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We refer to the book (4] for graph-theoretical notation and terminology not
described in this paper. In 1974 Goodman and Hedetniemi [6] introduced
the concept of a Hamiltonian walkin a connected graph, defined as a closed
spanning walk of minimum length in the graph. Therefore, for a connected
graph G of order n > 3, the length of a Hamiltonian walk of G is at least
n and is equal to n if and only if G is Hamiltonian. In the 1970s and early
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1980s this concept received considerable attention (see [1, 2, 3, 7, 11, 12
for example).

This concept was studied from a different point of view in 2004 by
Chartrand et al. [5], namely in terms of sequences of vertices of a graph. For
a connected graph G of order n > 3 and a cyclic ordering s : v1,va,...,vn,
vnt1 = vy of V(G) (the vertex set of G), the number d(s) is defined by
d(s) = Yi; d(vi, vi41), where d(vi,vi11) is the distance between v; and
vi+1. The Hamiltonian number h(G) of G is defined in [5] by h(G) =
min{d(s)}, where the minimum is taken over all cyclic orderings s of V'(G).
Thus h(G) > n for every connected graph G of order n > 3 and A(G) =n
if and only if G is Hamiltonian. The Hamiltonian number of a graph G is,
in fact, the length of a Hamiltonian walk in G.

A related concept was introduced in [8]. For a connected graph G of

order n > 2 and a linear ordering s : v1,vs,...,vn of V(G), consider the
number
n—1
d(s) = d(vi,vis1)- (1)
=1

The traceable numbert(G) of G is defined in [8] as t(G) = min{d(s)}, where
the minimum is taken over all linear orderings s of V(G). Thus, if G is a
connected graph of order n > 2, then ¢(G) > n — 1. Furthermore, {(G) =
n—1if and only if G is traceable, that is, G contains a Hamiltonian path. In
fact, the traceable number of a connected graph G is the minimum length of
a spanning walk in G. The Hamiltonian number A(G) and traceable number
t(G) of a connected graph G therefore provide measures of traversability of
G.

For a connected graph G, the upper Hamiltonian number h*(G) is de-
fined also in [5) by h*(G) = max{d(s)}, where the maximum is taken
over all cyclic orderings s of V(G). As expected, the upper traceable num-
ber t*(G) of a nontrivial connected graph G is defined in [9] as t*(G) =
max{d(s)}, where d(s) is described in (1) and the maximum is taken over
all linear orderings s of V(G).

To illustrate the concepts of traceable and upper traceable numbers of
graphs, let us look at the graph G of order 7 in Figure 1. Since G is not
traceable while d(s;) = 7 for the linear ordering s; : vy, vs,...,v7, it follows
that t(G) = 7. On the other hand, the diameter of G is 3 and d(u,v) = 3 if
and only if u € {v;,v7} and v € {v4,vs}. Hence, d(s) contains at most three
terms equal to 3 and at least three terms equal to 1 or 2 for every linear
ordering s of V(G), that is, t¥(G) < 3-3+2-3 = 15. Since d(s2) = 15 for
the linear ordering s3 : v2, v4, v1, s, V7, U3, Vs, it follows that t*(G) = 15.

For a connected graph G, let diam(G) denote the diameter of G. Some
results in (8, 9] are summarized below.
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Figure 1: A graph G

Theorem 1.1 [8, 9] If G is a connected graph of order n > 2, then
n—1<¢G) <t*(G) £ (n-1)diam(G).

Furthermore,
(a) t(G)=1ifn=2 whilen—-1<tG)<2n—4 forn >3 and

#G) = n-1 if and only if G is traceable
T | 2n—4 if and only if G is a triangle or a star.

(b) n—1<t+(G) < [n2/2] -1 and

o= "~ 1 if and only if G is complete
©) =1 |n?/2) -1 if and only if G is a path.

Proposition 1.2 [8, 9] Suppose that G is a nontrivial graph and H is a
connected spanning subgraph of G. Then t(G) < t(H) and t*(G) < t*(H).

By Proposition 1.2 the traceable numbers of a spanning tree of a graph
G are upper bounds of the corresponding traceable numbers of G. For this
reason, the traceable and upper traceable numbers of nontrivial trees are
studied in [8, 9]. For each edge e of a tree T, the component number cn(e)
of e is defined in [5] as the minimum order of a component of ' — e. Let

en(T) = X ecp(r) C0(€)-
Theorem 1.3 (8, 9] If T is a tree of order n > 2, then t(T) = 2n — 2 —

diam(T) and t*(T) = 2¢cn(T) ~ 1. Hence, the upper traceable number of
every nontrivial tree is odd.

By Theorem 1.1
n—1<tG) LtH(G) < [n?/2) -1 (2)

for every connected graph G of order n > 2.

We saw in Theorem 1.1(a) that n—1 < ¢(G) < 2n—4 for every connected
graph G of order n > 3. For each graph G, let n(G) denote its order. The
following realization result appears in [8].



Theorem 1.4 [8] For a pair n, A of positive integers, there exists a graph
G such that (n(G),t(G)) = (n,A) if and only if (n,A) = (2,1) or 2 <
n—1<A<2n-4.

By (2) we see that t(G) < t+(G) < |(¢(G) +1)?/2) — 1 for every non-
trivial connected graph G. A pair (A, B) of positive integers A and B is said
to be realizable if there exists a graph G such that (¢(G),t*(G)) = (A, B),
and forbidden if no such graph exists. Therefore, if (4, B) is a realizable
pair, then

A<B<|(A+1)%/2]-1. (3)

The rest of the paper is organized as follows: We begin Section 2 by
establishing some preliminary results and determining the realizable and
forbidden pairs for 1 < A < 6. In Subsections 2.1 and 2.2, we determine all
the remaining forbidden pairs for A even and odd, respectively. In Section 3
we prove the main Theorem 3.2, which gives a complete description of the
set of realizable pairs, by constructing examples of graphs to show that
all the pairs with A > 7 which have not been shown to be forbidden are
in fact realizable. Furthermore, we establish a result that is parallel to
Theorem 1.4 for upper traceable numbers, that is, we determine the set
of pairs n, B of integers for which there exists a graph whose order and
upper traceable number equal n and B, respectively. We end the paper in
Section 4 with an open problem.

2 Some forbidden and realizable pairs

Consider a pair (A, B) of positive integers with A < B < |(4+1)%/2) —1.
In this section we present a set of forbidden pairs, which will turn out to
be the set of forbidden pairs later. We first state some useful results which
appeared in [9, 10]. Let F,, be a tree of order n > 4 obtained from a
path (vi,v2,...,Un—1) of order n — 1 by attaching an end-vertex vp at vs.
Furthermore, let F,, = F,, + vov;.

Theorem 2.1 [9] For every integer n > 3, t+(Cy) = [(n — 1)%/2].

Theorem 2.2 [10] If G is a connected graph of order n, then t*(G) #
n2/2) —2 if n > 4 and t1(G) # |n?/2] —4 if n > 6. Also t*(G) =
|n2/2] — 3 if and only if G € {Fy, F}}.

We begin by studying those pairs (A4, B) with A < 4. In order to do
so let us examine the traceable and upper traceable numbers of connected
graphs having small order.

If (1, B) is realizable, then B = 1 by (3) and observe that ¢{(K2) =
t*(K3) = 1. Similarly, if (2, B) is realizable, then B = 2,3. If G is a
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graph having traceable number 2, then G is either K3 or P;. Observe that
t+(K3) = 2 while t+(P3) =3

If (3, B) is realizable, then 3 < B < 7 by (3). If G is a graph whose
traceable number equals 3, then G must be a traceable graph of order 4
and so G € {K4,Ki,1,2,C4, F}, P} and, furthermore, t*(G) # 6 by The-
orem 2.2. Since t*(K,) = 3, t+(Ky,1,2) = 4, t¥(Cy) = t*(F)) = 5, and
t*(Ps) =7, it follows that (3, B) is realizable if and only if 3 < B < 7 and
B #6.

If (4, B) is realizable, then 4 < B < 11 by (3). If G is a graph whose
traceable number equals 4, then either G = K 3 (= Fy) or G is a traceable
graph of order 5. It then follows from Theorem 2.2 that t* (K3 3) =5 and
t*(G) # 10. All traceable graphs of order 5 are shown in Figure 2, where
each graph G is labeled by t*(G). Therefore, (4, B) is realizable if and only

& %
DWW
N <> W I

WAGLOAY
> =< w

Figure 2: Graphs G of order 5§ with ¢{(G) = 4

@«

©o

if4< B <11 and B # 10.

For 1 < A < 4 we have seen that the pair (4,B) with A < B <
|(A +1)?/2]—1is forbidden if and only if (4, B) € {(3,6), (4,10)}. We next
therefore study forbidden pairs (4, B) with 5 < A< B < |[(A+1)?/2] - 1.
More specifically, we show that

if |[A%2/2) +2 < B < |(A+1)?] —2 and B is even, 4
then (A, B) is a forbidden pair. (4)

Let A > 5 and [A%/2] +2 < B < |(A+1)?/2] — 2 and suppose that G
is a graph for which (¢(G),t*(G)) = (A,B). If G is connected but not
traceable, then n(G) < A and so B < |A%/2| — 1 by Theorem 1.1(b) (or
by (2)), which is impossible since B > |A2%/2] + 2. Hence, G must be
traceable and so n(G) = A+1 > 6. Furthermore, G is not Hamiltonian by
Proposition 1.2 and Theorem 2.1. The following is a direct consequence of
Theorem 2.2.
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Theorem 2.3 The pairs (A, [(A +1)%/2] —4) and (4, [(A+1)%/2] - 2)
are forbidden pairs for each integer A > 5.

Note that for A = 5, 6 the statement (4) immediately follows by Theo-
rem 2.3. Thus, if (5, B) is realizable, then 5= A< B < [(A+1)?/2] -1=
17 and B # 14,16. Similarly, if (6, B) is realizable, then 6 = A < B <
L(A +1)2/2] -1 = 23 and B # 20, 22. Furthermore, one can verify that the
converse of each of the two statements also holds, that is, (5, B) is realizable
ifand only if 5 < B < 17 and B # 14, 16 while (6, B) is realizable if and only
if 6 < B < 23 and B # 20,22. To see this, let C441 = (v1,v2,...,V441,v1)
be an (A + 1)-cycle. For A = 5 consider the graphs Gg (§ < B < 17,
B # 14,16) such that Gg = Pg_4U (10— B)K, for 5 < B <10, G1; =
Ce + vyv3, G12 = Cs + v1v4, G13 = Cg, Gi5 = (Cs — v196) + vavs (= Fg),
and G17 = Cs — v 06 (= Ps). Then each Gp is a traceable graph of order 6
whose upper traceable number equals B. Similarly, for A = 6 consider the
graphs Gp (6 < B < 23, B # 20,22) such that Gg = Pg_s U (12 - B)K,
for 6 < B < 12, G13 = C7 + v1v3 + v1v4 + v2v3, G14 = C7 + v1v4 + v2vs,
G5 = C7 + v1v3 + n1vs, Gis = C7 + vivg, Gir = Cr + v1v3, G1s = C7,
Gio = (C7 — v1v7) + vav7, Ga1 = (C7r — v1vr) + vsv7 (= F7), and Gaz =
C7 — viv7 (= P;). Then each Gp is a traceable graph of order 7 whose
upper traceable number equals B.

Remark 2.4 Note that at this stage we have shown that for1 < A <6
all pairs (A, B) with A < B < | A%/2] are realizable and all pairs (A, B)
with [A%2/2]|+1 < B < |(A+1)?/2] —1 and B odd are realizable. We have
also shown that all pairs (A, B) with |[A%2/2) +1 < B < [(A+1)%/2] -1
and B even are forbidden.

Finally let us assume that A > 7. Recall that if G is a graph whose
traceable and upper traceable numbers are A and B, respectively, where
A%2/2] +2 < B < | (A +1)?/2] — 2, then G is a traceable graph of order
A+1. Since the upper traceable number of a spanning tree of G is an upper
bound for ¢*(G), it is useful to study the properties of trees of order A +1
having upper traceable number greater than or equal to t*(G) = B. In
particular, recall that the upper traceable number of every nontrivial tree
is odd and so |A%2/2] +3 < t+(T) < |(A+1)%/2] — 1 if T is a spanning
tree of G whose upper traceable number is at least [A2/2] + 2.

Before continuing we make the following observation on the component
numbers of edges in a tree.

Observation 2.5 IfT is a nontrivial tree, then no three consecutive edges
in T have the same component number. Also, the subgraph induced by the
set of edges having the mazimum component number is connected. There-
fore, the subgraph induced by the set of edges having the mazimum compo-
nent number is isomorphic to a star.
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2.1 Forbidden pairs (A, B) where A is even

In this subsection we consider those pairs (A4, B) with 42/2+2 < B <
[(A+1)2/2] — 2, where A > 8 and is even. We first state the following
observation without a proof.

Observation 2.6 If T is a tree of odd order A+ 1 > 9 with t*(T) >
A?/2+ 3, then there are four consecutive edges ey, ez, e3, and eq such that
cn(e;) = A/2 — 1, cn(e) = cn(eg) = A/2, and cn(eq) € {A/2-2,A/2 —
1}. In particular, if cn(es) = A/2 — 2, then T is constructed from a path
(v1,v2,...,v4) of order A by adding a pendant edge at v 2. We denote
this tree by T.

The following is an immediate consequence of Observation 2.6.

Lemma 2.7 IfT is a tree of odd order A+1 > 9 with t+(T') > A?/2+ 3,
then either (1) T = T} or (ii) T is obtained from two vertez-disjoint trees
T\ and T> of order A/2 by adding a new vertez x and joining z to vy and
ve, where v; is an end-vertez of T; for i = 1,2. In particular, if (ii) occurs,
then cn{zv;) = A/2 and degz = degv; = 2 for i = 1,2. That is, the
vertices incident with an edge whose component number equals A/2 must
have degree 2.

Let S4 be the set of trees of odd order A+ 1 > 9 satisfying either (i) or
(ii) described in Lemma 2.7.

Lemma 2.8 IfG is a connected graph of odd order A+1 > 9 with t*(G) >
A?/2 + 2, then G contains a cut-vertex = having degree 2 such that G — z
consists of two components each of which contains A/2 vertices.

Proof. Let T be a spanning tree of G. Then ¢t+(T") > t*(G), implying
that T € S4 by Lemma 2.7. In particular, if G is a tree, then the result
immediately follows. Thus, suppose that G is not a tree. We consider two
cases according to whether T} is a spanning tree of G or not.

Case 1. G contains a spanning tree T = T5. Let T be a span-
ning tree of G constructed from two vertex-disjoint paths (u1,uz,...,u4/2)
and (wy,w2,...,W4/2), both isomorphic to P4/;, by adding a new ver-
tex z and joining z to uz and w;. Let U = {uy,us,...,ua/2} and W =
{wh wa,..., wA/?}'

We first show that degg z = 2. If uyz € E(G), then T" = (T + uiz) —
ujuz is a spanning tree of G. However then, wiz is the only edge whose
component number equals A/2 and so T’ ¢ S4, which is a contradiction.
If uz € E(G) for some v € U — {u;,uz}, then T/ = (T + uz) — ugu3 is a
spanning tree of G but T” ¢ S4 since cngv(e) = A/2 if and only if e = unz
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and this is impossible. Similarly, if wz € E(G) for some w € W — {w},
then it can be verified that T’ = (T + wz) — wiws is a spanning tree of G
not belonging to S4, which again cannot occur. Therefore, deggz = 2 as
claimed.

We next show that if u € U and w € W, then uw ¢ E(G). Assume, to
the contrary, that there exists an edge e = uw for some v € U and w € W.
Consider

(T +e) — ux if e = uw where u € {u1,u4/2}
andwe W — {'wA/g}
=] (T+e)—ww ife=wway2
- (T + e) —wa 2-1WA/2 ife= Up/2WA/2
(T +e)—uz if e = uw where u € U — {u1,u4,2}
andweW

and observe that T” is a spanning tree of G not belonging to S4, which is
impossible.

Case 2. No spanning tree of G is isomorphic to T}. Let T be a spanning
tree of G. By Lemma 2.7 we may assume that there exist two vertex-disjoint
trees Ty and T3 of order A/2 such that T is obtained from T} and T> by
adding a new vertex x and joining z to u; and wj, where u; is an end-vertex
in T} and w, is an end-vertex in To. Let V(T1) = U = {u1,us,...,u4/2}
and V(T2) = W = {wy,wa,...,wa/2}. Furthermore, let N7(u;) = {u2, z}
and Np(w;) = {we,z}.

First we show that deggz = 2. If not, then we may assume, without
loss of generality, that uz € E(G) for some u € U — {u;}. However then
T' = (T + uz) — ujug is a spanning tree of G, where cnp (w1z) = A/2
and degyvz = 3. Since T ¥ T by assumption, T/ ¢ S4. This is a
contradiction, concluding that degg z = 2.

Next we show that if u € U and w € W, then vw ¢ E(G). Assume, to
the contrary, that e = uw € E(G) for some v € U and w € W.

If at least one of u and w is not an end-vertex in T, say degpu = 2, then
let T' = (T + €) — uyz. Then T’ must be a spanning tree of G belonging
to Sa — {T4}. However, cnz(e) = A/2 and degy u > 3, which contradicts
Lemma 2.7.

Therefore, suppose that degru = degyrw = 1 and consider the graph
H=T+eCG. Then H contains a cycle C containing the vertices in the
set {uy, u2, u, w1, we, w,z}. Since t+(G) > A?/2+2, it follows that C is not
a Hamiltonian cycle of G, implying that there exists a vertex v belonging
to C whose degree in H is at least 3. Without loss of generality suppose
that v € U. Also, let d = dr(u,z) and let

C=(vw==1zv=u1,V2 =U2...,V = U,

Vdpl = W, Vd42, .-, UN—2 = W2, UN_1 = W1,UN = T)
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where N is the length of C. Then there exists a positive integer k such
that deggyv; = 2 for 0 < ¢ < k and degy vk+1 > 3. By assumption
1<k<d-2<A/2-3.

We claim that deggpvays = 2 for 1 < i < k. First observe that
degy var1 = degyw = 2. If k > 2, then assume that degy vy4i = 2
for some i with 1 < i < k — 1 and consider the tree T' = H — v;v;41,
which must belong to S4 — {T;}. Then cnz/(vativayi+1) = A/2 and so
degy vg4i+1 = 2 by Lemma 2.7, which in turn implies that degy vayit1 =
2. Hence, degy vatyi = 2 for 1 < i < k by induction. (Also note that
vari EWfor1<i<ksincek<A/2-3.)

Now for the tree T” = H — vg1kVd+k+1 We have cnpw (vives1) = A/2.
However, this is a contradiction since degpw vk+1 = degy ve+1 = 3 and T
is a spanning tree of G. n

We are now prepared to present the following result.

Proposition 2.9 If G is a connected graph of odd order A +1 > 9 with
t+(G) > A?/2 + 2, then t*(G) is odd. That is, if A2/2+2 < B <
[(A +1)%/2) — 2 and B is even, then (A, B) is a forbidden pair.

Proof. Let x be the cut-vertex of G whose degree is 2 such that deleting
z from G results in two components each of which contains A/2 vertices.
Let N(z) = {u1,u2} and G — z = G; U Gz, where G; and G5 are the
two components of G — z and u; € V(G;) for i = 1,2. Furthermore, let
T; be the spanning tree of G; such that dr,(u;,v) = dg,(u;,v) for every
v € V(G;) ~ {u;} for i = 1,2. Therefore, the tree T obtained from T}
and T, by adding the vertex z and the edges u;z and usz is a spanning
tree of G and dg(u,v) = dr(u,v) if {u,v} € V(G1) or {u,v} € V(G2).
Also, there exists a linear ordering s : v1,v2,...,v441 of V(T') such that
dr(s) = t*(T), where vy = z and v; € V(T}) if and only if i = j (mod 2)
for 2 < i< A+1and j =1,2. Then dg(vi,vit1) = dr(vi,vit1) for
1 <i< Aand so t*(G) > dg(s) = dr(s) = t*(T), that is, t+(G) = tT(T).
Hence t*(G) must be odd.

2.2 Forbidden pairs (A, B) where A is odd

Next we consider those pairs (A4, B) with [A2/2|+2 < B < |(A +1)?/2]-2,
where A > 7 and is odd. We first present two observations.

Observation 2.10 IfT is a tree of order A+1 = 8 witht+(T) > | A%/2]+
3 =27, then T is isomorphic to one of the four trees shown in Figure 3.

Observation 2.11 If T is a tree of even order A+ 1 > 10 with t+(T) >
|A2/2] + 3, then there are four consecutive edges ey, ea, es, and eq such
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Figure 3: Four trees of order 8

that cn(e1) = |A/2) — 1, en(eg) = |A/2], cn(es) = [A/2], and cn(eq) €
{LA/2] = 1,1A/2]}. In particular, if cn(eq) = |A/2] — 1, then T is con-
structed from a path (vi,vs,...,v4) of order A by adding a pendant edge
at v as2)- We denote this tree by Tj.

Observation 2.11 implies the following.

Lemma 2.12 If T is a tree of even order A+ 1 > 10 with t*(T) >
|A2/2] + 3, then either (i) T & T} or (ii) T is obtained from two vertez-
disjoint trees Ty and T of order |A/2] and [A/2], respectively, by adding
a new vertez T and joining T to vy and vy, where v; is an end-verter of
T; for i = 1,2. In particular, if (i) occurs, then cn(voz) = [A/2] and
degz =degv; =2 fori=1,2.

Let Sa be the set of trees of even order A+1 > 10 satisfying either (i) or
(i) described in Lemma 2.12. Also, let S7 be the set of four trees of order 8
in Figure 3. The following lemma is parallel to Lemma 2.8 presented in the
previous subsection. We only present a proof for A = 7 since for A > 9 the
argument is almost identical to that for A =7 and Lemma 2.8.

Lemma 2.13 If G is a connected graph of even order A+ 1 > 8 with
tT(G) > | A%/2] + 2, then G contains a bridge e such that G — e consists
of two components each of which contains [A/2] vertices.

Proof. We only verify the result for A = 7. If G is a graph of order 8
with t¥(G) > 26, then every spanning tree of G must belong to S;. In
particular, the result is immediate if G is a tree.

If G is not a tree, then let T € S; be a spanning tree of G and assume,
to the contrary, that G — e is connected, where e is the edge in T shown
in Figure 3. Then one can verify that either (i) G is Hamiltonian, (ii) G
contains a spanning tree not belonging to Sy, or (iii) G contains one of H;
and H, in Figure 4 as a spanning subgraph. Since (i) and (ii) are clearly
impossible, let us assume that (iii) occurs.

If Hy C G, then 26 < t+(G) < t*(H,). Observe that d(u,v) =5 (=
diam(H;)) if and only if {u,v} = {v1,v4} and d(u,v) = 4 if and only if
{u,v} € {{v1,vs}, {v2,v4a}}, implying that t*(H,) <5-14+4-2+3-4 =25,
which is a contradiction. Thus, suppose that H, € G and so t*(H,) > 26.
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Figure 4: Graphs H; and H>

Let s be a linear ordering of V' (H3) such that dg, (s) = t*(H2) and suppose
that v € V(H2) — {v;} is a vertex that appears immediately before or after
vy in s. If v € {v3, v4,vs}, then consider the tree T = Hy —v,v3 and observe
that dr(vi,v) = dy,(v1,v) + 2. Therefore, t+(T) > dp(s) > du,(s) +2 >
28, which is a contradiction since t*(T") = 27. Hence, we may assume that
vy is the initial vertex in s followed by vo. However, this in turn implies
that t+(H2) = dy,(s) < 2+ t*(Hz — v1) = 25. Therefore, (iii) is also
impossible.

We are now prepared to state a result for connected graphs of even order

A+1 > 8, which corresponds to Proposition 2.9 in the previous subsection.
We omit its proof.

Proposition 2.14 If G is a connected graph of even order A+ 1 > 8 with
tt(G) > |A?%/2] + 2, then t*(G) is odd. That is, if |[A%/2] +2 < B <
[(A+1)2/2] — 2 and B is even, then (A, B) is a forbidden pair.

Combining Propositions 2.9 and 2.14 with (3), we now have the follow-
ing.

Theorem 2.15 Suppose that A and B are positive integers. If (A, B) is
a realizable pair, then either (I) A < B < | A%/2] or (II) |A%2/2]+1<B<
[(A+1)2/2] — 1 and B is odd.

3 A realization result

We finally determine the set of realizable pairs by verifying that the converse
of Theorem 2.15 also holds. Before doing this we present some additional
definitions and notation.

For a fixed integer k > 2, define fi : {1,2,...,k -1} = N by fi(z) =
kx — (*1'). Observe that fi is strictly increasing on the domain. If k > 3,
then for each integer p with k < p < (%) let g be the unique integer
(1 <q < k—2) such that fu(q) < p < fi(g+1) and let = p — fi(g).
Hence,1<r<k-—q-1.

Definition 3.1 Let k and p be integers withk >2 andk—1<p < ('2°)
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o Ifp=1Fk-1, then let Ty , be a star of order k rooted at the central
vertez v; whose neighbors are uy,ua,...,ux—1. Let Gk p be the graph
obtained from Ty p by joining u; to uiyy for 1 <i<k—2(ifk>3).

e If3<k<p< ('5), then let Ty p be a tree of order k, rooted at
vy, constructed from a path (vy,vs,...,vq) and the vertices in the set
{u1,u2,. .., Uk—g—r} U {w1,wa,...,w,} by joining each u; to v, and
each w; to uy. Let Gip be the graph obtained from Ty , by joining u;
touiyy for1 <i<k—gqg-—r (ifk 2 q+r+2) and w; to wiyy for
1<i<r—1(ifr=2).

In each case the vertez vy is called the root of Gk p.

In Figure 5 the graphs G, (4 < p < 10) are shown, where the root of
each graph is indicated by a hollow vertex.

Gs. A Gss Gs.» Gs.1o

(q=r=1) (g=2,r=1) (g=3,r=1)
Gs.s

1,r=2
(q=1,r=2) G

(q=2,r=2)

Gsg
(q=1,r=3)

Figure 5: Graphs Gs, for 4 <p <10

We finally prove the main theorem in this paper.

Theorem 3.2 For a pair A, B of positive integers, there ezists a graph G
such that (¢(G),t*(G)) = (A, B) if and only if either (I) A < B < | A%/2]
or (II) |A%/2| +1 < B < |(A+1)%/2) —1 and B is odd.

Proof. By Remark 2.4 the statement holds for 1 < A < 6. Thus, we only
prove the converse of Theorem 2.15 for A > 7 by showing that for each B
satisfying either (I) or (II) there exists a traceable graph Gp of order A+1
having upper traceable number B.

If A < B < 24, then let P = (v1,vs,...,98-4+1) be a path and
consider the graph G of order A+1 such that G g consists of P and 2A—-B
additional isolated vertices. Then G is traceable and t*(Gg) > d(s¢) = B
where sp is a linear ordering of V(Gpg) whose first B — A + 1 terms are
v1,V2,...,VB-a+1. Also, diam(Gp) = 2 and d¢,(u,v) = 2 if and only if
uv € E(P). Therefore, d(s) < 2- (B - A) +1-(2A - B) = B for every
linear ordering s of V(Gpg), implying that t*(Gg) = B
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For B > 2A + 1 we consider two cases according to the parity of A,
beginning with assuming that A is odd.

Case 1. A is odd.

Subcase 1.1. B is even. If 2A+2 < B <3A-5,then B=2A+ 2
for some positive integer ¢ < |A/2} — 2. Let Hy, Hs, and H3 be pair-
wise vertex-disjoint graphs where Hy = K|4/9)_¢,4/2]-¢ Whose partite
sets are {vy,v2,. ..,V a/2)-¢} and {vra/21-6,V[a/21-41,- -+ Va—2¢}, H2 &
Key1 with V(Hp) = {ul,u2,...,Ug+1}, and Hz = K, with V(H3) =
{w1,wa,...,we}. Then Gp is constructed from H;, Hy, and H3 by join-
ing (i) every vertex of Hj to v; and v4—_2¢ and (ii) every vertex of H3 to
vja/2)—¢ and vr4/2)—¢- Hence, Gp is a traceable graph of order A + 1 and

t*(Gg) = d(so) = B, where
S0 V1,V2,...,V 4/2)-¢ UL, WL, U2, W2, ..., UL, We, UL+,
Vras21—-es V[A/2]1 =41y <+ VA-2¢.
Note that d(u,v) = 3 (= diam(Gp)) if and only if v € V(H3) and v €
V(H3). Therefore, d(s) <3.2(+2- (A — 2¢) = B for every linear ordering

s of V(Gg), implying that t*(Gp) = B.
IfB=3A-3,thenfor1<i<6let

{vin} ifi#2,5
Vi=4q {v21,v2,2,...,v2,4/2} ifi=2
{vs,1,5,2,.--,V5,|472)—2} ifi=5

be pairwise disjoint sets of vertices such that for each i the vertices in
V; form a complete graph. Then Gp is the graph with V(Gg) = U%_,V;
obtained by joining every vertex in V; to every vertexin V;4; for 1 <i <6
(where V7 = V1). Hence Gp is a Hamiltonian graph of order A + 1 and
t+(Gp) > d(so) = B, where

S0 ¢ U2,1,75,1,V2,2,V5,2,.--,V2,(A/2) -2, V5,|A/2] 25 V2,| A/2] -1

V4,1, V1,1, 3,1, V6,1, V2, A/2)-

For every linear ordering s of V(Gpg), observe that d(s) contains at most
A — 3 terms equal to 3 (= diam(Gpg)) and so d(s) <3-(A—-3)+2-3=B.
Thus, t*(Gg) = B.

Next suppose that B = 34 — 1. For A = 7 one can verify that the
graph obtained from a 7-cycle (vi,v2,...,v7,v1) by adding a new vertex
vg and joining vs to v; and v, is traceable and its upper traceable number
equals 20. For A > 9 let Gg be the graph obtained from an (A — 1)-cycle
(v1,v2,...,v4—1,v1) by adding two new vertices v4 and v44; and joining
vA to v2i—; and va41 to vy for 1 < i < |A/2]. Then Gp is a Hamiltonian
graph of order A + 1 and t+(Gg) = d(so) = B, where

80 : V1,V8,V3,V8,...,V4-6,VA-1,VA—-4,V2,VA-2,V4,V4,VA+1.
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Observe also that d(s) < 3A = B + 1 for every linear ordering s of V(Gp)
since if d(v;,v;) = 3 (= diam(Gpg)) and {i,j} N {A,A + 1} # 0, then
{i,3} = {A,A+1}. Hence, t*(Gp) =B

If3A+1< B <4A -6, then B =3A+2¢—1 for some positive integer
£<[A/2] -3. For1<i<8let

{via} if 7 is even
V;= {vin,vi2,. .., Vie} ifi=1,5
{vi1, v, Ui ay2) -1} 1=3,7

be pairwise disjoint sets of vertices such that the vertices in V; form a
complete graph for each i. Construct Gg with V(GB) = U8, V; by joining
every vertex in V; to every vertex in V4 for 1 < i < 8 (where V5 = ;)
as well as joining v4,1 and ve,;. Hence Gp is a Hamiltonian graph of order
A+1and t*(Gp) > d(s0) = B, where

80 ¢ V4,1,V8,1,¥3,1,V7,1,V3,2,V7,2, .. ., U3, A/2] -1, V7, A/2) —t~1)
V2,1, V6,1, V1,1, V5,1, V1,2, V5,2, . . . , U1,¢, U5,¢-

On the other hand, d(u,v) = 4 (= diam(Gp)) if and only if u € V; and
. v € V5. Therefore, d(s) < 4-(20—-1)+3-(A—2¢+1) = B for every linear
ordering s of V(Gg) and so t+(Gp) = B.

Finally, suppose that 44 — 4 < B < | A%/2]. Let H; and H; be vertex-
disjoint graphs such that

i, = { CGrasaa- if4A-4< B<(A2+8A4-9)/4
YZ Crasaiar-1yys i (A +84-9)/4+2< B < [A?)2)
Hzg{ Gra/21,B/2— A+1 lf4A—4SBS(A2+8A—9)/4
Gras2,B/2—(a2-1ys  if (A>+8A-9)/4+2< B<|A?/2)

whose roots are u; and us, respectively. Observe that «; is an end-vertex

and so let u} be the neighbor of u; for i = 1,2. Construct Gg from H; and
H, by adding the three edges ujusz, ujuj, and ujus and observe that Gp
is a traceable graph of order A+ 1. Furthermore, d(s) = B for every linear
ordering s : v,v2,...,v441 of V(Gp) such that v; € V(H;) if and only if
i=37 (mod2)for1<i<A+1andj=1,2 with vy =u; and va+) = uo.
Hence, t*(Gg) > B.

Let T7 and T2 be spanning trees of Hy = G, p, and Hy = Gy, p,,
respectively, such that T; &2 Ty, ,,, for i = 1,2. Then the tree T obtained
from T, and T: by adding the edges ujuz and ujuj and deleting the edge
uqu) is a spanning tree of Gg. One can verify that cn(T) = B/2 41 and
so t¥(Gg) < tH(T) = B + 1. Assume, to the contrary, that t*(Gp) =
B + 1 and let sp be a linear ordering of V(Gpg) with dgy(s0) = B+ 1.
Note that dg,(u,v) < dr(u,v) for every u,v € V(Gg). In particular,
dep(u2,v) = dr(ug,v) if and only if v = u;. Therefore, we may assume
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that the initial term of sg is uy followed by u;. Now consider the tree
T’ = T — up and observe that cnyv(e) = cnr(e) for every e € E(T’) and
so en(T”) = cn(T) — 1, that is, t¥(7¥) = B — 1. Furthermore, let s be
the linear ordering obtained by deleting us from sp and observe that s is
a linear ordering of V(T”). However then, B+ 1 = d(sp) = d(s§) + 1 <
t¥(T") + 1 < B, a contradiction. Therefore, t+(Gg) = B as claimed.
Subcase 1.2. B is odd. Let B be an odd integer such that 24+1 < B <
(A+1)2/2 — 1. Let H; and H, be vertex-disjoint graphs such that

GI’B/Z]—A+1,|'B/2'|—A if2A+1<B<3A-2

Hix d Grasam if 34 < B < (A2 +8A +3)/4
e Gra/a1.(a2-1)/8 if (A24+84+3)/4+2<B<
(A+1)2%/2-1
Gaa-1B/21,24~(B/2] -1 if2A+1<B<34-2
Hp = Gra/m.Bs2)-4 if3A< B< (A’ +8A+3)/4
T ) Grasm.(B/2—(ar+aasyss  f (A2 +8A+3)/4+2<B<
(A+1)%/2-1

whose roots are u; and us, respectively. Let Gg be the traceable graph of
order A+1 obtained from H; and H; by joining the two roots. Furthermore,
t*(GB) > B since d(s) = B for every linear ordering s : v1,v2,...,va41 Of
V(GB) such that v; € V(H;) ifand only if 1 <i < A+1and j = 1,2 with
m =u and VA4l = Uz,

On the other hand, let T} and T> be spanning tree of H; = Gk, 5, and
Hj = Gy, p,, respectively, such that T; 2 Ty, . for i = 1,2. Then the tree
T obtained from T} and T3 by joining the two roots is a spanning tree of
Gp. One can also verify that cn(T") = [B/2] and so t*(T') = B, implying
that t+(Gg) = B.

Case 2. A is even. We only describe how the graph Gp is constructed
for each B since the proof verifying that t*(Gg) = B is almost identical to
those presented in Case 1.

Subcase 2.1. B is even. If 2A+2 < B < 3A — 4, then B = 24 + 2¢ for
some positive integer £ < A/2 — 2. Let Hy, Hy, and Hj be pairwise vertex-
disjoint graphs where Hy = K /3¢ a/2—¢) Ha & Kgy, and H3 & K,. Let
(v1,v2,v3,v4,v1) be a 4-cycle in H; and obtain Gp from H;, H,, and Hs
by joining (i) every vertex of H, to v; and v, and (ii) every vertex of Hs
to va and v4.

If B=3A-2, then let V},V%,..., Vs be pairwise disjoint sets of vertices
such that |Vo| = A/2 -1, |V5] = A/2—2,and |V = 1if1 <i < 6 and
i # 2,5. Also, suppose that the vertices in V; form a complete graph for
each i. Then Gp is the graph with V(Gp) = US_,V; obtained by joining
every vertex in V; to every vertex in Vi4; for 1 < i < 6 (where V7 = }).

If 34 < B < 4A — 6, then B = 3A + 2¢ for some nonnegative integer
£ < A/2-3. Let 1, Va,..., V%, V{ be pairwise disjoint sets of vertices such
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that [V3| = 4/2-2, |Vs|=A/2—-£€-2,|V;| =1if1 <i< 7 andi#3,6,
and |V{| = ¢. Furthermore, the vertices in each V; (1 < i < 7) form a
complete graph as well as the vertices in Vg U Vg form a complete graph.
Then Gp is the graph with V(Gp) = (Ul_,V;) U V{ obtained by joining
every vertex in V; to every vertex in Vi4; for 1 < i <7 (where Vg = ).

If 44 — 4 < B < A2/2, then let H; and Ha be vertex-disjoint graphs
such that

oo~ [ Garza-a if4A—4 < B < (A?+ 104 — 16)/4
Y=\ Gajz,Br2-(as+24y8  if (A*+10A—16)/4+2< B < A%/2
Ho o | Gamreiz-as2  f4A-4<B< (A% +10A - 16)/4
2=\ Gajzsr(az42ay8  if (A2 +10A - 16)/4+2 < B < A?/2

whose roots are u; and ug, respectively. Since u; is an end-vertex let u}
be the neighbor of u; for i = 1,2 and construct Gp from H; and Hj by
adding the three edges ujug, ujuj, and ujus.

Subcase 2.2. B is odd. Let B be an odd integer such that 2A+1 < B <

[(A+1)2/2] ~ 1 and consider vertex-disjoint graphs H, and H3 given by

G[B/2’I-A+1,|‘B/2‘|—A if2A+1<B<3A-3

H.o ) Garalsrzi-a if34— 1< B < (A% +6A+4)/4

Y=Y Gajaar-24y8 if (A2+6A+4)/4+2<B<
[(A+1)%/2) -1

Goa-rB/21,24-18/21-1 = f2A+1<B<3A-3

Hy Gaja+1,4/241 ifSA—1<B< (A’ +6A+4)/4
Gas2+1.1B/21-(a2424)8 i (A2 +6A+4)/4+2<B<

[(A+1)?%/2) -1

Then the graph Gp is constructed from H; and H; by joining the two
roots. =

Recall that for a pair n, A of positive integers, there exists a graph G
such that (n(G),t(G)) = (n, A) if and only if (n,A) =(2,1)or2<n-1<
A < 2n—4. Since the graphs G g presented in the proof of Theorem 3.2 are
traceable, now we have a parallel result for the order and upper traceable
number of graphs, which we state as follows.

Corollary 3.3 For a pair n, B of positive integers, there ezists a graph G
such that (n(G),t*(G)) = (n, B) if and only if either I) 1<n—-1< B <
l(n—1)2/2) or (II) [(n—1)%/2] +1 < B < |n?/2] — 1 and B is odd.

4 A related open question

We have seen that if G is a connected graph of order n > 2, thenn — 1 <
t(G) < tH(G) < |n?%/2] — 1. A triple (n, A, B) of positive integers is said
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to be realizable if there exists a graph G of order n with ¢{(G) = A and
t*(G) = B. Therefore, if (n, A, B) is a realizable triple, then 1 <n—1<
A<B<|n?/2] -1

By the proof of Theorem 3.2, we see that a triple of the form (n,n—1, B)
is realizable if and only if n > 2 and either (i) n —1 < B < [(n —1)%/2]
or (i) [(n—1)%2/2) +1 < B < |n?/2) — 1 and B is odd. Also, it is
straightforward to determine the realizable triples for small values of n. If
S, denotes the set of realizable triples whose first entry equals n > 2, then

S2 ={(2,1,1)}

53 ={(3,2,2),(3,2,3)}

Sa={(4,3,3),(4,3,4),(4,3,5),(4,3,7),(4,4,5)}

Ss = {(5,4,4),(5,4,5),(5,4,6),(5,4,7),(5,4,8),(5,4,9), (5,4,11),
(5,5,7),(5,5,9),(5,6,7)}.

We conclude this paper with the following problem.

Problem 4.1 For which triples (n, A, B) of positive integers with 5 <
n—1< A< B < |n%/2] — 1 does there erist a graph of order n whose
traceable number and upper traceable number are A and B, respectively?
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