronger than that no adjacent trian-
gles, the final charge of every 5~-vertex is nonnegative. Moreover, the final
charge of every face is nonnegative by a similar proof as that of Theorem
5(1). We only consider the final charges of 6*-vertices.

Suppose that dgx (v) = k and 6 < k < 4p. Then by Lemma 11, R1 and
R2, ¢/(v) > 6 —4 — (1/2) x 4 = 0 for every 6-vertex v, ¢'(v) 27 —4 - (1/
2) x 5 = 1/2 for every 7-vertex v, ¢/(v) > 8 —4 — (1/2) x 6 =1 for every
8-vertex v and ¢’'(v) > k —4 — (1/2) x (4+ |2(k — 6)/3]) > (2/3)k—4 >0
for every k-vertex v, 9 < k < 4p.

Suppose that dgx(v) = k and 4p+1 < k < M — 3. Then c'(v) 2
k—4—(2/3)x (4+|2(k—6)/3]) > (6/9)k—4>1 (k> 4p+12>9) by Rl,
R2 and Lemma 6. Suppose that dgx(v) = k = M — 2. By Lemma 6 and
Lemma 8, v has at most three 4-dependents. Then ¢/(v) > k-4 -3 x (2/
3) —(2/3) x (4 + [2(k — 6)/3]) > (5/9)k -6 >11/9 (k > 6p+1 > 13) by
Lemma 11, R1, R2 and R3.

Suppose that dgx(v) = k = M — 1. By Lemma 6 and Lemma 8,
v has at most three 4-dependents and at most two 3-dependents. Then
d(v) > k—4-3x(2/3)—2x(2/3)—(2/3) x (4+ |2(k—6)/3]) 2 (5/
9)k — 22/3 > 4/9 (k > 6p + 2 > 14) by Lemma 11, R1, R2 and R3.



Suppose that dgx(v) = £k = M. By Lemma 6 and Lemma 8, v has
at most three 4-dependents, at most two 3-dependents and at most one
2-dependent. Then ¢'(v) > k-4 —3 x (2/3) — 2 x (2/3) — 2/3 — (2/
3)x (44 |2(k—6)/3]) > (5/9)k—82>1/3 (k> 6p+ 3> 15) by Lemma
11, R1, R2 and R3. Hence we have completed the proof of Theorem 5(2).
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